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Abstract

The research on online learning under station-
ary and ergodic processes has been mainly
focused on achieving asymptotic guarantees.
Although all the methods pursue the same
asymptotic goal, their performance varies
when handling finite sample datasets and de-
pends heavily on which predefined density
estimation method is chosen. In this paper,
therefore, we propose a novel algorithm that
simultaneously satisfies a short-term goal, to
perform as good as the best choice in hind-
sight of a data-adaptive kernel, learned using
a deep neural network, and a long-term goal,
to achieve the same theoretical asymptotic
guarantee. We present theoretical proofs for
our algorithms and demonstrate the validity
of our method on the online portfolio selection
problem.

1 Introduction

In the traditional online learning setting, and in par-
ticular in sequential prediction under uncertainty, the
learner is evaluated by a loss function that is not en-
tirely known at each iteration (Cesa-Bianchi and Lu-
gosi, 2006). In this work, we study online prediction
but instead of focusing on the well-studied i.i.d. and
adversarial settings, we consider nonparametric sequen-
tial prediction, which focuses on the challenging case
where the unknown underlying process is stationary
and ergodic, thus observations depend on each other
arbitrarily.

Nonparametric sequential prediction under stationary
and ergodic sources has been considered in many pa-
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pers and various application domains. For example, in
online portfolio selection, |Gyorfi and Schafer| (2003));
Gyorfi et al.| (2006} [2007)); [Li et al.| (2011); |Uziel and El;
'Yaniv| (2017) proposed nonparametric online strategies
that guarantee, under mild conditions, convergence to
the best possible outcome. |Biau et al.| (2010); [Biau
and Patral (2011) considered the setting of time-series
prediction. Another line of research worth noting is
that of |(Gyorfi and Lugosi| (2005) regarding the online
binary classification problem under such processes.

Although the above strategies are very appealing due
to their ability to handle very general processes, they
require the use of a countably infinite set of experts, and
the guarantees provided for these strategies are always
asymptotic. This is no coincidence, as it is well known
that finite sample guarantees for these methods cannot
be achieved without additional strong assumptions on
the source distribution (Luxburg and Scholkopf] 2008
Devroye et al.,|2013)). Approximate implementations of
nonparametric strategies (which apply only a finite set
of experts), however, turn out to work exceptionally
well and, despite the inevitable approximation, are
reported to significantly outperform strategies designed
to work in an adversarial or i.i.d., no-regret setting, in
various domains (Gyorfi and Schafer] 2003} |Gyorfi et
al.l, 2006}, 2008; [Li et al., [2011)).

A common theme in all of these algorithms is that the
asymptotically optimal strategies are constructed by
combining the predictions of simple experts. The ex-
perts are constructed using a single predefined density
estimation method where a well-adapted choice of an
underlying density method will suppress the perfor-
mance of a vanilla method on a finite sample dataset.
For example, |Li et al.| (2011)) carefully designed a kernel
suitable for online portfolio selection that outperformed
a naive kernel choice used by |Gyorfi et al.| (2006).

In this paper, we focus on a commonly used density es-
timation method, the kernel density estimation method
(Rosenblatt], |1956; [Watson| (1964; Nadaraya, [1964)) and
on the problem of making sequential predictions while
learning a suitable kernel in a data-dependent way.
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We, therefore, propose Online Nonparametric Learning
with Kernels (ONLK), which simultaneously learns
a set of kernels using a deep learning model while
making predictions. The algorithm, as we will prove
later on, satisfies two goals simultaneously: a short-
term goal—to achieve a bounded regret from the best
data-dependent kernel choice in hindsight, and a long-
term goal—to produce the same asymptotic guarantee
as previous algorithms did.

The paper is organized as follows: In Section 2] we de-
fine the nonparametric sequential prediction framework
under a jointly stationary and ergodic process and we
define the short-and long-term goals of the learner. In
Section [3| we present ONLK and provide proofs of its
guarantees. In Section [l we demonstrate our approach
to the online portfolio selection problem, comparing
ONLK’s performance with several well-known algo-
rithms.

