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Abstract

Prior work has shown that low-rank ma-
trix factorization has infinitely many critical
points, each of which is either a global mini-
mum or a (strict) saddle point. We revisit this
problem and provide simple, intuitive proofs
of a set of extended results for low-rank and
general-rank problems. We couple our inves-
tigation with a known invariant manifold Mg
of gradient flow. This restriction admits a
uniform negative upper bound on the least
eigenvalue of the Hessian map at all strict
saddles in Mg. The bound depends on the
size of the nonzero singular values and the
separation between distinct singular values of
the matrix to be factorized.

1 Introduction

Matrix factorization (MF) is a well known and im-
portant problem. Reflecting this, there are many ap-
proaches to posing and solving MF problems. Some of
the best known include Positive Matrix Factorization
(PMF) [Paatero and Tapper, [1994], Principal Compo-
nent Analysis (PCA) [Hotelling, 1933, (1936l |Jolliffel,
2011|, Canonical Correlation Analysis (CCA) |[Hardoon
et al.l [2004], Independent Component Analysis (ICA)
[Hyvérinen and Ojal 2000, and Dictionary Learning
[Mairal et al., 2009]. The MF problem, is inherently a
non-convex problem over matrix arguments. It is typi-
cally solved using an iterative method (power iteration,
gradient descent, etc.). Hence one is very interested
in the landscape of the non-convex objective function
being used.

One of the first results on the landscape of MF is due
to Baldi and Hornik| [1989]. This paper examined the
landscape of training a one hidden layer rank k linear
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neural network and proved that all critical points are
either global minima or (strict) saddle points. Further,
the global minimum value is determined by the pro-
jection residual of the training data onto the subspace
generated by the first k& principal vectors of a covari-
ance matrix associated with the training patterns. This
connection to PCA was established by |Bourlard and
Kamp] [1988]. As explained in [Baldi and Hornik, |1989),
the training objective used in a linear neural network
corresponds to an matrix factorization problem.

There is a recent surge of interest in the landscape of
nonconvex objective functions. |Li et al|[2019] exam-
ine the landscape problem under the lens of invariant
groups and show that the parameter space can be di-
vided into three regions: neighborhoods of all strict
saddle points, neighborhoods of all global minima, and
the complement of the first two regions. |Ge et al.
[2017a] study the matrix sensing, matrix completion
and the robust PCA problems, all of which have a for-
mulation as matrix factorization problems. Similarly,
[Ge et all 2015] considers the tensor decomposition
problem, [Sun et al. |2018, [Boumal, |2016] study the
phase synchronization and retrieval problem and [Sun
et al.| [2015] examines the dictionary recovery problem.

Much effort has also been devoted to studying the
landscape of neural networks under simplified assump-
tions [Kawaguchi, 2016| Nguyen and Heinl 2017} [Hardt
and Mal 2016} |Ge et al.| [2017b].

Other papers have investigated the implicit constraints
imposed by gradient flow in training over-parameterized
models such as deep neural networks. For example,
|[Arora et al., 2018] shows that for over-parameterized
multi-layer linear neural networks gradient flow implic-
itly balances the underlying factors, while [Du et al.
2018] extends this result to fully-connected and convo-
lutional linear sections of neural networks.

This paper revisits the landscape of the MF problem
and derives extended results in a contemporary format.
This yields more intuitive proofs which offer the possi-
bility of further generalization. Moreover, our results
are applicable to both low rank and general-rank fac-
torization. We additionally analyze how an invariance
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property of gradient flow impacts the strict saddles
that can be encountered. Gradient flow is constrained
to a manifold M, where C' is set by the initial condi-
tion. The choice C' = 0 models the common practice of
selecting random initialization close to the origin. For
MF, once initialized in My, gradient flow ensures that
the factors remain in Mg. We identify the set of criti-
cal points in Mg and derive an negative upper-bound
on the minimum eigenvalue of the Hessian map at all
strict saddles. This negative upper bound depends on
both the size and separation of the nonzero singular
values of the matrix to be factorized. Hence for a given
data matrix X, our results suggest that the ability
of gradient flow to escape the neighborhood of strict
saddles on Mg depends on the size and the separation
of distinct nonzero singular values of X. Due to the
continuity, properties exhibited on Mg will degrade
gracefully as we move away from My.

