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Abstract

This paper studies the optimality of kernel
methods in high-dimensional data clustering.
Recent works have studied the large sample
performance of kernel clustering in the high-
dimensional regime, where Euclidean dis-
tance becomes less informative. However, it
is unknown whether popular methods, such
as kernel k-means, are optimal in this regime.
We consider the problem of high-dimensional
Gaussian clustering and show that, for a class
of dot-product kernels, the sufficient condi-
tions for partial recovery of clusters using the
NP-hard kernel k-means objective matches
the known information-theoretic limit up to
a factor of /2 for large k. It also exactly
matches the known upper bounds for the
non-kernel setting. We also show that a semi-
definite relaxation of the kernel k-means pro-
cedure matches upto constant factors, the
spectral threshold, below which no polyno-
mial time algorithm is known to succeed.
This is the first work that provides such op-
timality guarantees for the kernel k-means
as well as its convex relaxation. Our proofs
demonstrate the utility of the less known
polynomial concentration results for random
variables with exponentially decaying tails in
higher-order analysis of kernel methods.

1 Introduction

Kernel methods are one of the most empirically suc-
cessful class of machine learning techniques. While be-
ing easy to implement, kernel methods are well known
to improve empirical performance of algorithms and
are also related to other successful machine learning
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principles such as Gaussian process and neural net-
works (Kanagawa et al., [2018; Jacot, Gabriel, and
Hongler, |2018). At the heart of kernel based learning
lies the kernel trick which implicitly maps the data
to a high, possibly infinite, dimensional reproducing
kernel Hilbert space (RKHS), and hence, induces non-
linearity into classical linear learning models such as
support vector machines, principle component analysis
or k-means. Kernel methods are based on a solid the-
oretical foundation, which makes them conducive to
theoretical analysis. There has been considerable the-
oretical research on kernel based supervised learning
from a statistical perspective (Steinwart and Christ-
mann, [2008; Mendelson and Neeman, |2010)), and to
some extent, in the context of semi-supervised learn-
ing (Wasserman and Lafferty, [2008; Mai and Couillet,
2018)). Perhaps surprisingly, much less is known about
the statistical performance of kernel methods beyond
such settings, for instance, kernel based clustering.

A long-standing issue in the theoretical study of clus-
tering, and also kernel based clustering, has been the
lack of a universally accepted notion of goodness of
clustering. A popular definition of good clustering is
one that consistently or near-optimally partitions the
data domain. Based on this perspective, there exist
approzimation guarantees for solving kernel based cost
functions (S. Wang, Gittens, and Mahoney, 2019)) and
consistency results showing that the clustering asymp-
totically approaches a limiting clustering (Luxburg,
Belkin, and Bousquet, |2008). In such analyses, the op-
timal cost function is inherently tied to the chosen ker-
nel and hence can be arbitrarily far from the “ground
truth.” For instance, even an arbitrary clustering can
be optimal (can achieve maximal clustering objective)
for trivial kernels such as constant or identity kernels.
Another approach to measure the performance of a
clustering algorithm is by establishing recovery guar-
antees under distributional assumptions, sometimes
known as planted models. Distributional assumptions,
or specifically (sub)-Gaussian mixture model assump-
tion, is often considered in the theory of clustering.
While learning a mixture of Gaussians has always been
an important research problem, Dasgupta (1999), for
the time, presented a provable clustering algorithm to
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learn a mixture of high-dimensional Gaussians. The-
oretical research on learning high-dimensional Gaus-
sians have ever since been highly significant, owing to
the ubiquity of high-dimensional data in practice. Re-
cent works in this direction provide phase transitions
for both clustering and parameter estimation of a mix-
ture of high-dimensional Gaussians (Banks et al., [2018;
Ashtiani et al., 2018)).