2 Problem formulation

We consider the following prediction game. Let X £
[—D, D] C R be a compact observation space where
D > 0. At each round, t = 1,2,..., the player is re-
quired to make a prediction y; € ), where Y C R™
is a compact and convex set, based on past observa-
tions, X7 & (21,...,2,1) and, x; € X (X} is the
empty observation). After making the prediction y,
the observation z, is revealed and the player suffers
a loss, I(y:,x:), where [ is a real-valued continuous
function and strongly convex w.r.t. its first argument.
We view the player’s prediction strategy as a sequence
S £ {8,}2, of forecasting functions S; : X1 — Y.
that is, the player’s prediction at round t is given by
Sy (X1 (for brevity, we denote S(X!™1)).

Throughout the paper we assume that x1,zs,... are
realizations of random variables X1, X5, ... such that
the stochastic process (Xt)‘f’ooﬂ is jointly stationary
and ergodic and P(X; € X) = 1. The player’s goal is
to play the game with a strategy that minimizes the
average [-loss,

%Zl(S(X{’1)7xt).

t=1

The well-known result of |Algoet| (1994)) states that the
lowest achievable loss for any online strategy is (without

1By Kolmogorov’s extension theorem, the stationary and
ergodic process (X,)f° can be extended to (X,)%,, such
that the ergodicity holds for both n — oo and n — —o0

(see, e.g., Breiman, [1992).

the power of hindsight):

T
. t—1
- >
hTmlnf tEZIZ(S(Xl ),x¢) > E yIIGI%}(()E[pOO [y, X0)]|,

where P, is the regular conditional probability distri-
bution of X, given F. (the o-algebra generated by
the infinite past X_1, X_5,...) and the maximization
is over the F,-measurable functions. Therefore, we
define the optimal quantity as follows:

V* 2 E | max Ep_ [I(y, Xo)]
yeY()

We focus our attention on processes with mixing prop-
erties. By mixing property we mean that the process
depends weakly on its past. Below we restate the
definition of an a-mixing process:

Definition 1 (a-mixing process). Let o, = o(X{")
and Omyr = o(X;0,) be the sigma-algebras of
events generated by the random wvariables X, =
(Xl, XQ, N ,Xm) and Xror?+t = (Xm-&-t, Xm+t+1, ), re-
spectively. The coefficient of absolute reqularity, o, is
given by

ap = sup [P(BNA) —P(A)P(B)|.

meN,A€v,,,BETm 4+t

A stochastic process is said to be a-mizing (or strong
mizing), if oz — 0 as t — 0.

If also

a, <ct™ "

for some positive constants c,r, then we say that the
process has an algebraic mixing rate.

Using the above definition, we assume, similar to several
earlier papers (e.g., Modha and Masry, [1998; [Meir,
2000), that our process is an a-mixing process with an
algebraic mixing rat(—ﬂ Additionally, we assume that
the underlying process has a bounded density function.

2.1 Nonparametric sequential prediction
using kernel density estimation

In recent years many papers have proposed methods for
asymptotically converging to V* in several significant
machine learning problems such as classification (Gyorfi
and Schéfer| |2003)), online portfolio selection (Gyorfi
et all 2007 [Li et all |2011)), quantile prediction, and
regression (Gyorfi and Lugosi, [2005)).

The common ground for all these methods is that in or-
der to asymptotically converge to the optimal quantity,
V*, they consist of building estimators for P.

20ur algorithms apply without these assumptions, with
a slight modification in the theoretical analysis.
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Building those estimators for such a general stationary
and ergodic process is a challenging task and requires
the learner to maintain an infinite number of experts
at each given time (or a doubly infinite array without
the mixing assumption).

This array of experts, which throughout the paper we
call Markovian experts, are estimators for the condi-
tional probability P{XO‘X:;}, k=1,2,.... All are built
based on the available information up to round ¢. We
denote these experts by hy, k =1,2,....

Each Markovian expert, equipped with a window of
length k, is looking for similarities between the current
context X :,i and the set of past k-length observations
{Xf:f . ,X:,i}. More specifically, the learner is us-
ing a predefined kernel K(-,-), a non-negative bounded
and integrable functiorEL which in fact serves as a
similarity measure between the different observations.
Using the kernel, we can estimate the conditional prob-
ability in the following way:

First, for a fixed context X € R*** we define the

similarity weights:

wf = K(X/7},X)

K2

1—-t4+k<i<0.