Our new contributions arise from: (1) an orbit-based
analysis of the problem and the identification of a
natural canonical point on each orbit, (2) examining
the natural invariant Mg, and (3) showing that the
minimum eigenvalue of the Hessian map at all strict
saddles on My is uniformly bounded below zero. In
addition, we use the natural setting of the problem, and
avoid both symmetry assumptions and vectorization of
the relevant differentials.

2 Preliminaries

For positive integers m, n, let R™*" denote the set of
m X n real matrices, GL,, C R"*" denote the general
linear group of invertible n x n matrices, O,, C GL,,
denote the group of orthogonal n x n matrices, and for
k < m, St,, . denote the subset of m x k real matri-
ces with orthonormal columns (the Stiefel manifold).
For A, B € R™*" A, denotes the k-th column of A,
(A, B) denotes the standard inner product of A and B,
and ||A||F denotes the Frobenius norm of A.

Let f: R™*" — R, with X — f(X), be a twice con-
tinuously differentiable function. The derivative of f
with respect to X evaluated at a given point Xj is a
linear map from R™*" to R. Its action on H € R™*",
denoted by Dx f(Xo)[H], satisfies

Dix f(Xo)[H] = lim f(Xo +aH) —f(Xo).

a—0 [e%

The gradient of f at Xg, denoted Vx f(Xp), is the
unique point in R™*" such that

Dx f(Xo)[H] = <Vx f(Xo), H>.

When no confusion is possible we omit the subscript
X and simply write D f(Xo) and Vf(Xp).

The gradient function maps X to V f(X). The deriva-
tive of this function at X is a linear map from R™*" to
R™>*™_ This linear map, and its action on H € R™*",
are denoted by V% f(Xg) and V% f(Xo)[H], respec-
tively. When no confusion is possible we omit the
subscript X and simply write V2f(Xy). The linear
map V2 f(Xy) corresponds to the Hessian matrix for
functions from R™ to R. The second derivative of f is

D f(Xo)lH, K] = <V& f(Xo)[K], H>. (1)

We will always evaluate the second derivative with
K = H. In this case, we simply write D?f(Xo)[H].
The second derivative is a scalar valued function from
R™*™ to R. The linear function V% f(Xo)[H] embed-
ded in the second derivative brings in eigenvalues and
eigenvectors associated with the second derivative.

A point X is a critical point of f if V.J(Xy) = 0. The
second order Taylor series of f about a critical point
Xy in the direction of H is

f(Xo+tH) = f(Xo) + Y2t>D? f(Xo)[H].  (2)

If VH, D?f(Xo)[H] > 0, Xp is a local minimum, if
VH, D?f(Xg)[H] < 0, it is a local maximum, and if
VH, D?f(Xo)[H] # 0 but is sign indefinite, it is a
saddle point. However, if there exists nonzero H such
that D?f(Xo)[H] = 0, the second derivative test is
inconclusive, and Xy is termed a degenerate critical
point. The eigenvalues of the Hessian map V2 f(X,) are
fundamental to making these classifications. Motivated
by the observation that many non-convex optimization
problems have degenerate critical points, the concepts
of a strict saddle and a strict saddle function have
been introduced |Ge et all [2015]. A strict saddle is a
critical point for which the Hessian map has at least one
negative eigenvalue (this includes local maxima). For
v > 0, a y-strict saddle is a critical point for which the
least eigenvalue of its Hessian map is bounded above
by - 1.6.7 )\min(vzf(XO)) < -.

2.1 Basic Matrix Factorization

In unconstrained matrix factorization, given X €
R™*™ with rank(X) = r, and a factorization dimension
k, we seek W € R™*F and S € R¥*" to minimize

J(W,8) = 1/2|| X — WS|[5. (3)

When k < r, this problem has a well known solution
derived from any compact SVD X = UXVT. Let U,
(resp. Vi) consist of the first & columns of U (resp. V)
and X; be the top left k x k submatrix of 3. Then
(W, S) = (UpvVZk, VELVL) is a global minimum of
. Since computing an SVD can become prohibitive
for large matrices, we consider minimizing using



Hossein Valavi, Sulin Liu, Peter J. Ramadge

gradient descent methods. Hence we are interested in
the local properties of the critical points of J.

The variable (W,S) lies in the product space
X & R™k x RFX" The inner product on X is
<(G,H),(G'H")> = <G,G'> + <H,H'>, with as-
sociated norm ||(G, H)||% = ||G||% + | H||%. We will
work extensively with the gradient, Hessian, and second
derivative of J defined in (3). Setting E = WS — 5,
we list the equations for these functions below.