Couillet and Benaych-Georges (2016)) initiated the the-
oretical study of kernel methods for high-dimensional
Gaussian clustering, and in particular, presented the
large sample behaviour of kernel spectral clustering
in the regime where number of samples grow linearly
with the data dimension. The statistical difficulty in
this regime stems from the fact the Euclidean distance
tends to be less informative in high dimensions and
intra-cluster distances could be systematically larger
than inter-cluster distances. Yan and Sarkar (2016)
generalised the problem setup to sub-Gaussian mix-
tures and derived sufficient conditions for achieving
zero clustering error using convex relaxations of the
kernel k-means objective. In both works, the analy-
sis is restricted to computationally efficient clustering
algorithms and the optimality of kernel methods, in
terms of comparing necessary and sufficient conditions
for clustering, is not addressed.

In this paper, we study the phase transitions — sharp
information-theoretic thresholds below which no algo-
rithm can, provably, recover the true clustering bet-
ter than chance — of the high-dimensional Gaussian
clustering problem. Our setting is similar to Banks
et al. (2018]), where the number of samples is linear
in the problem dimension. However, we focus on the
case where one has access to only a kernel matrix. In
other words, while the information-theoretic thresh-
olds inherent to the Gaussian clustering problem are
expected to remain unchanged in the kernel setting
with a non-trivial kernel, we prove that one can nearly
achieve such thresholds using popular kernel methods.
The main contributions in this paper are the follow-
ing: (1) We identify the smallest separation between
the means of latent clusters such that the clusters are
statistically distinguishable under a kernel k-means ob-
jective in the sense of partial recovery, that is, error
smaller than random guessing. Our result matches
the phase transition for high-dimensional Gaussian
clustering without kernels (Banks et al., 2018]). (2) We
analyse a common semi-definite relaxation of the
kernel k-means objective and present sufficient condi-
tions for partial recovery that match, up to con-
stant factors, the known spectral threshold —
akin to the Kesten-Stigum threshold in the commu-
nity detection under stochastic block model literature
(Baik, Arous, and Péché, 2005; Paul, 2007).

Our main results obtained from the analysis of the two
kernel-based clustering algorithms and the best known
results for the same problem in a non-kernel setup are
summarized in the table below. k& is the number of
clusters, and « is the ratio of sample size to the data
dimension which remains asymptotically finite in our
setting.

The lower and the upper bounds are on the minimum
separation of the clusters required to achieve partial
recovery. The first column contains the bounds for
the information-theoretic threshold. The second col-
umn contains the bounds corresponding to the com-
putational class of poly-time algorithms.

Information- Poly-time
theoretic limit solvable
2(k—1)log(k—1) k—1

Lower bounds v — T
Upper bounds klogk . k=1
(non-kernel) 2 o T2loghk O(k—1V Ve )
Upper bounds klog k Tk
(kernel) 2/ =22 +2logk  O(kV \/E)

As noted in Couillet and Benaych-Georges (2016)), one
requires a second-order analysis since first-order ap-
proximation of the kernel function does not suffice
for the analysis in the high-dimensional setting. To
this end, our proofs show that recent polynomial con-
centration inequalities (Gotze, Sambale, and Sinulis,
2019)) can be useful for second-order analysis of kernel
methods.

2 Background and Setting

Notation: We denote the set of natural numbers
{1,2,...,k} by [k]. For any matrix A, ||A| refers
to the Frobenius norm of the matrix. For any vector
x, ||z|| and ||z||; refer to the Euclidean and I; norms
of the vector. I denotes the identity matrix. For any
A e R™*™ ||All_,, refers to the co — 1 operator

norm and defined as  sup (y? Az). For any n real
y,ze{£1}™
numbers {a;};_, (a1 V a2 ...V ay) refers to the maxi-
mum of the sequence:max a;. For any random variable
(]

x, Ex denotes the expectation of x.

Setting: Our setting is akin to the one used in
Banks et al. (2018)), specifically due to the existence of
a near-optimal phase transition for the information-
theoretic threshold in the setting. We assume that
the data is generated according to the following pro-
cess. Let k be the number of clusters. Then, k points
{1y, s .., f.} € RP are generated independently ac-
cording to a normal distribution with mean 0 and co-



Leena Chennuru Vankadara, Debarghya Ghoshdastidar

variance %sz- The k points are then centered by sub-
tracting their sample mean from each entry and the re-
sulting centered vectors are denoted by {1, pia, ..., ik }-
Let m = ap for some a > 0, a fixed parameter. Then
for each 7 € [k], generate %' points from a normal dis-

tribution with mean 5 2 11; and covariance matrix I for

some fixed parameter p > 0. Observe that the param-
eter p represents the separation between the clusters
and can be treated as the parameter indicating the
“statistical ease” with respect to the clustering prob-
lem or alternatively as the signal-to-noise ratio in this
setting (we have an identity covariance matrix). We
are interested in studying the large sample behaviour
of clustering approaches in the high-dimensional set-
ting: m,p — oo and I+ = O(1).