Using these weights we can define a probability measure
over X

0
N Zi:ktﬂc WflA(Xi)

0 k
Zi:kt% W

where 14 denotes the indicator function of the set A C
[~ B, B]™. In other words, P¥(A) is the kernel-weighted
relative frequency of the vectors among Xi_jx,..., Xo
that falls in the set A. Thus, we can define the predic-
tions of the k-Markovian expert to be:

PF(4) : (1)

hi(X7,) £ arg min (Eu»,& [i(y, x)]) =

(Z?_lH»k wfl(y, ;) ) .

0 k
Zi:ktﬂc Wy

By definition, hy,(X; ") is the minimum of [ w.r.t. PF.

(2)

arg min
yey

Since in general the memory of the underlying stochas-
tic process is unknown (it might not even be Marko-
vian), one has to aggregate an infinite number of such
Markovian experts. The aggregation of the experts is
done using standard online learning algorithms.

By aggregating the Markovian experts properly, one
can guarantee, using an observation made by |Algoet
(1994), that the average loss will asymptotically con-
verge to V*.

3We assume throughout the paper that the kernel’s
bandwidth is chosen in accordance with Theorem 2 in
Hansen| (2008)) and thus we ignore it.

It should not be surprising that the empirical perfor-
mance depends heavily on the selection of the of the
kernel K (Gyorfi and Schafer, 2003; |Gyorfi et al., 2007}
Li et al., [2011)). As stated before, previous algorithms
considered how to choose the kernel estimator K in a
data-dependent way. We, on the other hand, propose
a novel mechanism that can handle the online selection
of those estimators in a data-dependent way.

In our approach, and as will be discussed in the next
section, using the intuition that different time scales
exhibit different patterns, for each Markovian expert
we assign a deep neural network. Each network pro-
duces at each round J-kernels. These kernels are called
throughout the paper kernel experts. These experts al-
low the player to choose and aggregate different choices
of data-dependent kernels.

Summarizing the above, we define the goals of the
learner to be as follows: Generate a sequence of predic-
tions yara = y1,¥s . . ., without the power of hindsight,
such that the following goals are satisfied simultane-
ously:

Short-term goal: To generate a sequence of pre-
dictions competing with the best kernel K chosen in
hindsight, from a reference class of kernels denoted by
K. We, therefore, define the regret w.r.t. reference
class KC as follows:

Regret(yare,KC,T) £

T
Z Uye, Xo) — Ifélel%z l(yf{, Xt),
t=1

t=1

where yX are the predictions generated by the learner’s
algorithm using kernel K. Accordingly, we aim to
achieve sublinear regret w.r.t IC.

Long-term goal: To ensure that the sequence of
predictions converges asymptotically to V*:

T
| *
llTIIigoréf T tg_l Wy, X¢) = V7, (3)

a.s., and, therefore, maintain the same guarantee as
existing algorithms.

3 Online Nonparametric Learning
with Kernels (ONLK)

We now present our algorithm Online Nonparametric
Learning with Kernels (ONLK). ONLK is illustrated
in Algorithm [I] and comprises the three components
discussed below.
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Algorithm 1 Ouline Nonparametric Learning with Kernels (ONLK)

1: Input: Memory bound d
2: Fort=0to T
3:  Play y;.

4:  Nature reveals x;
5. Suffer loss I(yy, ©¢).
6: Fori=1tod
7 For j=1to M N
8: Update the cumulative loss for (7, 7)-kernel ;7 N
9: Update the kernels using Equation and the predictions yzil using Equation
10: Update the kernel’s weights
N 1 ) o B,fi’j)
\/E Zs:l 15175)
11: Update y;, , as follows
M . .
Y1 = sz(ffl)yz-:l
s=1
12: Update the loss of the Markovian expert [} and the experts’ weights
. 1 . Bi
B £ exp <\/£l;) P?ﬂ 2 i . =
Zs:l /81:84-1
13: Choose yi41 as follows
d
Yt+1 = prﬂyfﬂ
s=1
14: End For

Aggregation between the Markovian experts
At each given round we aggregate the predictions of the
Markovian experts. This is done using an instance of
the well-known Weak Aggregating Algorithm (WAA)
(Kalnishkan and Vyugin, [2005; |[Vovk, 2007)E|, the algo-
rithm puts more weight on more successful experts.