VJ(W,S) = (EST, WTE), (4)

V2IW,9)(G, H)] = (GSST + WHST + EHT,
WIWH +WTGS +GTE), (5)

D2J(W, S)[(G, H)] = ||GS|% + |[WH| %
+ 2trace(HTWTGS + H'GTE), (6)

A point (W, S) is a critical point of J if VJ(W,S) = 0.
Using , this is equivalent to

(WS —-X)ST=0 and WI'(WS-X)=0. (7)

3 Landscape Analysis

We begin by introducing the orbits in X under GLg
and identifying a natural canonical point on each or-
bit. This facilitates our analysis of the landscape of
J. Specifically, we prove that every critical point of J
lies in an orbit of a canonical critical point under GLg,
and that all critical points on the orbit inherent impor-
tant properties from the canonical point. Our analysis
covers both k < r (low rank matrix factorization) and
k > r (an over parameterized linear neural network).

3.1 Orbits and Their Properties

For A € GLg, let L4: X — X denote the linear map
La: (G H)— (GA, A" H). (8)

Then for given (W, S) € X let

OW,S) 2 {LA(W,S): Ac GLy} and
O(W, ) £ {Lo(W, 5): Q € Oy},

We call ©(W, S) the orbit of (W,S) under GLg, and
O(W, S) the suborbit of (W, .S) under O. The value
J(W,S) is constant on each orbit. This has two impor-
tant consequences. First, if any point on an orbit is a
global minima, all points on the orbit are global minima.
Second, the gradient VJ (W, .S) must be orthogonal to
O(W,S) at (W, S). This is intuitively clear: moving
along (W, S) the value of J constant, but moving in
the direction VJ(W,S) yields the greatest change in

J. To prove the orthogonality, take the derivative of
(WA, A=1S) with respect to A, and then set A = Ij.
This yields the set of tangents to O(W, S) at (W, S):

Tws = {(WK,-KS): K € RF**}. (9)

Orthogonality is then verified by taking the inner prod-
uct of any element in @ with . Other quantities that
are constant on ©(W,S) include rank(W), rank(S),
and rank(W.S).

Qualitative properties of point neighborhoods are also
“preserved” along the orbit. To see this let (G, H) € X
and t > 0. Then for any A € GLy,

J(WHtG, S+tH) = J(W A+t(GA), A~ S+t(A™1 H)).

So the values of J traced out by moving from (W, S)
along a line in the direction of (G, H) are the same as
the values traced out when moving from (WA, A=1S9)
along a line in the direction of (GA, A~'H). The fol-

lowing lemma formalizes these observations.

Lemma 3.1. For all (W,S) € X and A € GLg:

(a) VI(LA(W,S)) = Ls-rVJ(W,S),
(b) DI(La(W,5))[La(G,H)| =DJW,S)[(G, H),
(¢c) V2J(La(W,S))[La(G, H)| =
La-r(V2I(W,9)[(G, H))),
(d) D*J(La(W,S))[La(G, H)]
= D*J(W, )[(G, H)].

Proof. Expand of each side of the stated equality. See
the supplementary material for the full proof. O

We use Lemma to prove additional orbit properties.
Theorem 3.1. Let (W,S) € X and A € GLy. Then

(a) If (W,S) is a global minimum, so is every point
in O(W,S).

(b) If (W, S) is a critical point (resp. strict saddle),
so is every point in ©(W,S).

(c) The eigenvalues of V2J(W,S) are invariant in
oWwW,S).

Proof. (a) By (@), JW,S) = J(WA,A71S). So if
(W, S) is a global minimum, so is L4 (W, S).

(b) By Lemma [3.1] part (a) and the linearity of L4,
if VJ(W,S) = 0, then VJ(L4(W,S)) = 0. So if
(W, S) is a critical point, so is every point on O(W,.S).
Now let (W, S) be a strict saddle and the minimum
eigenvalue of V2J(W,S) be —\ < 0. Then for some
unit norm (G, H), <V*(W,9)[(G, H)], (G, H)> = —\.
By Lemma [3.1] part (d), D2J(La(W,S))[La(G, H)] =
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Lv(W,S) = (U, VTS

Figure 1: A conceptual view of the orbit O(W, S). (W, S) is a critical point with rank(W) = min{k, m} and compact SVD
w=0zVT. L, (W,S) = (Uf], VTS) is a critical point on the same sub-orbit under Q. This point is can be transported
along the orbit ©(W, S) using Ly,-1 to (U7 i)VTS). There exists an orthogonal Q that U = UQ where U formed from k
orthonormal eigenvectors of X XT. This gives a canonical point (U, AV7T) on the same sub-orbit under Oy, as (U, V7).

