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A Proof of Theorem 2.1

In this appendix, we present the proof of Theorem 2.1. We first introduce notation and preliminaries in Ap-
pendix A.1, to be used subsequently in proving both parts of Theorem 2.1. The proof of Theorem 2.1(b) is
presented in Appendix A.2. The proof of Theorem 2.1(a) is presented in Appendix A.3. We first present the
proof of Theorem 2.1(b) followed by Theorem 2.1(a), because the proof of Theorem 2.1(a) depends on the proof
of Theorem 2.1(b).

In the proof of Theorem 2.1(a), the constants are allowed to depend only on the constant B. In the proof of
Theorem 2.1(b), the constants are allowed to depend only on the constants A and B. The proofs for all the
lemmas are presented in Appendix A.4.

A.1 Notation and preliminaries

In this appendix, we introduce notation and preliminaries that are used subsequently in the proofs of both
Theorem 2.1(b) and Theorem 2.1(a).

(i) Notation

Recall that d denotes the number of items, and k denotes the number of comparisons per pair of items. The
d items are associated to a true parameter vector ✓⇤ = [✓⇤1 , . . . , ✓

⇤
d]. We have the set ⇥B = {✓ 2 Rd

| k✓k1 

B,
Pd

i=1 ✓i = 0} and the set ⇥A = {✓ 2 Rd
| k✓k1  A,

Pd
i=1 ✓i = 0}, where A and B are finite constants such

that A > B > 0. The true parameter vector satisfies ✓⇤ 2 ⇥B .

Denote µ⇤
ij as the probability that item i 2 [d] beats item j 2 [d]. Under the BTL model, we have

µ⇤
ij =

1

1 + e�(✓⇤
i �✓⇤

j )
. (9)

For every r 2 [k], denote the outcome of the rth comparison between item i 2 [d] and item j 2 [d] as

X(r)
ij := 1{item i beats item j in their rth comparison}.

We have X(r)
ij ⇠ Bernoulli(µ⇤

ij), independent across all r 2 [k] and all i < j. Recall that Wij denotes the number

of times that item i beats j. We have Wij =
Pk

r=1 X
(r)
ij and therefore Wij ⇠ Binom(k, µ⇤

ij). Denote µij as the
fraction of times that item i beats item j. That is,

µij :=
1

k
Wij =

1

k

kX

r=1

X(r)
ij . (10)

We have µij ⇠
1
kBinom(k, µ⇤

ij), independent across all i < j.

Finally, we use c, c0, c1, c2, etc. to denote finite constants whose values may change from line to line. We write
f(n) . g(n) if there exists a constant c such that f(n)  c · g(n) for all n � 1. The notation f(n) & g(n) is
defined analogously.

(ii) Notion of conditioning

Let E be any event. The conditional bias of any estimator b✓ conditioned on the event E is defined as:

�(b✓ | E) := sup
✓⇤2⇥B

kE[b✓ | E]� ✓⇤k1.

We use “w.h.p.( 1
dk )” to denote that an event E happens with probability at least

P(E) > 1�
c

dk
,

for all d � d0 and k � k0, where d0, k0 and c are positive constants.
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Similarly, we use “w.h.p.( 1
dk | E)” to denote that conditioned on some event E, some other event E0 happens

with probability at least

P(E0
| E) � 1�

c

dk
,

for all d � d0 and k � k0, where d0, k0 and c are positive constants.

(iii) The negative log-likelihood function and its derivative

Recall that ` denotes the negative log-likelihood function. Under the BTL model, we have

`(✓) := `({Wij}; ✓) = �
X

1i<jd


Wij log

✓
1

1 + e�(✓i�✓j)

◆
+Wji log

✓
1

1 + e�(✓j�✓i)

◆�

= �k
X

1i<jd


µij log

✓
1

1 + e�(✓i�✓j)

◆
+ µji log

✓
1

1 + e�(✓j�✓i)

◆�

= k
X

1i<jd

⇥
log(e✓i + e✓j )� µij✓i � µji✓j

⇤
. (11)

Since {µij} is simply a normalized version of {Wij}, we equivalently denote the negative log-likelihood function
as `({µij}; ✓).

From the expression of ` in (11), we compute the gradient @`
@✓m

for every m 2 [d] as

@`

@✓m
= k

X

i 6=m

✓
1

1 + e�(✓m�✓i)
� µmi

◆
. (12)

Finally, the following lemma from Hunter (2004) shows the strict convexity of the negative log-likelihood function
`.

Lemma A.1 (Lemma 2(a) from Hunter (2004)). The negative log-likelihood function `(✓) is strictly convex in
✓ 2 Rd.

(iv) The sigmoid function and its derivatives

Denote the function f : (�1,1)! (0, 1) as the sigmoid function f(x) = 1
1+e�x . It is straightforward to verify

that the function f has the following two properties.

• The first derivative f 0 is positive on (�1,1). Moreover, on any bounded interval, the first derivative f 0 is
bounded above and below. That is, for any constants c1 < c2, there exist constants c3, c4 > 0 such that

0 < c3 < f 0(x) < c4, for all x 2 (c1, c2). (13a)

• The second derivative f 00 is bounded on any bounded interval. That is, for any constants c1 < c2, there
exists a constant c5 such that

|f 00(x)| < c5, for all x 2 (c1, c2). (13b)

(v) Existence and uniqueness of MLE

Recall that the MLE (3), the unconstrained MLE (5), and the stretched-MLE (6) are respectively defined as:

b✓(B)({µij}) = argmin
✓2⇥B

`({µij}; ✓), (14)

b✓(1)({µij}) = argmin
✓2⇥1

`({µij}; ✓), (15)

b✓(A)({µij}) = argmin
✓2⇥A

`({µij}; ✓). (16)

The following lemma shows the existence and uniqueness of the stretched-MLE b✓(A) (16) for any constant A > 0,

which incorporates the standard MLE b✓(B) by setting A = B.
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Lemma A.2. For any finite constant A > 0, there always exists a unique solution b✓(A) to the stretched-MLE (16).

See Appendix A.4.1 for the proof of Lemma A.2.

For the unconstrained MLE, due to the removal of the box constraint in (15), a finite solution b✓(1) may not
exist. However, the following lemma shows that a unique finite solution exists with high probability.

Lemma A.3. There exists a unique finite solution b✓(1) to the unconstrained MLE (15) w.h.p.( 1
dk ).

See Appendix A.4.2 for the proof of Lemma A.3.

In the subsequent proofs of Theorem 2.1(b) and Theorem 2.1(a), we heavily use the unconstrained MLE as an
intermediate quantity to analyze the MLE and the stretched-MLE.

A.2 Proof of Theorem 2.1(b)

In this appendix, we present the proof of Theorem 2.1(b). To describe the main steps involved, we first present
a proof sketch of a simple case of d = 2 items (Appendix A.2.1), followed by the complete proof of the general
case (Appendix A.2.2). The reader may pass to the complete proof in Appendix A.2.2 without loss of continuity.

A.2.1 Simple case: 2 items

We first present an informal proof sketch for a simple case where there are d = 2 items. The proof for the
general case in Appendix A.2.2 follows the same outline. In the case of d = 2 items, due to the centering
constraint on the true parameter vector ✓⇤, we have ✓⇤2 = �✓⇤1 . Similarly, we have b✓2 = �b✓1 for any estimator

that satisfies the centering constraint (in particular, for the stretched-MLE b✓(A) and the unconstrained MLE
b✓(1)). Therefore, it su�ces to focus only on item 1. Since there are only two items, for ease of notation, we
denote µ = µ12 and µ⇤ = µ⇤

12. We now present the main steps of the proof sketch.

Proof sketch of the 2-item case (informal):

In the proof sketch, we fix any ✓⇤ 2 ⇥B , and any finite constants A and B such that A > B > 0.

