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A Proofs

A.1 Proof of Theorem [3.1]

Let x’ be the output of the gradient descent iteration
update for input x with step size 7.

If x € X, and X’ € &, then

F(x) = (x")

fx=nV[f(x)) - f(x")

<SG = nlIVLEOIE + SV £ = )
= 60— f6) = (n= ) IV
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2
= (1 =2y +yun*)(f(x) = f(x7))

where the first inequality is by the assumption that f
is p-smooth on A, and the second inequality is by the
assumption that f satisfies the y-PL inequality on &.
Taking n = 1/u, which minimizes the above bound,
establishes the claim of the theorem.

A.2 Proof of Theorem [3.2]
Let x’ be the output of the MM algorithm iteration
update for input x.

By the facts f(x') < g(x’;x) and g(x';x) < g(z; %) for
all z, for any n > 0,
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Now, by the same arguments as in the proof of Theo-
rem [3.1] if x € X, and x — 9V f(x) € X, we have

Fx=nV f(x))=f(x*) < (A=2vn+ypn?)(f(x) = f(x")).
Next, if x € X, and x — nVf(x) € X,,

g(x = nV[f(x);x) = f(x = nVf(x))
SV IO

< oy (f(x) = f(x)

where the first inequality is by the smoothness condition
on the majorant surrogate function and the second
inequality is by the assumption that f satisfies the PL
inequality with parameter v on X,.

IN

Putting the pieces together, we have

JE)=F(x*) < (L=2yn+y(n+6)n*) (f(x)—f(x")).

Taking n = 1/(p + ¢) (which minimizes the factor
involving 7 in the last inequality) yields the asserted
result.

A.3 Proof of Lemma [3.1]

The Hessian of the negative log-likelihood function has
the following elements:

> ,mm%7 ifi=j

VA(tlw))iy = 4 oMl
(—l(w))i;s {_mi’jm7 if i # j.
(A1)

We will show that for all i # j,
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_Z (_ < _ o _ n
awiawj( Uw)) < —c,m; j for all w € [—w, w]
(A.2)
and
— 1m- ;< i(—f(w)) forall w e R". (A.3)
4" = 8w18w3 ' '

From (A.2), we have V?(—{(w)) = ¢, Ly for all w €
[~w,w]™. Hence, for all w € [~w,w]” and x € X

X"V (—0(w))x > Ao (L) |[x]|?

where X = {x € R" : x' 1 = 0}. This shows that —/
is ¢, A2 (Lv )-strongly convex on X.

From (A.3), we have 1Ly = V2(—{(w)) for all w €
IR". Hence,

1
x V2 (—(w))x < A (L) x| for all x € R".

This shows that —¢ is 1A, (Ln)-smooth on IR".

It remains to show that and hold. For
(A.2), we need to show that ¢, < xz;/(z; + x;)?
for all x € [~w,w]". Note that z;z;/(x; + x;)* =
z(1 — z) where z := z;/(x; + z;). Note that z €
Q:=[ev/(e¥+ev),l—e /(e +e¥)] for all x €
[~w,w]™. The function z(1 — z) achieves its minimum
over the interval €2 at a boundary of Q. Thus, it holds
min,cq 2(1 — 2) = ¢,,. For , we can immediately
note that for all w € IR",

Wiw; _ w; 1 wW; < 1
(wi—I—wj)Q _wi—l—wj w; + Ww; 4

A.4 Proof of Lemma [3.3]

Let y be an arbitrary vector in [—w,w]™. Let r(x;y) =
£(x;y) — £(x) for x € [~w,w]™. Then, we have

r(y;y) =0,Vxr(y;y) =0, and

V2r(xy) = VA(—£(x)) + A (A4)
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where A is a n x n diagonal matrix with diagonal
elements
e’ 1,5,
A = *me‘m 2 =57 |[Mlloo-

JET

Since V2(—£(x)) is a positive semi-definite matrix and
A is a diagonal matrix, for all x,y € [—w,w]™, we have
for all w € [—w, w]”

2w
(&
x Vir(wiy)x > *lIMllooTHXIlZ = 0[]l

By limited Taylor expansion, for all x € [—w,w]™,

r(x;y)
>r(y;y) + (x—y) Var(y:y)
1
+ 5 min (x—y) ' Vir(ex+ (1 - a)y;y)(x - y)
:1 min (x —y) Vir(ax+ (1 —a)y)(x - y;y)
2 0<a<1 x '
1)
>— S|x—yl?