D*(W,8)[(G,H)] = —A. Thus V2J(LA(W,S)) has a
negative eigenvalue. So if (W, S) is a strict saddle, so
is every point on ©(W,S).

(c) Consider an eigenvector (G, H) € X of V2J(W,95)
with eigenvalue A\. By Lemma part (c),

V2I(La(W,8))[La(G, H)| =
AL 4-r((G,H)) = MGA™T, ATH).

If A € ©p then A7l = AT, Hence
V2J(W,8)[La(G,H)] = ALA((G,H)). Thus X is also
an eigenvector of V2J(WA, A71S). A symmetric ar-
gument proves the converse also holds. O

3.2 Canonical Points

It will be convenient to identify a canonical point on
each orbit of critical points. The existence of this point
and its properties will be used to prove results for
all critical points in the same orbit. The canonical
point itself need not be computed. We construct the
canonical points using the left singular vectors of X.
This exploits the known connection to PCA (and SVD).

WLOG we assume m < n and consider the m x m
matrix X X7T. This has r positive eigenvalues and (m —
) zero eigenvalues. Denote these by

o1 >05>02>0 o =--=02=0. (10)
Let uq,...,u, denote a set of m corresponding or-

thonormal eigenvectors with XX Tuj = ajzuj for j €
[1:7], and XXTu; = 0 for j € [r + 1:m]. The first
r orthonormal eigenvectors need not be unique since
the nonzero eigenvalues may be repeated. Place the
eigenvectors in the columns of U € R™*". This basis
can then used to form a compatible full SVD

X =0Vt =3%"" ouwl. (11)
Fix a factorization dimension k and select an integer

q < min{k, m}.

Then place a subset of ¢ eigenvalues of X X7, denoted
by AT > A3 > --- > A2, in decreasing order in a diago-
nal matrix A2 € R7%9. Place the corresponding set of
g orthonormal eigenvectors of X X7 into the columns
of U € R™*4 such that XXTU = UA?. Let V denote
the matrix of corresponding columns of V. So

UTX =AVT and XV =UA.

Select Sy € RE=DX7 to satisfy
(UUT - nxst =o. (12)
By Lemma below, S has the form
ST =VC + V0,

where Vo = [Up41,...,0,], C € RI*F=9 and O, €
R =m)x(k=a) " Tt follows that the set of Sy satisfying
contains nonzero elements and is unbounded.

Lemma 3.2. If S satisfies , then:

(a) ST =VC + VyCy for some C € RI*k=9) )
R(n—r)x(k—a)

(b) If A? is invertible, C and Cy are unique and
So ST =CTC + CECy.

Proof. (i) implies UUTX ST = X S¥. Hence for
some matrix B = [b; ;] € R©*(F~9) XS, = UB. Since
U has orthonormal columns, B is unique.

(ii) Using part (i) and the SVD of X, USVT ST = UB.
For any 1 < j < r, let u; be an eigenvector that is
not a column of U and v; denote the corresponding
column of V. The condition 1 < j < r, ensures 0']2- > 0.
Multiplying both sides of the previous equation by u;F

yields ij]TST = u]-TUB = 0. Hence 'U]TST =0.

(iii) By part (ii), for every v; that is not a column

in V and its corresponding singular value is nonzero,
v]'S3 = 0. Thus the columns of S5 must lie in the
span of the v; that are either columns of V or have

zero eigenvalues. Hence there exist C, Cy such that
ST = VC + VyCy. This proves (a).
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(iv) The assumption that A? is invertible excludes v,
with zero eigenvalues from the columns of V. In this
case, the combined columns of V and Vj form an or-
thonormal set. Hence for a given S,, C' and Cy are
unique. The orthonormality of the columns in V and
Vp ensures S257 = CTC + C¥'Cy. This proves (b). O

Finally, we form the canonical point (W, S) as

(W, 8) = ([U 01 (k—q)] » [CTV;\KZS‘VOT}) - (13)