Step 1: Establish concentration of µ

By Hoe↵ding’s inequality, we have

|µ� µ⇤
| .

r
log k

k
, w.h.p. (17)

Since |✓⇤|  B, we have that µ⇤ is bounded away from 0 and 1 by a constant. Hence, for su�ciently large k,
there exist constants cL, cU where 0 < cL < cU < 1, such that

µ, µ⇤
2 (cL, cU ). (18)

Step 2: Write the first-order optimality condition for b✓(1)

The unconstrained MLE b✓(1) minimizes the negative log-likelihood `. If a finite unconstrained MLE b✓(1) exists1,
we have r✓=b✓(1)`(✓) = 0. Setting m = 1 in the gradient expression (12) and plugging in b✓(1), we have

@`

@✓1

����
✓=b✓(1)

= k

✓
1

1 + e�(b✓(1)
1 �b✓(1)

2 )
� µ12

◆

= k

✓
1

1 + e�2b✓(1)
1

� µ

◆
. (19)

1 For the proof sketch, we ignore the high-probability nature of Lemma A.3, and assume that a finite b✓(1) always
exists. It is made precise in the complete proof in Appendix A.2.2.



Stretching the E↵ectiveness of MLE from Accuracy to Bias for Pairwise Comparisons

Setting the derivative (19) to 0, we have

b✓(1)
1 = �

1

2
log

✓
1

µ
� 1

◆
. (20)

By the definition of {µ⇤
ij} in (9), we have µ⇤ = 1

1+e�(✓⇤1�✓⇤2 ) = 1

1+e�2✓⇤1
, which can be written as

✓⇤1 = �
1

2
log

✓
1

µ⇤ � 1

◆
. (21)

Define a function h : [0, 1]! R [ {±1} as

h(t) = �
1

2
log

✓
1

t
� 1

◆
. (22)

Subtracting (21) from (20) and using the definition of h from (22), we have

b✓(1)
1 � ✓⇤1 = h(µ)� h(µ⇤). (23)

Step 3: Bound the di↵erence between b✓(1) and ✓⇤, by the first-order mean value theorem

It can be verified that h has positive first-order derivative on (0, 1). Moreover, there exists some constant c1
such that 0 < h0(t) < c1 for all t 2 (cL, cU ). Applying the first-order mean value theorem on (23), we have the
deterministic relation

b✓(1)
1 � ✓⇤1 = h0(�) · (µ� µ⇤), (24)

where � is a random variable that depends on µ and µ⇤, and takes values between µ and µ⇤. By (18), we have
� 2 (cL, cU ). From (24) we have

|b✓(1)
1 � ✓⇤1 |  c1|µ� µ⇤

|. (25)

Combining (25) with (17), we have

|b✓(1)
1 � ✓⇤1 | .

r
log k

k
, w.h.p. (26)

Step 4: Bound the expected di↵erence between b✓(1) and ✓⇤, by the second-order mean value the-
orem

By the second-order mean value theorem on (23), we have the deterministic relation

b✓(1)
1 � ✓⇤1 = h(µ)� h(µ⇤) = h0(µ⇤) · (µ� µ⇤) + h00(e�) · (µ� µ⇤)2, (27)

where e� is a random variable that depends on µ and µ⇤, and takes values between µ and µ⇤. By (18), we have
e� 2 (cL, cU ).

It can be verified that h has bounded second-order derivative. That is, |h00(t)| < c2 for all t 2 (cL, cU ). Taking
an expectation over (27), we have

E[b✓(1)
1 ]� ✓⇤1 = h0(µ⇤) · (E[µ]� µ⇤) + E[h00(e�) · (µ� µ⇤)2] (28)

(i)
 c2E[(µ� µ⇤)2]

(ii)

. log k

k
, (29)

where (i) is true because E[µ] = µ⇤ combined with the fact that |h00
| < c2 on (cL, cU ), and (ii) is true2 by (17).

2 For the proof sketch, we ignore the high-probability nature of (17) and treat it as a deterministic relation. It is made
precise in the complete proof in Appendix A.2.2.
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Step 5: Connect b✓(1) back to b✓(A)

From (26), we have |b✓(1)
1 � ✓⇤1 |  A�B w.h.p. for su�ciently large k. Hence,

|b✓(1)
1 |  |✓⇤1 | + |b✓(1)

1 � ✓⇤1 |  B + (A�B) = A, w.h.p.

Moreover, we have
���b✓(1)

2

��� =
���b✓(1)

1

���  A. Therefore, with high probability, the unconstrained MLE b✓(1) does not

violate the box constraint at A, and therefore b✓(1) is identical to the stretched-MLE b✓(A). Hence, the bound (29)
holds3 for the stretched-MLE, completing the proof sketch.

A.2.2 Complete Proof

In this appendix, we present the proof of Theorem 2.1(b), by formally extending the 5 steps outlined for the
simple case in Appendix A.2.1. In the general case, one notable challenge is that one can no longer write a
closed-form solution of the MLE as we did in (20) of Step 2. The first-order optimality condition now becomes
a system of equations that describe an implicit relation between ✓ and µ, requiring more involved analysis.

In the proof, we fix any ✓⇤ 2 ⇥B , and fix any finite constants A and B such that A > B > 0.

Step 1: Establish concentration of {µij}

We first use standard concentration inequalities to establish the following lemma, to be used in the subsequent
steps of the proof.

Lemma A.4. There exists a constant c > 0, such that
������

X

i 6=m

µmi �

X

i 6=m

µ⇤
mi

������
 c

r
d(log d+ log k)

k
,

simultaneously for all m 2 [d] w.h.p.( 1
dk ).

See Appendix A.4.3 for the proof of Lemma A.4.

Recall that Lemma A.3 states that a finite unconstrained MLE b✓(1) exists w.h.p.( 1
dk ). We denote E0 as the

event that Lemma A.3 and Lemma A.4 both hold. For the rest of the proof, we condition on E0. Since both
Lemma A.3 and Lemma A.4 hold w.h.p.( 1

dk ), taking a union bound, we have that E0 holds w.h.p.( 1
dk ). That is,

P(E0) � 1�
c

dk
, for some constant c > 0. (30)

Step 2: Write the first-order optimality condition for the unconstrained MLE b✓(1)

Recall from Lemma A.1 that the negative log-likelihood function ` is convex in ✓. In this step, we first jus-
tify that the whenever a finite unconstrained MLE b✓(1) exists, it satisfies the first-order optimality condition
r✓=b✓(1)`(✓) = 0. (Note that for any optimization problem with constraints, it is in general not true that the
derivative of the convex objective equals 0 at the optimal solution.) Then we derive a specific form of the
first-order optimality condition, to be used in subsequent steps of the proof.

Given that we have conditioned on E0 (and therefore on Lemma A.3), a finite solution b✓(1) to the unconstrained

MLE exists. To show that b✓(1) satisfies the first-order optimality condition, we show that b✓(1) is also a solution
to the following MLE without any constraint at all (that is, we remove the centering constraint too):

argmin
✓2Rd

`(✓). (31)

If the unconstrained MLE b✓(1) is a solution to (31), then it satisfies the first-order condition r✓`(b✓(1)) = 0.