By the definition of r(x;y), we have £(x;y) — £(x) >
—sllx - lI*.

A.5 Surrogate function (3.3)) for the
Bradley-Terry model is a first-order
surrogate function

We show that the surrogate function ¢ of the log-
likelihood function £ of the Bradley-Terry model, given
by , is a first-order surrogate function on X, =
[—w,w]™ with g = $e**d(M).

We need to show that the error function h(x;y) =
0(x) — (x;y) is a pp-smooth function on A,,.

By a straightforward calculus, we note
V2h(x;y) = V2(x) + D(x,y)

where D(x,y) is a diagonal matrix with diagonal ele-

ments
Loy

e
d, = —
w Z mu’] eYu + eYi
J#u
We can take
po = max max{|A1(VZh(x;y))], A (VZh(x;¥))[}.

x,yEXo,

For any A = B+ D where B is a n X n matrix and
D is a n x n diagonal matrix with diagonal elements
dy,ds,...,d,, we have

A1(B) + mind, < M\(A) < A\, (B) + maxd,.

It thus follows that
fio < max max{| A1 (V2€(x))|+

mind, |, |\, (V2£(x)) + max d,|}.

Now note that for all x,y € &,

—%d(M) <M (VH(x)) < M (V2(x)) =0

and

1 —2w : . 1 2w

56 Irhanmu’j < mulndu < mgxdu < 56 d(M).
JEU

We have

1
I\ (V20(x)) + max d, | = max d, < §e2wd(M)

and
M (V20(x)) + min d, |
= (M(V(x) + min dy) 1y, (v26(0))+miny du 20
+(=M(VZ(x)) — muin du) Ly, (v20(x))+min,, d, <0
< mgn du Ty, (v24(x))+min, du>0
=M1 (V2E(x)) L, (926(x))+min,, d, <0
< %e2wd(M)I>\1(V2l(x))+minu du>0
Jr%d(M)Ix\l(VQZ(X))-i-minu d,,<0
< %emd(M).
A.6 Proof of Lemma [3.4]

We consider the log-a posteriori probability function
p(w) = £(w) + lo(w) + const where ¢ is the log-
likelihood function given by and ¢y is the prior
log-likelihood function given by . Note that
VZ(—fo(w)) is a diagonal matrix with diagonal ele-
ments equal to Be"i, for i = 1,2,...,n. It can be
readily shown that for w € W,,,

1
e i+ L, < V2 (=p(w)) < 7Lt + 5L

(A.5)
From (A.5)), for all w € W,, and x € IR",

x V2 (=p(w))x = Ai (e 8L, )[[x][* = e~ Bl Ix||*.
Hence, —p is e™“[S-strongly convex on W,,.

Similarly, from (A.5]), for all w € W,,, and x € R",

1
x V2 (=p(w))x < An(7Laa+eBL,)| x|

IN

O (L8 + Mae L)
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(A0 (Tin) + € B) x>
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Hence, —p is p-smooth on W, with p = i)\n(LM) +
evs.

B Comparison of Theorem with
Proposition 2.7 Mairal| (2015)

Theorem B.1. Suppose that f is a strongly convex
function on X, and x* is a minimizer of f and that it
holds x* € X,. Assume that g is a first-order surrogate
function of f on X, with parameter o > 0. Let x(*+1)
be the output of the MM algorithm for input x). Then,
if x) € X, and x*V) € X, then we have

FEED) = f(x) < e(f(x) = f(x7))

Ho

_ v
C—{ 1— ~
4dpo?

Proof. If g is a first-order surrogate function on X,
with parameter g, then

where ‘
if v > 2p0
if v < 2p0.

F() < f(@) + iz~ yIP”

where x’ = argmin, g(z';y).
From this it follows that
fx')
<min {f(z) + %Hz - x*|\2}

poa®
|l

< min {f(ax*+(1—a)x)+ 5

< —X*|2}
a€l0,1]

a2
< min {af(x*)+(1a)f(x)+u02 ||XX*||2}

T a€0,1]

where the last inequality is by convexity of f.

We have established that
f(x) = f(x)
. * lu’oa’2 *[12
< min § (1 —a)(f(x) = f(x") + ——|x—x"[]" ;.