We denote the resulting set of m points by
{z1,29,....,xm}. Let o : [m] — [k] denote a balanced
partition of m points into k clusters and let o, denote

% ts. Let X*
denotes the ground truth clustering matrix defined as

follows:
. 1
Xij= {0

For any arbitrary partition o, define the k x k overlap
matrix 8(o,04), for each s, ¢ € [k] as the fraction of all
points assigned by o to the s** cluster and the fraction
of all points assigned by o, to the t** cluster,

Ho'(s) o (8)]

m

the true partition: o.(i) = s if Ex; =

if 0.(7) = 0.
otherwise.

ﬁ(‘L 0'*)37:‘, =

Then ||8(0, 04) ||§, is a measure of similarity of the par-
tition, o with the true partition, o.. Observe that if
the partitions are completely uncorrelated, then [ is
the constant matrix of 1/k and ||3(o, a*)||§, =1 If
the partitions are identical up to permutations over
the labels, then 8 would be the permutation matrix
2
and [|5(0,0.) || = k.

Alternatively, for the sake of analytical tractability, we
sometimes, use the quantity err(o,o.) to denote the
fraction of points misclassified by o.

max Trace(m (o, 04))

k

where 70 refers to the matrix resulting from a permu-
tation of B over the cluster labels and the maximum
is over all possible such permutations.

err(o,0.) =1—

Clustering with k-means: The clustering objective
of the k-means procedure (Pollard, [1981) is given as
follows:

S |-ty

[m —>[k] s—lico1(s)

This is equivalent to the following optimization prob-

lem:
o] 1K) Z 2 (wom).

s=lijeo=1(s)

Kernel k-means: For any partition o :

define i
= 2

s=1ljjea="(s)

[m] — [k],
k(l’i, .Z’j).

Then, by the use of the kernel trick, we can formulate
the kernel k-means clustering objective as follows:
e F(o) (1)
where k : RP x RP — R is a kernel function. Min-
imizing this objective over all possible partitions is
NP-hard (Garey, Johnson, and Witsenhausen, [1982;
Aloise et al., 2009). Several convex relaxations of the
k-means procedure exist in literature. A well known
semi-definite program (SDP) relaxation of the kernel
k-means (Peng and Wei, 2007) objective is given by:

max trace( K X) (2)
st, X =0,X >0, X1= %1, diag(X) = 1,

where K refers to the kernel matrix for a given kernel
function k: K, ; = k(z;,x;). This SDP can be solved
in polynomial time. To obtain a partitioning & of the
data based on the optimal solution X of the SDP, a
7T-approximate k-medians’s procedure (Charikar et al.,
2002)) is applied on the rows of the matrix X in a
similar fashion as Fei and Chen (2018]). We denote the
partition inferred by this procedure as 6. The details
of the k-median procedure can be found in Fei and
Chen (2018, Algorithm 1).

Choice of kernel function: For the analysis, we
consider the class of dot-product kernel functions —
k(z,y) = f({z,y)) where f is assumed to be twice
continuously differentiable and f/(0) > 0. The well-
known exponential kernel k(z,y) = exp({z, y)) belongs
to this class of kernel functions.

3 Our Results

We denote the upper bound on the information-
theoretic threshold in the non-kernel setting as
ppbper  p and the best known lower bound as plge”.
We denote the upper bound from the analysis of the

NP-hard kernel k-means procedure as p,?"" \ .

The central question we address in this section is the
following: Does the kernel clustering procedure achieve
information-theoretic optimality for high-dimensional
clustering:

2
upper . lower
Pkernel NP — PNP -
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upper
PkernelNP upper

pI'{'Jv;er‘\I( pgwer“l fpkemelP
I. |i o
b e M o,

linear NP
Parameter space of p

Figure 1: Our upper bounds are near optimal and ex-
actly match those of the non-kernel setting.