Now we prove that b✓(1) is a solution to (31). Note that the solutions to (31) are shift-invariant. That is, if ✓ is a

3 For the proof sketch, we ignore the high-probability nature of the fact that b✓(1) = b✓(A), and treat it as a deterministic
relation. It is made precise in the complete proof in Appendix A.2.2.
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solution to (31), then ✓+ c1 is also a solution, where 1 is the d-dimensional all-one vector, and c is any constant.

Now suppose by contradiction that b✓(1) is not a solution to (31). Then there exists some finite ✓ 2 Rd such

that `(✓) < `(b✓(1)). Now consider ✓0 := ✓ � ( 1d
Pd

i=1 ✓i)1. We have ✓0 2 ⇥1 because it satisfies the centering

constraint, and we have `(✓0) = `(✓) < `(b✓(1)) because the solutions to (31) are shift-invariant. The construction

of ✓0 thus contradicts the assumption that b✓(1) is optimal for the unconstrained MLE. Hence, b✓(1) is a solution
to (31), and b✓(1) satisfies the first-order optimality condition.

Now we derive a specific form of the first-order optimality condition. Plugging b✓(1) into the gradient expres-
sion (12) and setting the gradient to 0, we have the deterministic equality

X

i 6=m

1

1 + e�(b✓(1)
m �b✓(1)

i )
=
X

i 6=m

µmi, for every m 2 [d]. (32)

In words, the first-order optimality condition (32) means that for any item m 2 [d], the probability that item m

wins (among all comparisons in which item m is involved) as predicted by the unconstrained MLE b✓(1) equals
the fraction of wins by item m from the observed comparisons. We now subtract (9) from both sides of (32):

X

i 6=m

✓
1

1 + e�(b✓(1)
m �b✓(1)

i )
�

1

1 + e�(✓⇤
m�✓⇤

i )

◆
=
X

i 6=m

(µmi � µ⇤
mi)

dX

i=1

✓
1

1 + e�(b✓(1)
m �b✓(1)

i )
�

1

1 + e�(✓⇤
m�✓⇤

i )

◆
=
X

i 6=m

(µmi � µ⇤
mi). (33)

For ease of notation, we denote the random vector � := b✓(1)
� ✓⇤. Equivalently, we have b✓(1) = ✓⇤ + �. Using

the definition of �, we rewrite (33) as:

dX

i=1

✓
1

1 + e�(✓⇤
m�✓⇤

i +�m��i)
�

1

1 + e�(✓⇤
m�✓⇤

i )

◆
=
X

i 6=m

(µmi � µ⇤
mi). (34)

Using the definition of the sigmoid function f(x) = 1
1+e�x , we rewrite (34) as:

dX

i=1

[f(✓⇤m � ✓⇤i + �m � �i)� f(✓⇤m � ✓⇤i )] =
X

i 6=m

(µmi � µ⇤
mi). (35)

In the rest of the proof, we primarily work with the first-order optimality condition in the form of (35).

Step 3: Bound the di↵erence between the unconstrained MLE b✓(1) and the true parameter vector
✓⇤

The first-order optimality condition (35) can be thought of as a system of equations that describes some implicit

relation between the unconstrained MLE b✓(1) and the observations {µmi}. Intuitively, the concentration of

{µmi} on the RHS of (35) (by Lemma A.4) should imply the concentration of the unconstrained MLE b✓(1) on

the LHS. The following lemma formalizes this intuition about the concentration of b✓(1).

Lemma A.5. Conditioned on E0, we have the deterministic relation

|�m| = |b✓(1)
m � ✓⇤m| .

r
log d+ log k

dk
, for every m 2 [d],

for all d � d0 and k � k0, where d0 and k0 are constants.

See Appendix A.4.4 for the proof of Lemma A.5.

This lemma provides a deterministic bound on the di↵erence between b✓(1) and ✓⇤. Now we move to analyze the
di↵erence between b✓(1) and ✓⇤ in expectation.
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Step 4: Bound the expected di↵erence between the unconstrained MLE b✓(1) and the true param-
eter vector ✓⇤, using the second-order mean value theorem

In Step 1 we bound the di↵erence between {µmi} and {µ⇤
mi} with high-probability. However, if we consider

the di↵erence in expectation, we have E[µmi] = µ⇤
mi. The expected di↵erence between {µmi} and {µ⇤

mi} is 0,
significantly smaller than the high-probability bound in Step 1. Intuitively, we may also expect that the expected
di↵erence between b✓(1) and ✓⇤ is smaller than the deterministic bound in Lemma A.5. In this step, we formalize
this intuition.

By the second-order mean value theorem on the LHS of the first-order optimality condition (35), we have the
deterministic relation that for every m 2 [d],

dX

i=1


f 0(✓⇤m � ✓⇤i ) · (�m � �i) +

1

2
f 00(�mi) · (�m � �i)

2

�
=
X

i 6=m

(µmi � µ⇤
mi)

dX

i=1

f 0(✓⇤m � ✓⇤i ) · (�m � �i) =
X

i 6=m

(µmi � µ⇤
mi)�

1

2

dX

i=1

f 00(�mi) · (�m � �i)
2, (36)

where each �mi is a random variable that takes values between ✓⇤m � ✓⇤i and ✓⇤m � ✓⇤i + (�m � �i). Taking an
expectation over (36) conditional on E0, we have that for every m 2 [d]:

dX

i=1

f 0(✓⇤m � ✓⇤i ) · E [�m � �i | E0] =
X

i 6=m

(E[µmi | E0]� µ⇤
mi)�

1

2

dX

i=1

E[f 00(�mi)(�m � �i)
2

| E0]. (37)

Denote the vector � := E[� | E0] = E[b✓(1)
| E0]� ✓⇤. Plugging this definition of � into (37) yields

dX

i=1

f 0(✓⇤m � ✓⇤i ) · (�m ��i) =
X

i 6=m

(E[µmi | E0]� µ⇤
mi)�

1

2

dX

i=1

E[f 00(�mi)(�m � �i)
2

| E0]. (38)

We first bound the RHS of (38), and then derive a bound regarding �i on the LHS accordingly.

To bound the RHS of (38), we first consider the term E[µmi | E0] � µ⇤
mi. In what follows, we state a lemma

that is slightly more general than what is needed here. The more general version is used in the subsequent proof
of Theorem 2.1(a). To state the lemma, recall the definition that an event E0 happens w.h.p.( 1

dk | E), if the
conditional probability P(E0

| E) � 1� c
dk , for some constant c > 0.

Lemma A.6. Let E be any event, and let E0 be any event that happens w.h.p.( 1
dk | E). Then for any m 6= i,

we have

|E[µmi | E0, E]� E[µmi | E]| . 1

dk
. (39)

See Appendix A.4.5 for the proof of Lemma A.6.

To apply Lemma A.6, we set E to be the (trivial) event of the entire probability space, and set E0 to be E0

in (39). We have

|E[µmi | E0]� E[µmi]| = |E[µmi | E0]� µ⇤
mi| .

1

dk
. (40)

The remaining terms in (38) are handled in the following lemma. This lemma bounds the expected di↵erence

between b✓(1) and ✓⇤ conditioned on E0, that is, the quantity |�m| = |E[b✓(1)
m | E0]� ✓⇤m|.