Theorem 3.2. For 1 < g < min{k,m}, (W,
fied by is a critical point with

r q
=1/2 E o? — E )\?
i=1 j=1

Conversely, if (W', S") is a critical point with
rank(W') = q, then there exists a critical point (W, S)
of the form and A € GLy such that (W', S") =
Ls(W,S). O

S) speci-

Proof. (a) By construction W has rank ¢q. Moreover,
(W, S) satisfies (7)) and is hence a critical point:

(WS - X)ST =

(UAVT —USVT) VA, VC + VyCol =0
UT

k—gq)xm

WH(Ws - X) = [0 } UAVT —UzvT) =
(

In addition, J(W S) = 1| UAVT
1/2 (Ez 1 0 )\2)

J 17

(b) Since (W ,§’) is a rank ¢ critical point, there is
a permutation matrix P € GLj such that the first
g columns of W’P are linearly independent. Let W

denote the matrix of the first ¢ columns of W’ P. Hence

- USVT|3 =

F

- I
W' = [W Omx(qu)] [ ! I(k—q)

PT. (14
0(k—q)xq ] 1)

where F is detAerAmAined by the last k — ¢ cglumns of
W/P.ANOW let UEV7: be a compact SVD of W. Noting
that U € Sty, 4 and X,V € GL,, modify to

SVTE
T(k—q)

SyT
O(k—q)xq

>

W' =[U Onxk-g] { } pPT, (15)
Let C denote the product of the two rightmost matrices
in , and W = W 0y (k— q)] Then C' € GLj and
by (15| ., W =w'cL. Setting S = C9’, and using
Theorem we see that (W, S) is a critical point of .J.
Hence (W, S) must satisfy (7). Write ST = [S ST]
Then by .

(US, —X)[ST Sf]=0 and

T

[0 v } 08 — X] =o0.

(k—g)xm
The second condition implies S; = UTX. Then the
first implies: (i) (UUT—1XXTU = 0 and (i) (UUT —

I)X ST = 0. Condition (i) shows that the image of the
range of U under X X 7" is contained in the range of U,
ie., XXTR(U) C R(U). Since the dimension of R(U)
is ¢, there exist ¢ orthonormal eigenvectors of X X7
that form a basis for R(U). Let U be the matrix with
the elements of this basis as its columns. Every column
of U has a representation in this basis. So for some
Q € GL,, U = UQ. In addition, I;, = UTU = QTQ.
Hence @ € Op. We can use this to rewrite as

. 0
W =[O 0,0 { Q }
[ (k)] Oh—g)xa  L(h—q)
ST ST
[ SV SV F] PT. (16)
O(k*q)xq I(k*LI)

Denote the center matrix in (16)) by D. Then we have

W’(DC) [U Omx(k q)] and

'_ D QUTX Urx| _ [aVT
wors-o[3] - %5 6] - [%]
So (W/(DC)~',(WD)S') is a critical point and by

construction, X XU = UA? for diagonal A%, and by
(ii) (UUT — I)XS; = 0. By Lemma (3.2 H 52T takes
the form SQT =VC + VoCy where Vo = [Up41, -, U],
C € RI*(F=9) and Cy € R(P—r)x(k=a), O

The key result of Theorem [3.2] is that every critical
point with W of positive rank lies on the orbit of a
canonical point. This canonical point can be used to
reason about all points on its orbit. See Fig.

The results and proof of Theorem simplify when
q = k < m. In this situation, there is no need for
the term Sy and the condition . The additional
complexity when ¢ < k arises because W can then
have a nontrivial null space. In that case, S can be
decomposed into the sum of a term S; in V(W) and
a term Sy in N(W). The term S5 is redundant since it
does not impact the value of J, but we need to account
for its possible presence.

Using we can write a canonical point in the form
(W, S) = (W, S¢ + Zo), (17)
where

AV

W= [U OmX(qu)} 5o = cTyT

0
7Z0 - |:Cg“‘/0T:| .

When C = 0, denote S& by So. We now show that for
fixed U and Zo, the family of canonical points (17)) as C
ranges over R*=9*™ are all on the orbit ©(W, So+Z0)
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Lemma 3.3. For each canonical point of the form
[0, 6(W, Se + Zy) = O(W, So + Zo).

Proof. Tt is enough to show that there exists an A €
GLj, such that La(W, So + Zo) = (W, S5 + Zp). Then
any point in the orbit of (W, Ss + Zp) is in the orbit
of (W, So + Zy). Similarly, using L,-1 one sees that
any point in the orbit of (W, S + Zp) is in the orbit of
(W, S¢ + Zo).