The maximum likelihood estimator in the non-kernel
setting is already known to achieve near optimality in
an information-theoretic sense. Therefore, our princi-
pal objective can be rephrased, in essence, as: Is the
the class of dot-product kernels more(or less) informa-
tive than the linear kernel:
?
Prernel NP < Plinear NP-

As noted earlier, optimizing the kernel k-means objec-
tive is NP-hard. Therefore, for practical significance,
it is also interesting to understand the information-
theoretic optimality of kernels via kernelized, com-
putationally efficient clustering algorithms. To this
end, we analyze the kernel SDP given in . It has
been observed in several clustering problems that the
parameter space of the signal-to-noise ratio (SNR)
p where polynomial time algorithms are known to
succeed is, typically, strictly above the information-
theoretic threshold. To evaluate if there is any in-
formation loss, due to the use of kernels in polynomial
time clustering algorithms, we compare the SNR above
which kernel SDP can provably recover the true clus-
tering, p, 22" ,, with the known spectral threshold,
pll‘g’w” below which no known poly-time algorithm is

known to succeed. We also compare p??°" , to the

upper bound(p; 27" ) derived from the analysis of a

similar semidefinite relaxation of linear k-means:
upper l upper

?
upper * lower
Pkernel P = Plinear P-

PkernelP = PP

We pictorially demonstrate all our results in Figure [T}

3.1 Optimality of kernel k-means

The following lower and upper bounds, pﬂ{’,'j;e’” and

upper . . . .
limear Np TeSPectively on the information-theoretic

threshold appeared in Banks et al. (2018]):
upper

[ klog k
Plinear NP — 2 a + 210g k’ (3)

lower v 1/0[ k=2
PNP = 2(k=Dlog(k=1) 1~ g (4)

We analyze the performance of the kernel k-means
clustering algorithm and give the following upper
bounds on the information-theoretic threshold:

Theorem 1 (Optimality of kernel k-means). Let

upper klogk
pkzﬁnelNP:2V o +2logk. (5)

If p > ppPPe” v ps then for large enough m, with high
probability (w.h.p), it is possible to recover the true
partition.

Our results show that there is no loss of information
incurred due to the use of the kernel function in high-
dimensional Gaussian clustering. This also matches
the known information-theoretic lower bounds up to
a factor of v/2 when the number of clusters k is large
(Banks et al., [2018)).

Overview of the analysis: On a high level, the main
line of argumentation of the proof is similar to the
one in Banks et al. (2018). However, note that their
analysis only holds for the linear k-means algorithm
and extending the analysis to a second order expansion
of the kernel k-means objective is considerably more
complex and requires a different set of mathematical
tools and techniques (see Section .

We consider the distribution of the objective of ker-
nel k-means F(o) as a function of the partition o.
We show that above the aforementioned threshold
ppeber v ps with high probability, the distribution of
F(o) is disjoint with and higher than that of the dis-

tribution of  max _ F(o), where € > 0 is an arbi-
o:l|B(o,0) 17
<1+4(k—1)e

trarily small constant. Let o denote the optimal so-
lution to (). Since, by definition, F(5) > F(o.), it
follows that the support of the distribution of F(¢) is
disjoint with and higher than that of the distribution
of max  F(o).

o:l|Blo,0) 1%
<1+(k—1)e

3.2 Optimality of kernel SDP

The following phase transition for spectral methods
can be inferred from Paul (2007 and Baik, Arous, and
Péché (2005)) and appeared in Banks et al. (2018):

k—1

lower __ ™V~

P - \/a .
We give the following upper bound on the threshold
below which no known computationally efficient poly-
nomial clustering approaches (provably) achieve par-
tial recovery.