Aggregation between the kernel experts FEach
Markovian kernel possesses J kernel experts, each of
which is a different kernel choice learned in a data-
dependent way. The aggregation between the different
choices is done by using a second instance of the WAA
algorithm.

Learning the kernel experts The kernel experts
are learned using recent innovations in the field of

4The choice of WAA is arbitrary and could have been
replaced with any other no-regret expert learning algorithms
such as EG or ONS (Helmbold et al., [1998; [Hazan et al.,
2007)).

deep metric learning, which is an emerging field in
metric learning, whose goal in general is to learn a
similarity function or a distance between samples from
training data. Metric learning and, in particular, deep
metric learning is widely applied in various computer
vision tasks ﬂ Recently, [Li et al.| (2018b); |Gao et
al| (2019) suggested methods for learning deep metric
presentations in an online manner. Both approaches
consist of stacking several fully connected layers where
each layer represents a different similarity measure.
This method exploits the fact that shallow layers tend
to converge faster than deeper ones, thus generating
the learner metrics that are suitable for early stages
in the game. Later on, the deeper layers converge as
well, suggesting to the learner rich and deep patterns.
This approach is more suitable for the online learning
setting, for several reasons. First, in the online setting,
validation data is missing, and thus it is hard to train a

5For an extensive survey on this field see, e.g., |Gao et
al|(2019) and the references within
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neural model as done in the batch setting. Second, the
approach allows training the neural network fast and
on-the-fly, and third, stacking the layers allows them
to share information.

More formally, for each Markovian expert hy, we assign
a neural network with J fully connected layers to exploit
different patterns that may occur on different time-
scales. We denote the corresponding matrix of layer
j by M;. At time t, and given the context window

s = Xtt:;, we first create a triplet, (s%, %, s%), where

»9pren
sg denotes an example that is desired to be close to the
context window and s¥ that is supposed to be far from
this window. In practice, the triplets can be generated

using one data pass as described in [Li et al.| (2018a)).

The triplet serves as an input to the first fully connected
layer. The matrix is decomposed into M; = LT L; and
a transformed triplet is created,

(st = LT, 511, = Llng, st =LTsY). (4)
This triplet passes through a ReLU activation and
enters the second fully connected layer, and so on until
the final layer, layer J. Resulting, at the end of the
process, in Miy,..., M; matrices. To each layer we
attach the following local loss,

F(M, (5%, sp,50))
= max{0,1+ DM(SO sO) — DM(SO, 82)},

7P

where Djps(+,-) is the Mahalanobis distance induced
by matrix M. This loss encourages the layer to find
matrix M, which separates the two examples with a
large margin. Inspired by the method of online passive-
aggressive updates (Crammer et al., [2006]), Li et al.
(2018b) suggested to minimize f using gradient updates,
the following closed form formula should occur,

. M1 —vA;
M, = {Mtl

AR

for Ay = (s — s9)(s” — s0)T — (" — s0)(s” — sD)7.

n

Moreover, as proved in [Li et al.| (2018b)), by carefully
choosing v, we can guarantee that the matrices remain
semi-positive during the updates, and thus can be used
to induced a metric.

The induced matrices, M; 1, ..., M; s, are used to con-
struct the following Mahalanobis kernel for a given
bandwidth 6,

Dy iz, Dy iz, <0
Km(x,y) _ {0 M J( y) M ’j( y)

otherwise,

(6)

where we denote K ; as the kernel generated by layer j
of the network attached to Markovian expert ¢. Using
Equation (2)), prediction y;” can be generated from

The architecture that was described above is illustrated
in Figure 1.

We note that despite the fact that a global loss (e.g.,
triplet loss) can be attached to the last layer as well, and
be trained using backpropagation, the authors found
that training each network layer using the updates
presented above is beneficial and produces solid results
on several benchmarks.