~ a€l0,1] 2

By assumption that f is y-strongly convex on X, and
x € X, we have

F60) = ") = 2 x— x|

It follows that

It remains only to note that

2
min {1—a+ Hoa } =c.
a€(0,1] ¥

O

The rate of convergence bound derived from Theo-
rem can be tighter than the rate of convergence
bound derived from Theorem [B.11

To show this consider the Bradley-Terry model for
which we have shown in Lemma [3.3] that the surrogate
function £ of the log-likelihood function ¢ satisfies con-
dition of Theorem on [—w,w]"™ with § = Ze2*d(M).
It also holds that surrogate function £ is also a first-
order surrogate function of £ on [—w,w|™ with g =
1e%2d(M). Hence in this case, we have § = 0.

The convergence rate bound of Theorem is tighter
than the convergence rate bound of Theorem if and
only if p+ 6 < 4pg. Since § = pg, this is equivalent to
1 < 34. Since by Lemma we can take p = 2d(M),
the latter condition reads as

1< 3e”

which indeed holds true.

C Generalized Bradley-Terry models

C.1 Generalized Bradley-Terry models

Bradley-Terry model of paired comparisons
According to the Bradley-Terry model, each paired
comparison of items ¢ and j has two possible outcomes:
either ¢ wins against j (i > j) or j wins against ¢ (j > 7).
The distribution of the outcomes is given by

e
Prli > j] = —
i il= oo
where w = (wy,ws, ..., w,)" € R" are model param-

eters.

Rao-Kupper model of paired comparisons with
ties The Rao-Kupper model is such that each paired
comparison of items 7 and j has three possible outcomes:
either ¢ > j or j = i or i = j (tie). The model is defined
by the probability distribution of outcomes that is given
by

Pr[i = j| = e
I‘[Z>‘J] e“”i—i—ﬂew-i
and 52
_ 1 Wi L, W35
Prfi=j] = — Jete

(ewi + fewi)(fewi 4 ewi)

where w = (w1, ws,...,w,)" € IR™ and § > 1 are

model parameters.
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The larger the value of parameter 6, the more mass is
put on the tie outcome. For the value of parameter
0 = 1, the model corresponds to the Bradley-Terry
model for paired comparisons.

Luce choice model The Luce choice model is a nat-
ural generalization of the Bradley-Terry model of paired
comparisons to comparison sets of two or more items.
For any given comparison set S C N ={1,2,...,n} of
two or more items, the outcome is a choice of one item
i € S (an event we denote as ¢ = S) which occurs with
probability

evi

Zjes evs

awn)—r

Pr[i = S] =
where w = (w1, wa, . .. € IR,, are model param-
eters.

We will use the following definitions and notation. Let
T be the set of ordered sequences of two or more items
from N such that for each y = (y1,v2,...,yx) € T,
y1 is an arbitrary item and ys,...,yr are sorted in
lexicographical order. We can interpret each y =
(y1,Y2,---,4yr) € T as a choice of item y; from the
set of items {y1,¥2,...,yx}. According to the Luce’s
choice model, the probability of outcome y is given by

eWvi

Pr[Y = =
Zjey evs

(y17y2a" '7yk:)] -

We denote with d, the number of observed outcomes y
in the input data. For each y € T, let |y| denote the
number of items in y.

Plackett-Luce ranking model The Plackett-Luce
ranking model is a model of full rankings: for each
comparison set of items S C N = {1,2,...,n}, the set
of possible outcomes contains all possible permutations
of items in S. The distribution over possible outcomes
is defined as follows. Let T be the set of all possible
permutations of subsets of two or more items from
N. Each y = (y1,¥2,...,yx) € T corresponds to a
permutation of the set of items S = {y1,y2,..., Yk}
The probability of outcome y is given by

PrlY = (y1,92, -, yx)]
eWv1 eWya ewyk—l
Tk Wy k Wy, Y k Wy
Zj:l e ijz e Zj:kfl e
where w = (wy,ws, ..., w,)" €R" are model param-

eters.

The model has an intuitive explanation as a sampling
of items without replacement proportional to the item
weights e*i. The Plackett-Luce ranking model corre-
sponds to the Bradley-Terry model of paired compar-
isons when the comparison sets consist of two items.

We denote with d, the number of observed outcomes y
in the input data.