Theorem 2 (Optimality of kernel SDP). Let

1
pittnp =k (1 72). ©
for some fized constant ¢ > 0. If p > p,PP°" . then

for sufficiently large m, w.h.p, kernel SDP can recover
the true partition.
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Our results match the spectral threshold up to con-
stant factors of approximation for large k. Our result
also matches with the known upper bound (p; P )
for partial recovery via the linear k-means clustering
procedure (Giraud and Verzelen, [2018) up to a factor
of % In agreement with the established conjecture,
it is also evident from our results that the threshold at
which a computationally efficient kernel clustering pro-
cedure can be guaranteed to succeed is strictly above
the information-theoretic threshold. They differ by an

order of 10’; =
Overview of the analysis: Denote v = f"(1 +

Co 1‘3%) ) We define the matrix K that depends on the

population parameters of the data distribution as fol-
lows:

! o 2, 2
f (0)2<2m.m> 4+ B <u27uy> +% if i j
f (0)(p2pJgPHmH2) + K(p2+;;\lm|\2)2 +% otherwise.

We show that the kernel matrix K concentrates around
K in the co — 1 operator norm.

Let X denote the optimal solution to . Then, us-
ing Grothendieck’s inequality (Grothendieck, [1956),
we derive an upper bound on || X — X*||; in terms
of | K — K|lsos1. Since X is not a partition matrix,
we need a procedure that can infer a partition from
X. We use the 7-approximate k-median’s procedure
(Fei and Chen, [2018) on the rows of X to infer a
partition 6. Then Fei and Chen (2018) showed that
the fraction of mis-classified vertices by the partition
& denoted by err(o, &) can be upper bounded by a
o ”1 Thereby, we show that
for p > pPPe" . the fraction of misclassified points
err(0,0.) < (1—1/k), which is the condition required
for partial recovery.

SDPs, such as the one defined in 7 have been an-
alyzed using the Grothendieck’s inequality approach
in community detection literature for stochastic block
models (Guédon and Vershynin, 2016). However, the
main technical challenges of our analysis lie in the
choice of appropriate K and showing that the ma-
trix K concentrates around K in the co — 1 oper-
ator norm. Establishing the concentration results for
| K — K||oo_s1 is considerably harder compared to the
analysis of similar quantities based on the adjacency
matrix of a network generated from a stochastic block
model. Unlike in the case of adjacency matrices, the
entries of the kernel matrix encode dependencies be-
tween the data points and hence most classical concen-
tration tools from random matrix theory fall short in

the analysis of kernel matrices. Also the RKHS corre-
sponding to the chosen class of kernel functions can be
infinite dimensional and hence concentration inequali-
ties that depend on the dimension of the feature space
are also not applicable for analyzing functions of kernel
entries.

To this end, we demonstrate that the polynomial con-
centration inequalities for exponentially decaying ran-
dom variables in Gotze, Sambale, and Sinulis (2019)
can be used to analyze an entry-wise second order ap-
proximation of the kernel matrix. We make some fur-
ther remarks about our proof, and possibilities for im-
proving the result.

Remark 1: Finer upper bounds on (K — K, X* — X>
can be obtained by applying an analysis similar to Fei
and Chen (2018) to obtain better error rates. However,
our bounds on p, essentially remain the same — which
is the main emphasis of this paper.

Remark 2: The choice of K can further be refined in
the second order terms without changing the results of
our analysis.

Remark 3: One could, alternatively, infer a parti-
tion by applying the k-means procedure on the rows
of the eigenvectors of X. Using Davis-Khan’s theorem
(Yu, T. Wang, and Samworth, |2014), one may simi-
larly upper bound the fraction of misclassified nodes
by a constant factor of %
a slightly worse approximation constant.

. This approach gives

4 Proofs

4.1 Proof of Theorem [l

Overview of the technical steps: Let ¢ > 0 be
an arbitrarily small constant. The two main ingredi-
ents required to establish conditions of recovery are as
follows:

e Upper tail bounds for max

o:l|Blo,0) 1%
<1+(k—1)e

F(o).

e Lower tail estimates for the distribution of F(o.).

To obtain these bounds, for any fixed o, we first ap-
ply the Taylor’s theorem with mean value form of the
reminder to obtain a 2nd order polynomial approxima-
tion of each of the kernel entry and obtain a tight lower
bound F;(0) and an upper bound F, (o) on F(o).