Summarizing the above, at time step ¢, each Markovian
expert h; has J possible predictions y;/, j=1,...,J,
generated by its kernel experts. The aggregation be-
tween the different kernel experts is done, as explained
before, by applying an instance of the WAA | resulting
in the prediction of the Markovian expert y;,,. The
aggregation of all the predictions of the Markovian ex-
pert, by applying another instance of the WAA, results
in the final prediction of the algorithm y} 11

We now describe the pseudo-code of ONLK. ONLK
gets, as a hyperparameter, a memory bound J, which
is needed for finite execution time. After a new obser-
vation is revealed (line 3), the cumulative loss up to
time t for each kernel expert, li’j 1< <J1<:i< J,
is updated (line 8). Afterwards, each kernel updates
its prediction y;?/, using Equation (line 9). For each
Markovian expert, 1 < < cZ, we run d instances of the
WAA algorithm (lines 10-11) to aggregate the kernel
expert predictions, resulting in the final predictions
Ytir,- -y of the Markovian experts (line 11). The
final prediction of ONLK, for the next round, y;41, is
received after the aggregation of y. s yf_H using
the outer WAA instance (lines 12-14).

3.1 Theoretical Guarantee

We state and prove the theoretical guarantee of ONLK.
Showing that it indeed satisfies the short-term goal and
the long-term goal simultaneously.

Theorem 1 (ONLK). Let y1,ya,... be the predictions
generated by ONLK when applied on a set of kernels
K={K:i...,K, ;}- Then the following holds:

T

> Uy, Xy) - ;(nei%;l(yf(,Xt) <OWT), (7)

t=1

where yX& yX ... are the predictions made by kernel
K € K. If, moreover, we apply ONLK using the dou-
bling trick over the parameter d, then ONLK will satisfy
the long-term goal as well, generating predictions such
that:

T
o1 X
11[1111013}f T E ye, X¢) =V"  as. (8)

t=1
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Figure 1: The architecture of ONLK, which was used in our experiments. At time ¢, for a Markovian expert
h, the context window s serves as input to the first network layer. The first layer M; is used as the first kernel
expert. Afterwards, by using a decomposition of M7, we get a new presentation for the triplets that serves as
an input to the second layer, resulting in J different kernels. The weights over the kernel experts are set by an

instance of the WAA algorithm.

The proof is presented below. In the proof, we use
the following lemma, which is known as Breiman’s
generalized ergodic theorem:

Lemma 1 (Ergodicity, 1957). Let X =

{X;}>°, be a stationary and ergodic process. For
each positive integer i, let T denote the operator
that shifts any sequence by i places to the left. Let
f1, fo,... be a sequence of real-valued functions such
that limy_ oo f1(X) = f(X) a.s., for some function f.
Assume that Esup, |f1(X)| < co. Then,

t—o00

t
tim + 3" £(TX) = Ef(X)
=1

Proof. The proof is divided into two parts. In the
first part, we show that the short-term goal is indeed
satisfied by using the guarantees of the WAA algorithm
and by showing that the outer algorithm performs as
good as the best Markovian expert. In the second part
of the proof, we show that V* is achievable by the
Markovian experts and, therefore, can be achieved by
ONLK.

First step The first step of the proof is to show
that the predictions generated by the inner algorithm
perform as good as the predictions made by using the
best-fixed kernel at time 7. Since we use the WAA
as a sub-routine for every 1 < i < d and by applying
Lemma 11 in Kalnishkan and Vyugin| (2005):

1T 1T /k
I(ys, xt) in — l , + == (9
T2 hewn) < min, 732Uk + 2 )

where Cj; > 0 is a constant, independent of 7. By
applying the same theorem again but now on the outer
algorithm, we get that

1 X T C.
Wyt z¢) < min min — Iy + Z’k7
7 3 ) < i i 7 3080 +

(10)
and thus ONLK satisfies the short-term goal.

Second step We just showed that we perform as
good as any other expert. As discussed earlier in the
paper, since the process is not assumed to have bounded
memory, we must aggregate all the Markovian experts.
This is done using the doubling trick over the parameter
(2, i.e., dividing the timeline into intervals of length
T = 2',i > 0 and applying ONLK on each interval
with d = 2/ (see, e.g., |Cesa-Bianchi and Lugosi|, |2006I)7
resulting in a bounded regret from any Markovian
kernel. In particular, using Equation ,

lim sup —= Z I(ye, x4)

T—o0

T

_ 1 p Ch ;
< f - l s3J sJ .
= (Tz: (v, @) + \/T>
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Therefore, we get

limsup —= T Zl (yt, zt)

T—o0 —1

Ms

T—oo k.J

1
li inf | =
im sup inf (T

t=1

. Ch .
Uyp o) + ﬁ>
Uys e

Cr.j
+ S
iEf) ﬁ)
T .