In this section, we discuss how the results for Bradley-
Terry model of paired comparisons can be extended to
other instances of generalized Bradley-Terry models. In
particular, we show this for the Rao-Kupper model of
paired comparisons with tie outcomes, the Luce choice
model and the Plackett-Luce ranking model.

C.2 Rao-Kupper model

The probability distribution of outcomes according to
the Rao-Kupper model is defined in Section The
log-likelihood function can be written as

=D > di(wi-

i=1 j#i

1 n
5 Z ti,j 10g(02 — 1)
i=1

log(e™ + 0e"7)) +

where d; ; is the number of observed paired comparisons
of items ¢ and j such that either ¢ wins against j or there
is a tie outcome, and t;; is the number of observed
paired comparisons of items ¢ and j with tie outcomes.

Lemma C.1. The negative log-likelihood function for
the Rao-Kupper model of paired comparisons with pa-
rameter 0 > 1 is ~y-strongly convex on W,, = {w €

" |[Wlloo £ w and w1 =0} and p-smooth on IR™
with

1
v =cguwr2(Lm) and pp = 5/\"(LM)

where ¢, = 0/(0e™% + e¥)?.

Proof of Lemma, is provided in Appendix

A surrogate minorant function for the log-likelihood
function of the Rao-Kupper model is given as follows:

Ux;y)

e ‘+96 g
> X (- S

i=1 j#i

1 & )
+ 5 §ti’j 10g(9 — 1)

— log(e¥* + 0e¥7) + 1)

The MM algorithm is defined by, for i =1,2,....n

w§t+1) =log ZCL’J

J#i
dij 0d;.i
10g Z < (t) (t) + (t) (t))
i + fevi + fewi
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Lemma C.2. For allx,y € [—w,w]™, {(x;y) —4(x) >
—3||x — y||* where

§ = e2d(M).

C.3 Luce choice model

The probability distribution of outcomes according to
the Luce choice model is defined in Section The
log-likelihood function can be written as:

Uw) = Z dy | wy, —log Zewi

yeT Jj€y

Lemma C.3. The negative log-likelihood function for
the Luce choice model with comparison sets of size
k > 2 1s vy-strongly convex and p-smooth on W,, =
{weR": ||W||lew <w and w'1 =0} with

v = cwrr2(Lm) and p = dy A (Linm)

where
/(e +ev)?, if k=2
Gk = { ((k—2)e +2)2, ifk>2
1
dw k

, :((k — Q)efzw ¥ 2)2'

Note that for every fixed w > 0, (a) ¢, x/dw k is decreas-
ing in k, (b) 1/e3 < ¢y x/dy i < 1/€**, and (c) 1/e¥
is the limit value of ¢, x/d,, r as k goes to infinity.

A minorant surrogate function for the log-likelihood
function of the Luce choice model is given by

. evi
2 jey - — log

v,
D ey €% Ze] o

Jj€y

Ux;y) = Z dy | Ty, —

yeT

The MM algorithm iteration can be written as: for
i=1,2,...,n,

’lUEtJrl)

1

ws
yeT yeT jey (S

where > 5 dy1;—y, is the number of observed com-
parisons in which item ¢ is the chosen item.

Lemma C.4. For dllx,y € [~w,w]™, {(x;y)—£(x) >
—2||x — y||* where

1

"= koD

e*d(M).

C.4 Plackett-Luce ranking model

The probability distribution of outcomes according
to the Plackett-Luce ranking model is defined in Sec-
tion The log-likelihood function can be written as
follows:

ly|-1 lyl

lw) = Z dy Z wy, — log Ze“@j
j=r

yeT r=1

Lemma C.5. The negative log-likelihood function for
the Plackett-Luce ranking model with comparison sets
of size k > 2 is y-strongly convex and p-smooth on
Wo = {w e R": ||[W]|oo <w and w'1 = 0} with

v = Curda(Lm) and p = dy ML)

where

1 ~ 1
Cok = ﬁe_‘lw and dy, 1, = <2 — k) et

Proof of Lemma [C.5] is provided in Appendix [C.6]

Note that for fixed values of w and k, Lemma
implies the convergence time log(d(M)/a(M)). Note,
however, that for fixed w > 0, &, x/dw r decreases to
0 with k and is of the order 1/k?. This is because
in the derivation of parameters ¢, j and Jw,k we use
(conservative) deterministic bounds. Following Hajek
et al.| (2014)), one can derive bounds for v and p that
hold with high probability, which are such that ¢, j
and ciu%k scale with k in the same way.