Lemma A.7. Conditioned on E0, we have

|�m| . log d+ log k

dk
, for every m 2 [d],

for all d � d0 and all k � k0, where d0 and k0 are constants. Equivalently,

�(b✓(1)
| E0) = kE[b✓(1)

| E0]� ✓⇤k1 = k�k1 . log d+ log k

dk
, (41)

for all d � d0 and all k � k0, where d0 and k0 are constants.
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See Appendix A.4.6 for the proof of Lemma A.7.

Note that (41) yields the desired rate on the quantity �(b✓(1)
| E0). It remains to show that �(b✓(1)

| E0) is

su�ciently close to �(b✓(A)).

Step 5: Show that the box constraint at A is vacuous for the unconstrained MLE b✓(1) and hence
b✓(1) is the same as the stretched-MLE b✓(A) with high probability, using the deterministic bound
in Step 3

To show that �(b✓(1)
| E0) is su�ciently close to �(b✓(A)), we divide the argument into two parts. First, we show

that �(b✓(1)
| E0) = �(b✓(A)

| E0). Second, we show that �(b✓(A)
| E0) is close to �(b✓(A)).

We first show that �(b✓(1)
| E0) = �(b✓(A)

| E0). Recall that A and B are constants such that A > B. Recall

from Lemma A.5 that kb✓(1)
� ✓⇤k1 . log d+log k

dk conditioned on E0. Hence, there exist constants d0 and k0,

such that for any d � d0 and k � k0, we have kb✓(1)
� ✓⇤k1 < A�B conditioned on E0. In this case, we have

kb✓(1)
k1  k✓

⇤
k1 + kb✓(1)

� ✓⇤k1 < B + (A�B) = A, conditioned on E0.

Conditioned on E0, the unconstrained MLE b✓(1) obeys the box constraint kb✓(1)
k1  A. Therefore, b✓(1) is also

a solution to the stretched-MLE b✓(A). By the uniqueness of b✓(A) from Lemma A.2, we have

b✓(A) = b✓(1), conditioned on E0.

Hence, we have the relation

�(b✓(1)
| E0) = �(b✓(A)

| E0), (42)

completing the first part of the argument.

It remains to show that �(b✓(A)
| E0) is su�ciently close to �(b✓(A)). We have

�(b✓(A)) = kE[b✓(A)]� ✓⇤k1
(i)
= kE[b✓(A)

| E0] · P(E0) + E[b✓(A)
| E0] · P(E0)� ✓⇤k1

(ii)
 kE[b✓(A)

| E0]� ✓⇤k1 · P(E0) + kE[b✓(A)
| E0]� ✓⇤k1 · P(E0)

= �(b✓(A)
| E0) · P(E0)| {z }
R1

+ kE[b✓(A)
| E0]� ✓⇤k1 · P(E0)| {z }

R2

. (43)

where step (i) is true by the law of iterated expectation, and step (ii) is true by the triangle inequality.

Consider the two terms in (43). For R1, combining (41) and (42) yields

�(b✓(A)
| E0) = �(b✓(1)

| E0) .
log d+ log k

dk
.

Therefore,

R1 . log d+ log k

dk
. (44)

Now consider R2. By the box constraint kb✓(A)
k1  A, we have

kE[b✓(A)
| E0]� ✓⇤k1

(i)
 kE[b✓(A)

| E0]k1 + k✓⇤k1  A+B, (45)

where step (i) is true by the triangle inequality. Recall from (30), the event E0 happens w.h.p.( 1
dk ). Therefore,

P(E0) .
1

dk
. (46)
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Combining (45) and (46) yields

R2 . 1

dk
. (47)

Plugging the term R1 from (44) and the term R2 from (47) back into (43), we have

�(b✓(A)) . log d+ log k

dk
,

completing the proof of Theorem 2.1(b).

A.3 Proof of Theorem 2.1(a)

Similar to the proof of Theorem 2.1(b), we first present a proof of the simple case of d = 2 items. It is important
to note that although we present proofs of the 2-item case for both Theorem 2.1(b) and Theorem 2.1(a), their
purposes are di↵erent. In Theorem 2.1(b) presented in Appendix A.2, the proof sketch of the 2-item case is
informal. It serves as a guideline for the general case. Then the main work involved in the general case is to
generalize the arguments in the 2-item case step-by-step. On the other hand, in Theorem 2.1(a), the proof of the
2-item case to be presented is formal. It serves as a core sub-problem of the general case. Then the main work
involved in the general case is to reduce the problem to the 2-item case, and then the results from the 2-item
case directly.

A.3.1 Simple case: 2 items

As in Appendix A.2.1, we first consider the simple case where there are d = 2 items. Again, due to the centering
constraint, we have ✓⇤2 = �✓⇤1 for the true parameter vector ✓⇤, and we have b✓2 = �b✓1 for any estimator b✓ that

satisfies the centering constraint (in particular, for the standard MLE b✓(B) and the unconstrained MLE b✓(1)).
Therefore, it su�ces to focus only on item 1. Since there are only two items, for ease of notation, we denote
µ = µ12 and µ⇤ = µ⇤

12.

We consider the true parameter vector ✓⇤ = [B,�B]. By the definition of {µ⇤
ij} in (9), we have

µ⇤ =
1

1 + e�(✓⇤
1�✓⇤

2 )
=

1

1 + e�2B
.

The following proposition now lower bounds the bias of the standard MLE b✓(B).

Proposition A.8. Under ✓⇤ = [B,�B], the bias of the MLE b✓(B) is bounded as

�(b✓(B)) = kE[b✓(B)]� ✓⇤k1 = |E[b✓(B)
1 ]�B| & 1

p
k
.

Specifically, the bias is negative, that is,

E[b✓(B)
1 ]�B  �

c
p
k
, (48)

for some constant c > 0.

The rest of this appendix is devoted to proving (48) in Proposition A.8.

For ease of notation, denote µ+ = µ⇤ = 1
1+e�2B , and µ� = 1�µ⇤ = 1

1+e2B . In the proof sketch of Theorem 2.1(b)
of the case of d = 2 items (Appendix A.2.1), we derived the following expression (20) for the unconstrained MLE:

b✓(1)
1 (µ) = �

1

2
log

✓
1

µ
� 1

◆
.

Now consider the standard MLE b✓(B). By straightforward analysis, one can derive the following closed-form
expression for the standard MLE:

b✓(B)
1 (µ) =

8
>><

>>:

�B if µ 2 [0, µ�]

�
1
2 log

⇣
1
µ � 1

⌘
if µ 2 (µ�, µ+)

B if µ 2 [µ+, 1].

(49)
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For ease of notation, we denote a function h : [0, 1]! [�B,B] as

h(t) =

8
><

>:

�B if t 2 [0, µ�]

�
1
2 log

�
1
t � 1

�
if t 2 (µ�, µ+)

B if t 2 [µ+, 1],

(50)

where h(t) = b✓(B)
1 (µ = t) for any t 2 [0, 1]. Then the standard MLE (49) can be equivalently written as h(µ). To

make the computation of the bias incurred by b✓(B) more tractable, we also define the following auxiliary function
h+ : [0, 1]! [�B,B] as:

h+(t) :=

(
2B
µ+

(t� µ+) +B if t 2 [0, µ+)

B if t 2 [µ+, 1].
(51)

In words, the function h+ is piecewise linear. On the interval [0, µ+], it is a line passing through the points
(0,�B) and (µ+, B). On the interval [µ+, 1], its value equals the constant B. The following lemma now states
a relation between h+(µ) and h(µ) in expectation with respect to µ.