Zl(yfvjyxt)> S
t=1

T
1 .
lim sup min lim sup (T E l(yf’J,act)> , (11)
t=1

<
<

M=

i 1
1nr 11m su —
k.j T~>oop T +

Il
-

Nl =

inf lim sup (

kEJj T—oo

k—o0 J T—o0

where in the last inequality we used the fact that lim sup
is sub-additive. Concluding the above, it is enough to
show that

T
1 .
lim sup min lim sup (T E l(yf’j,xt)> =V (12)
t=1

k—o0 J T—o00

To show it, first analyze the asymptotic average loss of
a fixed expert (k,j) for 1 < k,1 <j < J. As we saw in
Equation , this kernel forms a (random) probability

measure ]P’tk’j ), Using the uniform (weak) convergence
of kernels for a—mixing processes (Theorem 2 in [Hansen),
2008)), we get that

o
P = Pyixony (13)

weakly, as t tends to co. Since [ is strongly convex,
arg mingcy <]E1P>{XO|X_1} [l(y,m)]) is a singleton. Thus,
—k

by using Lemma 2 in |Algoet| (1994) we get that a.s.

arg min (Eﬂ”ik’j) [l(y,m)]) -

oy (e, )] )

Thus, we can apply Lemma (1] and conclude that as T'
approaches oo,

1 T
7 21w Xe) = E (U5, Xo)]
t:l

a.s., where y; £ argmingey (Ep{x(,x }[l(y,x)]>,
—k

i.e., the optimal selection w.r.t. ]P){XO‘X—I}.
—k

To finish the proof, we apply the supermartingale con-
vergence theorem (see, e.g., [Stout| [1974). First note
that the sequence

Zr 2 E [U(y};, Xo) | X}

is a supermartingale. We can see this by using the
tower property of conditional expectations,

E[Zk41 | X:;i] =E [E [Zk+1 | X—k 1] | X:li] ;

and since Zjy; is the optimal choice in ) w.r.t. to
X1,

<E[E[Z: | X7} | XT4) =E[Zk | X2}) = 2.
Note also that E[Zj] is uniformly bounded. Therefore,

we can apply the supermartingale convergence theorem
and get that Zy, — Z a.s. as k tends to oo, where,

Zoo =E [l(yk, Xo) | X2 = V7,

and by using Lebesgue’s dominated convergence the-
orem, also E[Zy] — E[Z] = V*, which concludes the
proof.

O

4 Empirical Study

4.1 Online Portfolio Selection

Online portfolio selection (Cover} [1991)) is a challenging
and a long-standing problem. In this problem the
learner maintains an online allocation vector, called
a portfolio, specifying the fraction of wealth to be
invested in all the stocks in the market. At the start
of each trading period (e.g., day), the learner receives
the current prices of the stocks and submits his next
day’s portfolio to his broker with the hope that his
chosen stocks will rise in price. Formally speaking,
we are given a market with n stocks. On each day
t, the market is represented by a market vector X
of relative prices, X; = (x4, 2%, ..., 2%, where for each
i=1,...,n,0<c; <zt <cyfor some constants cy, co,
the relative price of stock i is defined to be the ratio of
its closing price on day ¢ relative to its closing price on
day t — 1.

The algorithm’s portfolio for day t is b, £
(bY, b, ..., b)), where bt > 0 is the wealth allocation
for stock i. We require that the portfolio satisfy
S bt = 1. Thus, b, specifies the online player’s
wealth allocation for each of the n stocks on day ¢, and
bt is the fraction of the total current wealth invested
in stock ¢ on that day.