I 0(k—q)xq

The matrix A = { } has inverse

—CTA? Ik_q
-1 Iy O(k—q)xq
Al = _OT A I . Hence A € GLj, and
—q

_ (U o]A=[U _0]7
(B L) - 5] ]

Hence for fixed U and Zp, all points of the form
are on the same orbit. O

Lemma [3:3] allows us to make a useful simplification.
Since the canonical points are representative elements
of orbits, we need only consider canonical points of the

form (W, So + Zy), i.e., C = 0. So, henceforth we only
consider canonical points of the form

.8 = (10 Omemal | yr] ). 09

We say that the critical point is maximal if \? = o2,
i €[1l:q]. So (W,S) is maximal if and only if the ¢
columns of U are eigenvectors of X X7 for a set of its
q largest eigenvalues. If this does not hold, then there
exists a least integer p € [1:¢| such that A\, < ¢,,. In
this case we say that is (¥, S) not maximal at p.

Since every canonical point is a critical point, it
is either a global minimum or a strict saddle. For
the strict saddles one can derive an expression for
Amin(V2J (W, S)) and use this to show that over the or-
bit of a canonical strict saddle Ayin(VZJ(W A, A71S))
is negative but may not uniformly bounded below zero
[Valavi et al. [2020]. To address this issue, in the next
section we exploit a known manifold of balanced fac-
torizations to show that there exists v > 0 such that
Amin (V2J (W, S)) < —v for every strict saddle (W, .S)
on the manifold.

3.3 The Manifold WTW —SST =0

Let Mg & {(W,9): WWT — SST = C}, where
C € RF** is a symmetric matrix. These manifolds
are interesting for several reasons. First, the factor-
ization problem permits imbalance between W and
S in the sense that by selecting A € GLjg, one can

make W A very large (resp. small) while making A=1S
very small (resp. large) without changing the value
of the objective. However, if (W,S) € M, the dif-
ference between the norms of W and S is bounded:
W2 — ||S||2 = trace(C). In particular, if C = 0,
[W]/%2 = ||S||%. In the neural network literature this
is referred to as a balance condition [Arora et al.| 2018,
Du et all 2018]. Second, the term C{ Vi in is
redundant and we have no a priori bound on its value.
We will show that if the search for a global minimum
is constrained to Mg, then Cy = 0. Third, it is known
that the manifold M is invariant under gradient flow.
An initial value for (W, S) specifies C, and the gradient
flow o.d.e.

4

dt (th St) - 7VJ(Wta St)>

(W(),So) e X, (19)
then ensures (W, S;) € M¢ for t > 0 [Arora et al.
2018, Theorem 1], [Du et al.; 2018 Lemma 3.1]. Lemma
[3:4) gives a self-contained proof of this result.

Lemma 3.4. Along every solution of the gradient flow
o.d.e., WEW, — S,ST" is a constant symmetric k x k
matriz and |W||% — ||St||% 4s a constant.

Proof. Taking the inner product of both
sides of (19) with Tws(H) in @D, and
using  <Tw,s(H),VJ(W,S)> = 0, yields

HTWtTWt — SI;THTSt = <H, ijTWt — StStT> =0,
VH € R¥**. Thus W W, — 8,S] = 0. Adding this
to its transpose gives &(WIW; — 5,ST) = 0. Thus
W{IW, — 5.8 = Wi Wo — SoS5 . [Well% — [1S:]1% =
trace(WIW;) — trace(S{ S;) = trace(WI W, — S;SI),
and trace(WI W; — S;ST) is a constant. O

Motivated by the discussion above, we focus on the
critical points in Mg. The choice Mg reflects an ide-
alization of the common practice of selecting random
initializations close to the origin. Gradient flow then
ensures (W, S;) € Mg thereafter. Note that My is
also natural choice since it provides perfect balance
between [|[W||r and ||S||r. In addition, properties in
M will degrade gracefully as we move away from M.
This is assured by continuity of the functions involved
w.r.t. the matrix parameter C.

Each critical point (W, S) of J is on the orbit of some
canonical point. Hence this holds for critical points
in Mg. Below, we identify these canonical points by
showing that the orbit of a general canonical point
intersects the manifold My if and only if A? is
invertible and Cy = 0.

Theorem 3.3. Fiz U € Sty , with XXTU = UA?
and consider the family of canonical points (W, S) of
the form . Then
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(a) There exists A € GLy, such that La(W,S) € Mo if
and only if A? is invertible and Cy = 0.