The log-likelihood function of the Plackett-Luce ranking
model admits the following minorization function:

Ux;y) =
lyl-1 Zly\ Ty, ly]

Zdyz xyrzfy_r;yjlog Zeyyj +1

yeT r=1

The MM algorithm is given by: for i =1,2,...,n,

t+1
wz( ) :log ZdyIiESL\y\—M?J)

yeT
ly|—1 1
lOg Zdy Z IiEST’W‘(y) lyl w®
yel  r=1 doimpe

where Sob(y) = {Yas Yat1s- -5 Yo}
Lemma C.6. For allx,y € [—w,w|", (x;y) —£(x) >
—2||x — yl|* where

1
6 = ed(M).
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C.5 Proof of Lemma

Let ¢; ; be the number of paired comparisons in the
input data with tie outcome for items ¢ and j. Note
that ¢; ; = t;;. The log-likelihood function can be
written as follows:

f(W)

= > S

i=1 j#i

1 — w. ws
+§Zztm (w; +w; — log(e" + 0e*7))

i=1 j#i

—% Z Z ti,j (log(ﬂe

i=1 j#i

—log(e™ + 6e™7))

Wi e"i) —log(6® — 1)) .

Let d; j be the number of paired comparisons of items
i and j such that ¢ > j, ie. d;; =d;; +t;. By a
straightforward calculus, we can write

)= Y

i=1 j#i

1 < )
+§§ti,jlog(9 —1).

—log(e" 4 0e¥7))

Now, we note when ¢ # j,

82
G )
- fe?ieWi 7

i, (ewi + 0€1uj)2 -

and

For any ¢ # j, it indeed holds
feieWi
(ewi + gewj)2
Hence, when i # 7,

0?2 1, - - 1
—Uw)) 2 = (dij +dji) 2 —5mi;.

Bwif)wj

It follows that 3Ly = VZ(—((w)) for all w € R".

Hence,
1
x " V2(—6(w))x < S An(Lna) for all x € R".

This implies that —¢ is a 3, (L
on R™.

M )-smooth function

On the other hand, we can show that for all w €
[_w,w]n7
feviei 0
(ewi _|_0€wj)2 — (Qe—w +€w)2

= Ch,w-

This can be noted as follows. Let z = fe™i /(e®i46e™7).
Note that
fetiewi

(ewi + fewi)?

and that z € Q := [1/(1 + 0e®*),1/(1 + fe=2*)]. The
function z(1 — z) is convex and thus achieves its min-
imum value over the interval €} at one of its bound-
ary points. It can be readily checked that the mini-
mum is achieved at z* = 1/(1 + 0e2*), which yields
25 (1= 2%) = cp .

=z(1-2)

Hence, when i # 7,

62
(9’[01' 8wj

( E( )) —Co w(du +J’7i) <

—Ch,wMyj,j-

It follows that V2(—¢(w)) = cpLam. From this, we
have that for all w € [—w,w]™ and x € X

XTvz(ff(W))X > cg w2 (Lim)

where X = {x € R" : ||x||oo <w and x"1 = 0}. This
implies that —¢ is cg A2 (L )-strongly convex on X.

C.6 Proof of Lemma

It can be easily shown that for all w € [—~w,w]”, S C N
such that |S| > 2, and u,v € S such that u # v, we
have

e—4w eWu pWo e4w

< —.
ISP 7 (jes ™) T ISP

Combining with (A.1), we have

82
— (¥
Wa, Woy
< - Z d 5 1, WE{Y1,Y250 Uk }
yeT Z] 1€)
—4
yeT
e—4w
= —?mu,v'

From this it follows that for all x € IR™ such that
x'1=0,

—4w

)V (—0(w))x 2= = da(Lna) 1],

(C.1)
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Similarly, we have

82
m(_z(w))
wuwv
> —Zd Z lu,ve{yuymm,yk}
yeT = )
>

4w Z — l — 1 Mo
_ 764“) Z 12 Mo
=2 l

IV
|
i
€
N
—_
+
—
Eal
Tl &
N~
3
e
=

From this it follows that for all x,

x' V2(—f(w))x < el (2 - ;) A (L) [|x][2. (C.2)

D Code and Dataset

The code and datasets for reproducing our experiments
are available online:

https://github.com/GDMMBT/GDMM.
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