At the start of each trading day ¢, the algorithm chooses
a portfolio b;. Thus, by the end of day ¢, the player’s
wealth is multiplied by (b, X;) = >"1" bﬁmf and, as-
suming an initial wealth of $1, the player’s cumulative

wealth by the end of the game is

R(B,XI 12 H (by, X,), (14)
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Table 1: Cumulative wealth of known algorithms and ONLK assuming an initial wealth of $1

Dataser || Inpex UCRP  BCRP  UP B CORN | BK BM | ONLK
NYSE 1.47 1.52 1.77 1.51 1.89 2.16 2.55 2.52 2.48
SP500 1.79 1.81 2.03 1.86 2.14 2.42 3.01 2.93 2.91

where B £ by, ..., bp_; is the sequence of T' portfolios be 0 = % The experiments were implemented using

played by the algorithm for the entire game.

We compare the performance of ONLK to the following
benchmark algorithms: (i) Index: Setting a uniform
weight over the stocks, with the allocation afterwards
remaining untouched; (ii) UCRP: Uniform portfolio,
where the allocation is rebalanced back to equal weights
each time the prices are revealed; (iii) BCRP: The
best fixed rebalancing portfolio calculated in hindsight,
which is the best strategy in i.i.d. markets; (iv) UP:
Universal portfolios (Cover and Ordentlichl |1996), an
algorithm that tracks the BCRP; (v) By: The kernel
algorithm suggested by |Gyorfi and Lugosi| (2005]) for
stationary and ergodic markets using a naive choice of
a Euclidean kernel; (vi) CORN: An improvement over
the By algorithm, by using handcrafted kernels; (vii)

BM: The best Markovian expert calculated in hindsight.
(vii) BK: The best kernel expert calculated in hindsight.

All the algorithms were implemented with the same
parameters that were suggested by their authors.

Table 2: Some properties of the datasets

Dataset Starting day # Days # stocks
NYSE 1/1/2009 2000 20
SP500 1/1/2009 2000 30

We used two datasets, NYSE and SP500. The datasets
contain stocks with the largest market value at the start
period. These datasets span several types of market
conditions and amounts of stocks (see Table [2)).

4.2 Implementation and results

The main objectives of our experiments are to check
how well ONLK tracks the best kernel expert and the
best Markovian expert and to examine the usefulness
of exploiting a data-dependent kernel instead of using a
naive kernel or handcrafted one, especially in the case
where the data is hard to model. To apply our ONLK
strategy, and for learning the kernels, we used a 5-layer
DNN with ReLU activation between the layers. The
size of each hidden layer was equal to the size of the
input vector (number of stocks) in the corresponding
dataset. The network was trained using the updates
in Equation ([B)) with v = 0.01 as suggested by [Li et al.
(2018b)). ONLK was applied with d = 5, resulting in
five Markovian experts (as suggested by |Gyorfi et al.),
2008]). The bandwidth of all the kernels was chosen to

Keras (Chollet and others), 2015)).

Moreover, since the network is using triplets as an input,
we used the observation made by several heuristic algo-
rithms that exploiting statistical phenomenon, such as
mean reversion, in the markets can be beneficial. One
approach was an algorithm called Anticor (Borodin
et al. 2000). Accordingly, to exploit this observation
for a given context window, we generated a positive
example, which is the most correlated sample, and a
negative, one which possesses the lowest correlation,
all measured using the Pearson correlation.

In Table[1} we present the final wealth achieved by the
different algorithms in the two datasets that were used.
It can be seen that our approach to making predictions
while learning the kernel results demonstrates superior
performance compared to the index, UP and BCRP
algorithms and to the the choice of the naive kernel
By and to the handcrafted kernel CORN. Moreover, by
comparing the result of ONLK to the results attained
by the best layer BL and by the best Markovian expert,
BM (both calculated in hindsight), we can observe that
our algorithm tracks both successfully.

5 Conclusions

In this paper we tackled the problem of learning and
using a data-dependent kernel, learned online using a
neural network, in the context of nonparametric sequen-
tial prediction under stationary and ergodic processes.
This success reduces the need for pre-choosing a well-
suited kernel for the specific problem. We presented
ONLK, which can achieve the short-term and long-
term goals simultaneously, performing as good as the
best choice in hindsight of a kernel, while maintaining
the same asymptotic guarantee as previous algorithms.

In future work, we wish to extend our approach to deal
with another well-known density estimation method,
the nearest neighbour method (Gyorfi et al., |2008]),
where one has to pre-choose a metric. Online metric
choosing might need a different theoretical analysis
and thus may not be directly deduced from the proof
presented in this paper.
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