For any fixed o such that ||3(c, 0.)||% < 1+ (k — 1)e,
we compute F,, (o) which is a 4th order polynomial of
normally distributed random variables and carefully
upper bound all the terms of this polynomial using var-
ious known concentration results in literature. By an
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union bound over all such partitions, we obtain upper

tail bounds for max Fu(o). Similarly,
o:l|B(0,0:) 1% <1+(k—1)e

we compute Fj(o,) which is a 4th order polynomial

of normally distributed random variables and obtain

lower bounds for all the involved terms. Therefore, we

obtain:

Flow) = Fi(ox) > wi
max < max  Fu(o) < wy.
o:l|B(o.00)|1% o:l|B(o00) |13
<1+4(k—1)e <1+4+(k—1)e

By comparing w, and w;, we obtain the conditions on
p under which w; > w,,.

Notation: We use the following notation for some
recurring terms for improved readability.

2
For any 4,j € [m], set 7 = Blleadl® —q 4 O(1/p). For
any o, we use the following notation:

Qu=~£y y [lwm,

s€lk]i,jec1(s)

xi,w4)2
k Z Z { 1021> ;

s€lk]i,jeoc—1(s)

QZU

k /7__/ 51»'112
Qs = (F( )mf(O)) ‘¥](H pH _T);
€e|m

S k|l .
mp

i€[m)]

f"(TJrColO%)

Q=35 ¥ (IE 1% Q5=

i€[m)] P
f//(CO logp) vy =

= ["(=Co'%BR); 1 = £"(r — Co'28E)
for some constant Cy > 0.

All the lemmas we state below hold with high proba-
bility (1 — Q(%)) and the proofs of all the lemmas are
provided in the supplementary.

Outline of the proof: Recall that for any partition
o: [m]—>[k]7}'(o):% > > k(g zy).

s€lk]i,jeo—1(s)
Lemma 1 (Upper and lower bounds for inner
products).

s 1
maX|<x17$j>| — J+O<ng), and
i,J p \/13
.y 1
mmM =71,—; +Q (_ ng> .
i,] p \/13

By a second order Taylor expansion of each k(z;,x;)
where ¢ # j around 0 and expanding each k(z;,x;)
around 7, and using Lemmal[I] for any o, we can write

Flo) < Fulo) =
J'(0)Q10 +711Q2 + Qs+ (72 —71)Qs — 11 Q@5

—krf () + kf(r) + (m— k) F(0) + ’”;T

and for any o, F(o) > Fi(o) =

F'(0)Q15 +73Q25 + Q3 + (74 — 73)Q4 — 13Q5

— k7 f/(7) + kf(7) + (m — k) £(0) + ’”;TQ

Upper bounds for max, s, .2 F(0): We de-
<1+(k—1)e
rive upper bounds for all the terms that constitute

Fu(0), which simultaneously hold for all o such that
18(o, o)1 < 1+ (k= 1)e.
Lemma 2 (Upper bounds for Q1,, @5).

max )
o:l|B(o,0:) 1%
<1+(k—1)e

+2¢/(1 + €) (k + 2ape) alogk + O(\/log p/p).

Q1o < k+ ape+2(1+e€)alogk

max
o:l|Blo,o:) %
<1+(k—1)e

kvt
— mlp (mp + pap — 2/ (mp + 2pap) logp) .

-71Qs5 <

Proof (sketch). The terms @i, and Qs can be ex-
pressed as sums of independent non-central chi-
squared random variables and applying the known up-
per tail bounds for such sums, followed by a union
bound over all o : ||5(0o, U*)”% <1+ (k—1)e, we have
the results from Lemma 2 O

Lemma 3 (Upper bound for Q).
1 1
max 712 <M (1 +-+0 ())
oillB(o,0) % k p

<1+(k—1)e
I I /1
+02’)/10< g\/Oé g\/ )
p p ap

for some constant Co > 0.