Lemma A.9. Under ✓⇤ = [B,�B], we have

E[h(µ)]  E[h+(µ)]. (52)

See Appendix A.4.7 for the proof of Lemma A.9.

Now subtracting B from both sides of (52), we have

E[b✓(B)
1 ]� ✓⇤1 = E[h(µ)]�B  E[h+(µ)]�B. (53)

The following lemma states that the bias introduced by h+(µ) satisfies the desired rate from Proposition A.8.

Lemma A.10. Under ✓⇤ = [B,�B], we have

E[h+(µ)]�B  �
c
p
k
, (54)

for some constant c > 0.

See Appendix A.4.8 for the proof of Lemma A.10.

Combining (53) and (54), we have

E[b✓(B)
1 ]� ✓⇤1  �

c
p
k
,

completing the proof of (48) in Proposition A.8.

A.3.2 Complete Proof

In this appendix, we present the proof of Theorem 2.1(a). The proof reduces the general case to the 2-item
case presented in Appendix A.3.1. In the reduction, we construct an “oracle” MLE, such that the oracle MLE
yields identical estimates for item 2 through item d. Specifically, we consider an unconstrained oracle denoted
by e✓(1) (without the box constraint), and a constrained oracle denoted by e✓(B) (with the box constraint at B),

to be defined precisely in the proof shortly. Then we derive the closed-form expressions for e✓(1) and e✓(B), which
bear resemblance to the expressions of the the unconstrained MLE and the standard MLE in the 2-item case.
Using the proof of the 2-item case, we prove that the constrained oracle e✓(B) incurs a negative bias of ⌦( 1p

dk
).

Given this result, it remains to show that e✓(B) and b✓(B) di↵er by o( 1p
dk
) in terms of bias. We decompose the

di↵erence between e✓(B) and b✓(B) into three terms: from e✓(B) to e✓(1), from e✓(1) to b✓(1), and from b✓(1) to b✓(B),
The second term is bounded by eO( 1

dk ) by modifying the upper-bound proof of Theorem 2.1(b). The first and
the third terms are bounded by carefully analyzing the e↵ect of the box constraint on the oracle MLE and the
standard MLE, respectively.
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In the proof, we fix any constant B > 0, and consider the true parameter vector:

✓⇤ =


B,�

B

d� 1
,�

B

d� 1
, . . . ,�

B

d� 1

�
. (55)

It can be verified that ✓⇤ satisfies both the box constraint at B and the centering constraint, so we have ✓⇤ 2 ⇥B .
We prove that the bias on item 1 is negative, and its magnitude is ⌦( 1p

dk
). That is, we prove that

E[b✓(B)
1 ]� ✓⇤1 = E[b✓(B)

1 ]�B  �
c
p
dk

,

for some constant c > 0. The proof consists of the following 5 steps.

Step 1: Construct oracle estimators e✓(1) (unconstrained) and e✓(B) (constrained)

Recall that µij ⇠
1
kBinom(k, µ⇤

ij) is a random variable representing the fraction of times that item i beats item
j. We define µ1 as fraction of wins by item 1, among all comparisons in which item 1 is involved:

µ1 :=
1

d� 1

dX

m=2

µ1m. (56)

We similarly define the true probability µ⇤
1 = 1

d�1

Pd
m=2 µ

⇤
1m. With the construction (55) of ✓⇤, we have

µ⇤
1 = 1

1+e
� d

d�1 B
. Now we construct the following random quantities {eµij}i 6=j as a function of {µij}i 6=j :

eµij =

8
><

>:

µ1 if i = 1, j 2 {2, . . . , d}

1� µ1 if j = 1, i 2 {2, . . . , d}
1
2 otherwise.

(57)

Recall that b✓(1)({µij}) denotes the unconstrained MLE (15). Now define an “unconstrained oracle” MLE e✓(1)

as:

e✓(1)({µij}) := b✓(1)({eµij})

= argmin
✓2⇥1

`({eµij}; ✓). (58a)

Similarly, define a “constrained oracle” MLE e✓(B) as:

e✓(B)({µij}) := b✓(B)({eµij})

= argmin
✓2⇥B

`({eµij}; ✓). (58b)

In the subsequent steps, these oracle estimators are used to reduce the general case to the 2-item case.

Step 2: Formalize the oracle information contained in the unconstrained oracle e✓(1) and the con-
strained oracle e✓(B)

Note that the construction of {eµij} in (57) is symmetric with respect to item 2 through item d, that is, for any
two items i and i0 where i, i0 2 {2, . . . , d}, we have eµij = eµi0j and eµji = eµji0 for every i 2 [d] \ {j, j0}. Therefore,
the construction of {eµij} intuitively encodes the “oracle” that item 2 through item d have identical parameters.
Formally, define the set ⇥oracle := {✓ 2 Rd

| ✓2 = · · · = ✓d}. The following lemma states that the unconstrained
oracle and the constrained oracle incorporate the set ⇥oracle into the domain of optimization without altering
their solutions.

Lemma A.11. The unconstrained oracle e✓(1) can be equivalently written as

e✓(1) = argmin
⇥1\⇥oracle

`({eµij}; ✓). (59a)

That is, a solution to (58a) exists if and only if a solution to (59a) exists. Moreover, when the solutions to (58a)
and (59a) exist, they are identical.

Similarly, the constrained oracle e✓(B) can be equivalently written as

e✓(B) = argmin
✓2⇥B\⇥oracle

`({eµij}; ✓). (59b)
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See Appendix A.4.9 for the proof of Lemma A.11.

Given Lemma A.11 combined with the centering constraint, we parameterize the unconstrained oracle e✓(1) and
the constrained oracle e✓(B) as:

e✓(1) =


e✓(1)
1 ,�

1

d� 1
e✓(1)
1 , . . . ,�

1

d� 1
e✓(1)
1

�
, (60a)

e✓(B) =


e✓(B)
1 ,�

1

d� 1
e✓(B)
1 , . . . ,�

1

d� 1
e✓(B)
1

�
. (60b)

Step 3: Show that the bias of the constrained oracle e✓(B) on item 1 is bounded by E[e✓(B)
1 ]�✓⇤1  �

cp
dk
,

by making a reduction to the 2-item case

In this step, we modify the proof of Proposition A.8 in the 2-item case to lower bound the bias of the constrained

oracle e✓(B). Specifically, we show that given ✓⇤ =
h
B,� B

d�1 , . . . ,�
B

d�1

i
, the bias on item 1 is bounded as

(cf. (48)):

E[e✓(B)
1 ]� ✓⇤  �

c
p
dk

,

for some constant c > 0.

First, we solve for the unconstrained oracle e✓(1) and the constrained oracle e✓(B) in closed form. Set m = 1
in the gradient expression (12). Plugging in the expressions for the unconstrained oracle e✓(1) (60a) and the
manipulated observations {eµij} (57), we have

@`

@✓1

����
✓=e✓(1)

= k(d� 1)

"
1

1 + e�
d

d�1
e✓(1)
1

� µ1

#
(61)

Setting the derivative (61) to 0, we have

1

1 + e�
d

d�1
e✓(1)
1

= µ1

e✓(1)
1 = �

d� 1

d
log

✓
1

µ1
� 1

◆
. (62)

Denote µd,+ = µ⇤
1 = 1

1+e
� d

d�1
B
, and µd,� = 1�µd,+ = 1

1+e
d

d�1
B
. In the notations µd,+ and µd,�, the dependency

on d is made explicit. When the dependency on d does not need to be emphasized, we also use the shorthand
notations µ+ and µ�. Now consider the constrained oracle e✓(B). By straightforward analysis, one can derive the
following closed-form expression for the constrained oracle:

e✓(B)
1 (µ1) =

8
>><

>>:

�B if 0  µ1 < µd,�

�
d�1
d log

⇣
1
µ1
� 1
⌘

if µd,� < µ1 < µd,+

B if µd,+  µ1  1.