(b) If La(W,S) € My, then for each Q € Ok,
LAQ(W,S) € Mp.

Proof. Let (W,S) be a canonical point of the form
(18). First note that there exists A € GLy such that
La(W,S) € Mo if and only if AAT(WTW)AAT =
SST. This follows by noting that ATWTWA =
A71SST A=T if and only if the above condition holds.
(If) Assume A? is invertible and Cy = 0. Since C = 0,
I, O A? 0}

0 O

Tyw —
WW_{ o 0

] and SST:[

For A € GLy, let R = AAT. Note that R > 0. Write

_|R1 Rs
T

We seek the set of symmetric positive definite R with

gl O] p_ R?  RiR3|  [A?
0 o/ |RTR, RIR3| |0

o=

] . (21)

o=

Clearly we must have R? = A%, RijR3 = 0, and
R¥R3 = 0. The third requirement implies R3 = 0,
and this ensures the second requirement is also satis-
fied. Since A? is diagonal and positive definite, the first
requirement gives Ry = A. Hence the set of solutions
for R, and the corresponding solutions for A are

A O
{R— [0 RJ .RQ>0},
VA 0 ,

{A_{O \/EQ.QEOk .
Thus there exists A € GLi with La(W,S) € Mo.
Note that WA = [U,0]A = [UA7?,0]Q and A~'S =
AI/QVT

T

in determining L4 (W, S). For each solution A, AQ is
also a solution for every @ € Oy. This proves (b).

. So the free parameter Ry plays no role

(Only If) In general,

I, 0

T _
WW—[O 0

2
} and SST:{A 0 }

0 cfco

For some A € GLy, let AAT(WTW)AAT =8ST. Let
R = AAT. So R ~ 0. Write R in the form . Then
R satisfies,

I, o] , [ R?
R[o O}R_[RgRl

RiRs] [A2 0
R{RJ [0 COTCO]' (22)

It follows that R? = A2, Ry R3 = 0, and RY R3 = CL Cy.
Since A? is diagonal with nonzero diagonal entries, the

first condition gives Ry = A. Since R > 0, Ry > 0, and
hence A € GL,. The second condition gives R3 = 0,
and the third implies CZ Cy = 0. O

We henceforth assume that (i) Cp = 0 and (ii) A? is
invertible. Note that (ii) requires ¢ < min{k, r}. Under
(ii) we can apply L Al2 to map the canonical point in
(18) (with Cp = 0) to Mg. Consequently, the following
corollary holds.

Corollary 3.1. Fiz U € Sty , with XXTU = UA?
and A € GLy. Then the set of critical points on My is

S A2VT
o(x o Y1) w0

By Theorem the behavior around these points is
completely determined by the behavior around

- A1/2VT
—q)xn

Hence we only need to examine such critical points.
Recall that (W, S) in is not maximal at p if there
exists p € [1:q] such that A\, < 0,. Alternatively, if
A2 =02 i€ [l:q], then we say that (W, S) is maximal.
Since A? € GL,, (W, S) is always maximal if ¢ = 7.

Theorem 3.4. For the critical point (W, S) in (24).

(a) For q = min{k,r}, if (W,S) is mazimal, it is a
global minimum. If it is not maximal at p, ¢ = k
and (W, S) is a strict saddle with

Amin(VEI(W, 9)) < —(0p — Ai).-

(b) For g < min{k,r}, (W,S) is a strict saddle with

—0g+1,(W, S) is mazimal;

)\min VQJ VV?S <
( ( )) —{ (W S) not maximal at p.

—0p,

Proof. (a) (i) Assume ¢ = min{k,r} and (W,S) is
maximal. So the diagonal of A2 € R9%9 consists of
a set of ¢ < r largest eigenvalues of XX7. Hence
JOV,S) = Vo[ UAVT — USVT 3 = 1a(S_, 0% —
4 A =3 105 If ¢ =k, this is the least loss
attainable for k; if ¢ = r the loss is zero and hence
minimal. In both cases (W, S) is a global minimum.