Proof (sketch). Controlling the typical behavior of the
term ()2, is the most demanding part of the proof. We
use the concentration results established for polyno-
mials of sub-Gaussian random variables (see the sup-
plementary for a definition) in Gotze, Sambale, and
Sinulis (2019) to establish the result in Lemma[3] O

Lemma 4 (Upper bound for Q).

ity (v2=71)Qa < Cak(y2—1)(logp)*/2p.
o 0,04) %

<1+(k—1)e

for some constant Cy > 0.
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Proof (sketch). The term @4 is small relative to the

other terms and hence a crude upper bound based on
n

the inequality: For any two vectors a,b, > a; - b; <

=1
n

sup |b;| - > |a;|, followed by an application of Lemma
i€[n] =1

[[ suffices to establish the behavior of this term. O

Lower bounds for F(o,). Similarly, we derive lower
bounds for all terms that arise in Fj(oy).

Lemma 5 (Lower bound for @Q;,, and Qs).

Q1o, > k+ap—0(\/logp/p), and

k3T
—3Q5 > —m;; (mp + pap + 2logp)

k’}/gT
mp

(2 v/ (mp + 2pap) log p) .

Proof (sketch). From upper tail estimates for sums of
non-central chi-squared random variables, we establish
the result of Lemma [l O

Lemma 6 (Lower bound for Q).

1 1
(14 L 0(1)
p

[lo [lo
—0273< #\/a g2p>
p p

Proof (sketch). Qa,,, as discussed earlier, is a 4"
order polynomial of sub-Gaussian random variables
(see the supplementary for a definition). There-
fore from lower tail estimates for polynomials of sub-
Gaussian random variables in Gotze, Sambale, and
Sinulis (2019), we establish the result in Lemmal] [

Since @4 is a smaller term, the following lower bound
suffices to control its behavior:

Q4> 0. (7)

Using the mean-value theorem, we can write
N o= v = [f"(€)2Clogp/\/p, where { €
(=Cologp/\/p,Cologp/\/p). By assumption, f is
twice continuously differentiable on the compact inter-
val [—Cp, Cy] and thereby f'(£) is bounded. Hence
Y1 — 72 — 0 as p — oo. Similarly, y3 —v4 — 0 as
p — co. From Lemmas . to I and Equation , we
obtain that for p > 2y/klogk/a + 2logk, for large
enough p, with high probability, max Flo) > F(ox) >

MAX 60,00 ) |2 <1+ (k—1)e F (9)-

4.2 Proof of Theorem [2

Overview of the technical steps:

e We define a matrix K which relies on the model
parameters of the data distribution.

e We upper bound the [; norm of the difference be-
tween the ground truth clustering matrix and the
optimal solution of the SDP || X — X*||; by a con-
stant factor of the inner product between K — K

and X* — X, that is, (K — K, X* — X).

e We use the Grothendieck’s inequality to upper
bound (K — K, X* — X) by a constant factor of
1K — Klloc1-

e We establish the upper tail estimates of the devia-
tion of the kernel matrix K from K in the co — 1
norm.

e Thereby, we have an upper bound on || X — X*||,
which translates to an upper bound on err(d, o).
By setting err(6,0.) < 1 — 1/k, we derive the
desired conditions on p.

Notation: Denote xk = f"(7 + %). For ease of

notation, we define the m x m matrices R and R
as follows:

"(0)(z;,x; (0 il ap - .
20 _ £ )i’j‘ z) £ >ppf2u 1j) if i # 7,
s L= ’ 2 ’ 2 ’ 2
i L Olal® SO SOl gtherwise.
A2 27, )2 P .
B _ <zlz,)$2]> _ P <ﬂ;iuy> _ % if i # j,
Ll = 4 2 242
irj Hs;:;zn _ +P£fi\l ) — 1 otherwise.

All the lemmas hold with high probability: with prob-
ability 1 — Q(1/p) and the proofs of the lemmas are
provided in the supplementary.

Outline of the proof: We begin by establishing the
following upper bound on || X* — X|;.

Lemma 7 (Upper bound on || X* — X||;).