(63)

Note the similarity between e✓(B) in (63) and the 2-item case b✓(B)
1 in (49) from Appendix A.3.1. Similar to the

function h defined in (50) of the 2-item case, we denote a function hd : [0, 1]! [�B,B] as:

hd(t) =

8
><

>:

�B if 0  t < µd,�

�
d�1
d log

�
1
t � 1

�
if µd,� < t < µd,+

B if µd,+  t  1,

where hd(t) = e✓(B)
1 (µ1 = t) for any t 2 [0, 1]. Then the estimator e✓(B)

1 (µ) can be equivalently written as hd(µ).
Similar to the function h+ defined in (51) of the 2-item case, we define an auxiliary function h+

d : [0, 1]! [�B,B]
as:

h+
d (t) =

(
2B
µd,+

(t� µd,+) +B if 0  t < µd,+

B if µd,+  t  1.

Note that in the proofs of Lemma A.9 and Lemma A.10, we have only relied on the following two facts:



Jingyan Wang, Nihar B. Shah, R. Ravi

• There exists a constant c such that

1

2
< µ+ < c < 1.

• The random variable µ is sampled as µ ⇠ 1
kBinom(k, µ+).

In the general case, it can be verified that

• There exists a constant c such that

1

2
< µd,+ < c < 1, for all d � 2.

• The random variable µ1 as defined in (57) is sampled as µ1 ⇠
1
k0Binom(k0, µ+), where k0 := (d�1)k denotes

the total number of comparisons in which item 1 is involved.

To extend the arguments in the 2-item case to the general case, we replace µ by µ1, replace µ+ by µd,+, replace
h+ by h+

d , and replace k by k0 in the proof of Proposition A.8. It can be verified that the arguments in Lemma A.9
and Lemma A.10 still hold after these replacements. Therefore, extending the arguments in Proposition A.8, we

have that at ✓⇤ =
h
B,� B

d�1 , . . . ,�
B

d�1

i
,

E[e✓(B)
1 ]� ✓⇤1  �

c
p
k0

= �
cp

(d� 1)k
 �

c0
p
dk

, (64)

for some constants c, c0 > 0.

Step 4: Bound the di↵erence between the unconstrained oracle e✓(1) and the unconstrained MLE
b✓(1), by modifying the proof of Theorem 2.1(b)

Recall that the random variable µ1 denotes the fraction of wins by item 1. In this step, we fix any real number
v 2 [ 12 , µ+], and denote Ev as the event that we observe µ1 = v. Then we prove that conditioned on the event Ev,

the di↵erence between the unconstrained oracle e✓(1) and the unconstrained MLE b✓(1) is small in expectation,
by modifying Step 1 to Step 4 in the upper-bound proof of Theorem 2.1(b) in Appendix A.2.2.

We first conceptually explain how to modify the proof of Theorem 2.1(b). Our goal is to bound the di↵erence

between e✓(1) and b✓(1) in expectation conditioned on the event Ev. By the definition of {eµij} in (57), the

quantities {eµij} are fixed (not random) conditioned on Ev, and hence the unconstrained oracle e✓(1) is fixed
conditioned on Ev. We therefore replace the role of the true parameter vector ✓⇤ in the proof of Theorem 2.1(b)

by the unconstrained oracle e✓(1). Then we think of the actual observations {µij} as a noisy version of {eµij},

and think of b✓(1) as the estimate for e✓(1). Now we modify the proof of Theorem 2.1(b) to bound the expected

di↵erence between b✓(1) and e✓(1) conditioned on Ev. At the end of this step, we provide more intuition why we
need to condition on the event Ev.

Formally, we denote {eµv
ij} as the values of {eµij} conditional on Ev. We denote e✓v as the unconstrained oracle

e✓(1) conditional on Ev. It can be verified that {eµv
ij} and e✓v are fixed (not random) given any v 2 [ 12 , µ+].

Conditioned on Ev, we think of e✓v as if it is the “true” parameter vector to be estimated (replacing the role of
✓⇤), and think of {eµv

ij} as if it is the “true” underlying probabilities (replacing the role of {µ⇤
ij}).

Given the definition of {eµij} in (57), we have that conditioned on event Ev,

eµv
ij =

8
><

>:

v if i = 1, j 2 {2, . . . , d}

1� v if j = 1, i 2 {2, . . . , d}
1
2 otherwise.

(65)

From the expression (62) of the unconstrained oracle e✓(1), it can be verified that e✓(1) satisfies the deterministic
equality

1

1 + e
�
⇣
e✓(1)
i �e✓(1)

j

⌘ = eµij , for all i 6= j. (66)
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Now we start to replicate Step 1 to Step 4 in the proof of Theorem 2.1(b) presented in Appendix A.2.2.

To replicate Step 1 of Theorem 2.1(b), recall that in the proof of Theorem 2.1(b), we condition on Lemma A.3
and Lemma A.4. We first establish the modified versions of these two lemmas, when conditioned on Ev.

Lemma A.12 (Conditional version of Lemma A.3). Conditioned on the event Ev, there exists a finite solution
b✓(1) to the unconstrained MLE (15) w.h.p.( 1

dk | Ev).

See Appendix A.4.10 for the proof of Lemma A.12.

Lemma A.13 (Conditional version of Lemma A.4). Conditioned on the event Ev, there exists a constant c > 0,
such that

������

X

i 6=m

µmi �

X

i 6=m

eµv
mi

������
 c

r
d(log d+ log k)

k
, (67)

simultaneously for all m 2 [d] w.h.p.( 1
dk | Ev).

See Appendix A.4.11 for the proof of Lemma A.13.

Recall that we have conditioned on the event Ev. Denote E0 as the event that Lemma A.12 and Lemma A.13
both hold. (Note that the event E0 is defined for some fixed v, so to be precise, the event E0 should be denoted
as E0,v. For ease of notation, we drop the subscript v.) Taking a union bound of Lemma A.12 and Lemma A.13,
we have that E0 happens w.h.p.( 1

dk | Ev). For the rest of the proof, we condition on the events (E0, Ev).

To replicate Step 2 of Theorem 2.1(b), we subtract equality (66) from both sides of (32). We obtain the
(unconditional) deterministic equality:

dX

i=1

✓
1

1 + e�(b✓(1)
m �b✓(1)

i )
�

1

1 + e�(e✓(1)
m �e✓(1)

i )

◆
=
X

i 6=m

(µmi � eµmi), for every m 2 [d]. (68)

Conditioning (68) on (E0, Ev), we have the following deterministic equality, as a modified version of (33):

dX

i=1

✓
1

1 + e�(b✓(1)
m �b✓(1)

i )
�

1

1 + e�(e✓v
m�e✓v

i )

◆
=
X

i 6=m

(µmi � eµv
mi), conditioned on (E0, Ev). (69)

To replicate Step 3 of Theorem 2.1(b), note that v is bounded as v 2 [ 12 , µ+]. By the expression (62) of e✓(1)

(and hence of e✓v), it can be verified that e✓v is bounded as |e✓v|  c for some constant c. Denote e� = b✓(1)
� e✓v.