(ii) Now let ¢ = min{k,r} with (W, S) not maximal
at p. If ¢ = r < k, then ¢ = min{k,r} and (W,5)
is maximal. Hence ¢ = k < r, and p is the least
integer for which A\, < g,. Let G;; = uie;fr e Rmxk
and H;; = ejv;f € R¥>*" where e; denotes the j-th
standard basis. Consider the action of D?J(W, S) on
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(Gpky Hi p). Using we find
Gp S = upefS = )\;/Qup@,{,
W Hj,,, = Wepol = N a0l
(WHip) GpiS = )‘llc/zvpa{/\llc/zup@k =0,

(GprHyp)'E = vpug(WS -X)= fapvpvg.
In the third equation we used @, L u,. This holds
since the A3 are listed in decreasing order and o7, is
missing in location p. Hence it can’t occur in location
k > p. Thus we have |G, S||% + |[WHg ,||% = 2Xk,
and 2 trace((Gp x Hg p)T E) = —20,. Substituting these
results into (6) yields D2J[(Gpi, Hip)] = 2(Ak —
op). Normalizing this result by the squared norm of
(Gp.k, Hy p) one obtains Apin (V2J(W, S)) < —(0,— k)
with o) > Ap.

(b) We consider three cases:
(i) If ¢ = 0, then (W, S) = (0,0). Consider the action
of D2.J(0,0) on (G1,1,Hy,1). Using (6),

D?J(0,0)[G1 1, Hy 1] = —2trace(Y.,_; oiviul ugol)

= —201.
Normalizing by the squared norm of (Gi,1, H1,1) gives
Amin(V2J(0,0)) < —07. (25)

(ii) Assume 1 < ¢ < min{k,r — 1} and let p € [1:¢], be
the least p with A\, < 0,. Hence (W, S) is not maximal
at p. Consider the action of D?J(W, S) on

(Gpgr1, Hyr1,p) = (upeqT+1,eq+1v§). (26)

Using and ([24), Gp,g+1S = upel, ;S = 0, and
WHg1, = Wegqivl = 0. Thus [|Gper1S[7 = 0,
|WHg1,]% =0, and H'WTGS = 0. Finally,

T T _ T T T
Hy ,Gp a1 B = vpegieqpiu, B = vyu, (WS — X)

T

= —0pUpU, .

Substituting the above results into @ yields
D%J[(G, H)] = —20,. Finally, normalizing this equa-
tion by the squared norm of (G,H) we obtain
Amin (V2I(W, S)) < —0p.

(iii) Assume 1 < ¢ < min{k,r — 1} and (W,S)
is maximal. In this situation we consider the
action of D2J(W,S) on (Gyt1,g+1, Hyt1,441) =
(uq+1eqT+1,eq+1vqT+1). The proof proceeds exactly as
in case (ii) and yields Apin (VZI(W, 9)) < —0gq1. O

Theorem [3.4] has two key contributions. First, it pro-
vides a negative upper bound on the minimum eigen-
value of the Hessian map at every strict saddle. Second,
for a given X, the negative upper bound can take only
one of a finite set of negative values. Hence there exists

v > 0 such that Ayin(V2J(W, S)) < — for every strict
saddle (W, S) in M.

The bounds discussed above take two forms. If the rank
of W is min{k, r}, the bound depends on the separation
of two distinct nonzero singular values. Otherwise,
it depends on the size of a single nonzero singular
value. The uniform bound for all strict saddles on
Mo, is the minimum of the smallest nonzero singular
value and the smallest gap between distinct singular
values. Using a more technical analysis it is possible
to derive expressions for all of the Hessian eigenvalues
at a canonical strict saddle. This indicates the number
of negative eigenvalues and gives an expression for the
minimum eigenvalue [Valavi et al., |2020].

4 Conclusion

Our contribution is to provide a more complete un-
derstanding of the landscape of matrix factorization.
From prior work, all critical points are either global
minima or (strict) saddles. However, the minimum
eigenvalue of the Hessian map over the strict saddle
points is arbitrarily close to zero.

Using our approach of restricting attention to the man-
ifold Mg, the family of strict saddles on My, has a
uniform negative upper bound on the minimum eigen-
value of the Hessian map. At each strict saddle on
My, the bound depends on the particular structure
of the saddle. Generally, the larger the nonzero sin-
gular values and the greater the separation of distinct
values assumed, the more negative is the obtained up-
per bound. We expect this to correlate with faster
escape times from a neighborhood of a strict saddle.
In addition, our development has used the natural set-
ting of the problem, avoided assuming or introducing
symmetry, and avoided vectorization of the relevant
differentials. We believe that this yields greater clarity
and hence more insight, and will be more amenable to
generalization to related problems.
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