2 (55 + O(v/logp/p) + KpO(2))

Observe that, by definition, (K, X) > (K,X*) =
(K,X — X*) >0, and therefore,

(K,X* - X)<(K-K,X*-X)

<2 sup
X >0
diag(X)<1

(K — K, X)|.
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Using Grothendieck’s inequality (Grothendieck, [1956)),
we arrive at the following (see the appendix for a state-
ment of Grothendieck’s inequality):

2 sup [(K—-K,X)| <Kgl|K—K|oo1-

X0
diag(X)<1
where Kg ~ 1.783 is the Grothendieck’s constant. For
any pair of fixed vectors z,y € {£1}", by a 2nd order
Taylor’s expansion of each Kj; ; around 0, and applying
the result from Lemma |I|, we can see that:

yI'(K — K)z <y"(RY 4+ kR?)z. (8)
Lemma 8 (Upper bounds for R(V)).

sup  yTRWz < Cro(y/mp VvV m) (9)
zye{£}"

for some constant C; > 0.

Proof (sketch): Linear combinations of entries of the
matrix R can be re-written as sums of independent
sub-exponential random variables (see the supplemen-
tary for a definition). By an application of Bernstein’s
inequality for each fixed {z,y € +1}"", followed by an
union bound over all possible z,y we establish the re-
sult. O

Lemma 9 (Upper bounds for R(?).

sup myTR(Q)z <
{Z7yei1}7”
Cik 2 2
p—Z(pm(m—l)—km—i-(mp\/% vV m*Vm V p*/m)).

for some constant C4 > 0.

Proof. In order to bound the linear combinations of en-
tries of R(?)| for each fixed {z,y € +1}™ we apply the
concentration results for polynomials of independent
sub-Gaussian random variables. (Gotze, Sambale, and
Sinulis, 2019)). In order to bound the maximum of the
second order terms over all {z,y € £1}", we use the
union bound. O

From Lemmaslﬂ, and@ we have that: || X — X*||; <

2—Cl m2/va Vm?) + = (pm? m
- (1@ v )+ S+ 0(m)) )

+ 2 (mpvin v i v ) (10)
where ¢ = %(ﬁ—l—O(«/logp/p)—&—ﬁpO(%)), for

some constant, ' > 0.

Let ¢ be the partition generated by applying the 7-
approximate k-median’s procedure on X.

Proposition 1 (Fraction of misclassified nodes
(Fei and Chen, [2018))). The fraction of mis-classified
points corresponding to the partition &:

X — X

err(0,0.) < 2(1+ 2n) XL

Observe that || X*||; = mTz Applying the result from
Proposition [1, we have that for large enough p, if p >

k(ﬁ V1), err(6,0.) <1-— 1.

5 Discussion

In this paper, we study the large sample behaviour
of the kernel k-means algorithm for high-dimensional
clustering. The principal focus lies in investigating the
information-theoretic optimality of the kernel k-means
procedure. Recent works have demonstrated that the
linear k-means algorithm is near optimal in this sense.
Therefore another aspect of our work resides in un-
derstanding the informativeness of specific kernels for
high-dimensional clustering in relation to the linear
kernel. A thorough understanding of these aspects is
fundamental to the use of kernels in any unsupervised
high-dimensional learning problem.

We also study the large sample behaviour of a popular
semi-definite relaxation of the kernel k-means objec-
tive. We emphasize on optimality and informativeness
of kernels in computationally efficient algorithms for
high-dimensional clustering. A widely believed con-
jecture in clustering literature, with support from well
founded theoretical evidence, is that computationally
efficient algorithms are sub-optimal in an information-
theoretic sense. Therefore, in this paper, we consider
the SDP to be information-theoretically optimal if its
optimal in the class of computationally efficient algo-
rithms. The best known result for this class arises from
the well known spectral threshold in this setting.

We show that both the algorithms are near optimal
in their computational class and as a consequence also
demonstrate that their is no loss of information in-
curred by the use of the class of dot-product kernels
over the linear kernel. By virtue of our proofs, we also
demonstrate that the recent polynomial concentration
inequalities for random variables with exponentially
decaying tails can aid in the analysis of higher order
kernel approximations.

Furthermore, this line of analysis can be extended to
other empirically popular kernels. In particular, since
the squared distance is known to be less informative
in high dimensions, it would be interesting to investi-
gate the informativeness of the popular Gaussian ker-
nel which relies on the square distances.
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