Using the same arguments as in Lemma A.5, we have the deterministic relation that

kb✓(1)
� e✓vk1 = ke�k1 .

r
log d+ log k

dk
, conditioned on (E0, Ev). (70)

To replicate Step 4 of Theorem 2.1(b), we first apply the second-order mean value theorem on (69), and then
take an expectation conditional on (E0, Ev). The following equation establishes a modified version of (37):

dX

i=1

f 0(e✓vm � e✓vi ) · E
h
e�i � e�m | E0, Ev

i
=

X

i 6=m

(E[µmi |E0, Ev]� eµv
mi)�

1

2

dX

i=1

E[f 00(�mi)(e�m � e�i)2 | E0, Ev], (71)

where each �mi is a random variable that takes values between e✓vm � e✓vi and e✓vm � e✓vi + e�m � e�i. To apply
Lemma A.6, we set E as Ev, and set E0 as E0 in (39):

|E[µij | E0, Ev]� E[µij | Ev]| .
1

dk
. (72)
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It can be verified that

E[µij | Ev] = eµv
ij . (73)

Plugging (73) into (72), we have

|E[µij | E0, Ev]� eµv
ij | .

1

dk
.

Using the same arguments as in Lemma A.7 to handle the remaining terms in (71), we have the following upper
bound as a modified version of (41):

kE[b✓(1)
� e✓v | E0, Ev]k1 = kE[b✓(1)

� e✓(1)
| E0, Ev]k1 . log d+ log k

dk
. (74)

Now that we have established the desired result (74) of this step, we conclude this step with some intuition why
we need to condition on Ev. Without conditioning on Ev, we could still have utilized the proof of Theorem 2.1(b),
and could have established a result of the form (cf. (74)):

kE[b✓(1)
� e✓v | E0]k1 = kE[b✓(1)

� e✓(1)
| E0]k1 . log d+ log k

dk
. (75)

Our goal here is to bound the constrained oracle b✓(B) and the constrained MLE e✓(B) in expectation. However, the
fact that two unconstrained estimators are close in expectation does not imply that their constrained counterparts
are close in expectation4. Therefore, a bound of the form (75) is not su�cient for our goal, and instead we need

to establish some “pointwise” control between b✓(1) and e✓(1). That is, whenever the box constraint has little
e↵ect on e✓(1), we want to show that the box constraint also has little e↵ect on b✓(1). Thus, we condition on the
event Ev for any v 2 [ 12 , µ+], and bound the di↵erence between b✓(1) and e✓(1) in expectation conditioned on Ev

(that is, the bound in (74)). Given this pointwise result, we then integrate over v to establish the desired result

that b✓(B) and e✓(B) are close in expectation, to be presented in the subsequent step of the proof.

Step 5: Bound the expected di↵erence between b✓(B) and e✓(B), by making a connection between
b✓(B)
� e✓(B) and b✓(1)

� e✓(1)

We decompose the bias of the standard MLE b✓(B) as

E[b✓(B)
1 ]� ✓⇤1 = (E[e✓(B)

1 ]� ✓⇤1) + E[b✓(B)
1 � e✓(B)

1 ]. (76)

Recall from (64) that

E[e✓(B)
1 ]� ✓⇤1  �

c
p
dk

. (77)

In what follows, we prove that

E[b✓(B)
1 � e✓(B)

1 ]  c0
log d+ log k

dk
. (78)

Then plugging (77) and (78) back into (76) yields

E[b✓(B)
1 ]� ✓⇤1  �

c
p
dk

+ c0
log d+ log k

dk
 �

c00
p
dk

,

4 For example, consider the following two univariate estimators. The first estimator always outputs a value within
[�B,B]. The second estimator sometimes outputs a value within [�B,B], and sometimes outputs a value greater than
B. The two estimators could be constructed such that they are close (or equal) in expectation. However, now consider
their constrained counterparts. The first estimator is not a↵ected by a box constraint at B, whereas the expected value
of second estimator can become significantly smaller due to the box constraint. Therefore, the constrained counterparts
of these two estimators may not be close in expectation.
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for all d � d0 and k � k0 where d0 and k0 are constants, completing the proof of Theorem 2.1(a).

The rest of this step is devoted to proving (78). To bound E[b✓(B)
1 � e✓(B)

1 ], we make a connection between
b✓(B)
1 � e✓(B)

1 and e✓(1)
1 � b✓(1)

1 , and then we evoke the bound on e✓(1)
1 � b✓(1)

1 from (74) in Step 4.

Recall that µ1 is a discrete random variable representing the fraction of wins by item 1. By the law of iterated
expectation, we have

E[b✓(B)
1 � e✓(B)

1 ] =E

b✓(B)
1 � e✓(B)

1 |
1

2
< µ1 < µ⇤

1

�
· P
✓
1

2
< µ1 < µ⇤

1

◆

| {z }
R1

+ E[b✓(B)
1 � e✓(B)

1 | µ1 � µ⇤
1] · P (µ1 � µ⇤

1)| {z }
R2

+E

b✓(B)
1 � e✓(B)

1 | µ1 <
1

2

�
· P
✓
µ1 <

1

2

◆

| {z }
R3

. (79)

In what follows, we bound the terms R1, R2 and R3 separately.

Consider the term R2. From the expression of e✓(B) in (63), we have e✓(B)
1 = B when µ1 � µ⇤

1. Therefore,

E[b✓(B)
1 � e✓(B)

1 | µ1 � µ⇤
1] = E[b✓(B)

1 | µ1 � µ⇤
1]�B

(i)
 0,

where (i) is true due to the box constraint |b✓(B)
1 |  B. Hence,

R2  0. (80)

Consider the term R3, we have E[µ1] = µ⇤
1 = 1

1+e
� d

d�1
B
, and therefore it can be verified that there exists a

constant ⌧ > 0, such that µ⇤
1 > 1

2 + ⌧ for all d � 2. By Hoe↵ding’s inequality, we have

P
✓
µ1 <

1

2

◆
< P (|µ1 � µ⇤

1| > ⌧)

 2 exp
�
�2(d� 1)k⌧2

�
. 1

dk
. (81)

Therefore, we have

R3 = E

b✓(B)
1 � e✓(B)

1 | µ1 <
1

2

�
· P
✓
µ1 <

1

2

◆

(i)
 2B · P

✓
µ1 <

1

2

◆

(ii)

. 1

dk
, (82)

where (i) is true because |b✓(B)
1 � e✓(B)

1 |  |b✓(B)
1 | + |e✓(B)

1 |  2B by the box constraint, and (ii) is true due to (81).

Now consider the term R1. Denote E0 as the complement of the event E0. Using the law of iterated expectation
again, we have

R1 = E

b✓(B)
1 � e✓(B)

1 |
1

2
< µ1 < µ⇤

1

�
· P
✓
1

2
< µ1 < µ⇤

1

◆
=

E

b✓(B)
1 � e✓(B)

1 | E0,
1

2
< µ1 < µ⇤

1

�
· P
✓
E0,

1

2
< µ1 < µ⇤

1

◆

| {z }
R11

+E

b✓(B)
1 � e✓(B)

1 | E0,
1

2
< µ1 < µ⇤

1

�
· P
✓
E0,

1

2
< µ1 < µ⇤

1

◆

| {z }
R12

(83)
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Consider the term R12. We have

P
✓
E0,

1

2
< µ1 < µ⇤

1

◆
=

X

v2( 1
2 ,µ

⇤
1)

P(E0 | Ev) · P(Ev)

(i)


c

dk

X

v2( 1
2 ,µ

⇤
1)

P(Ev)

. 1

dk
, (84)

where (i) is true because E0 happens w.h.p.( 1
dk | Ev). Combining (84) with the fact that |b✓(B)

1 � e✓(B)
1 |  2B due

to the box constraint, we have

R12 . 1

dk
. (85)

Now consider the term R11. We first analyze the constrained oracle e✓(B). By the expression of e✓(B) in (63) and

the expression of e✓(1) in (62), we have

e✓(B) = e✓(1), conditioned on
1

2
< µ1 < µ⇤

1. (86)

Moreover, given 1
2 < µ1 < µ⇤

1, by the expression of e✓(B) in (63), we have

0 < e✓(B)
1 < B

and therefore by the parameterization of e✓(B) in (60b),

|e✓(B)
i | 

1

d� 1
B for every i 2 {2, . . . , d}.

Hence, there exists a constant ⌧ 0 > 0 such that

e✓(B)
1 > �B + ⌧ 0 (88a)

and

�B + ⌧ 0 < e✓(B)
i < B � ⌧ 0 for every i 2 {2, . . . , d}. (88b)

Now we analyze the standard MLE b✓(B). Recall that Ev denotes the event that µ1 = v. We have that for every
v 2

�
1
2 , µ

⇤
1

�
,

kb✓(1)
1 � e✓(B)

1 k1
(i)
= kb✓(1)

1 � e✓(1)
k1

(ii)

.
r

log d+ log k

dk
, conditioned on (E0, Ev), (89)

where (i) is true by (86), and (ii) is true by (70) from Step 4. By (89), we have that for every v 2
�
1
2 , µ

⇤
1

�
,

kb✓(1)
1 � e✓(B)

1 k1  ⌧ 0, conditioned on (E0, Ev), (90)

for all d � d0 and all k � k0, where d0 and k0 are constants. Combining (90) with (88), if the unconstrained

MLE b✓(1) violates the box constraint, then only possible case is b✓(1)
1 > B. Then either b✓(1)

1 = b✓(B)
1 (when b✓(1)

does not violate the box constraint) or b✓(1)
1 > B � b✓(B)

1 (when b✓(1) violates the box constraint). Hence, for
every v 2 ( 12 , µ

⇤
1),

b✓(1)
1 � b✓(B)

1 , conditioned on (E0, Ev). (91)
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Combining (86) and (91), we have that for every v 2 ( 12 , µ
⇤
1),

b✓(B)
� e✓(B)

 b✓(1)
� e✓(1), conditioned on (E0, Ev). (92)

By the law of iterated expectation again, we have

R11 =
X

v2( 1
2 ,µ

⇤
1)

E[b✓(B)
1 � e✓(B)

1 | E0, µ1 = v] · P(E0, µ1 = v)

=
X

v2( 1
2 ,µ

⇤
1)

E[b✓(B)
1 � e✓(B)

1 | E0, Ev] · P(E0, Ev)

(i)


X

v2( 1
2 ,µ

⇤
1)

E[b✓(1)
1 � e✓(1)

1 | E0, Ev] · P(E0, Ev)

(ii)

. log d+ log k

dk

X

v2( 1
2 ,µ

⇤
1)

P(E0, Ev)

. log d+ log k

dk
, (93)

where (i) is true due to (92), and (ii) is true due to the bound (74) from Step 4.

Plugging the term R11 from (93) and R12 from (85) back to (83), we have

R1 = R11 +R12 . log d+ log k

dk
. (94)

Finally, plugging the terms R1 from (94), R2 from (80), and R3 from (82) back into (79) yields

E[b✓(B)
1 � e✓(B)

1 ] . log d+ log k

dk
,

completing the proof of (78).

A.4 Proofs of Lemmas

In this appendix, we present the proofs of all the lemmas.

A.4.1 Proof of Lemma A.2

We fix any constant A > 0.

The stretched-MLE (16) is an optimization over the compact set ⇥A, and the negative log-likelihood function

` is continuous. By the Extreme Value Theorem (Rudin, 1976, Theorem 4.16), a solution b✓(A) is guaranteed to
exist.

It remains to prove the uniqueness of b✓(A). Assume for contradiction that there exist two solutions b✓, b✓0 2 ⇥A

to the stretched-MLE (16) and b✓ 6= b✓0. By Lemma A.1, the negative log-likelihood function ` is strictly convex.
Therefore,

1

2

⇣
`(b✓) + `(b✓0)

⌘
> `

 
b✓ + b✓0

2

!
. (95)

It can be verified that
b✓+b✓0

2 2 ⇥A. Moreover, (95) along with the fact that `(b✓) = `(b✓0) implies that
b✓+b✓0

2 attains

a strictly smaller function value than both b✓ and b✓0. This contradicts the assumption that b✓ and b✓0 are both
optimal solutions to the stretched-MLE (16).
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A.4.2 Proof of Lemma A.3

We first define a “comparison graph” G({Wij}) as a function of the pairwise-comparison outcomes {Wij}. Let
each item i 2 [d] be a node of the graph. Let there be a directed edge (i! j) 2 G, if and only if there exists a
comparison where item i beats item j. A directed graph is called strongly-connected if and only if there exists
a path from every node i to every other node j.

The following lemma from Ford (1957) relates the existence and uniqueness of a finite unconstrained MLE b✓(1)

to the strong connectivity of the comparison graph G. This lemma is based on a di↵erent parameterization of
the BTL model. In this parameterization, each item has a weight w⇤

i > 0, and the probability that item i beats

item j equals w⇤
i

w⇤
i +w⇤

j
.

Lemma A.14 (Section 2 from Ford (1957)). If the comparison graph G({Wij}) is strongly-connected, then there
exists a unique solution to the following MLE:

bwMLE = argmin
w2Rd

wi>0,
Pd

i=1 wi=1

`w({Wij};w),

where the negative log-likelihood function `w is defined as

`w(w) = �
X

1i<jd

✓
Wij log

✓
wi

wi + wj

◆
+Wji log

✓
wj

wi + wj

◆◆
.

It can be seen that ✓ and w are simply di↵erent parameterizations of the same problem. There is a one-to-one
mapping between ✓ and w, by taking ✓i = log(wi) and re-centering accordingly (or in the inverse direction, by
taking wi = e✓i and normalizing accordingly). Therefore, the existence and the uniqueness of the MLE bwMLE

in Lemma A.3 carries over to our unconstrained MLE b✓(1) in (15). That is, if the comparison graph G is

strongly-connected, then there exists a unique solution b✓(1) to the unconstrained MLE. It remains to show that
the comparison graph G is strongly-connected w.h.p.( 1

dk ).

We first construct an undirected graph G0({Wij}) as follows. Let each item i 2 [d] be a node of the graph G0.
Let there be an undirected edge (i, j) 2 G0, if and only if in the directed graph G we have both (i ! j) 2 G
and (j ! i) 2 G. Equivalently, there exists an undirected edge (i, j) 2 G0, if and only if 0 < µij < 1. It can be
verified that the connectivity of the undirected graph G0 implies the strong connectivity of the directed graph
G. Therefore,

P(G strongly-connected) � P(G0 connected). (96)

The probability that (i, j) 2 G0 is P(0 < µij < 1). By Hoe↵ding’s inequality, we have that for any t > 0,

P(|µij � µ⇤
ij | > t) < 2e�kt2 , for all 1  i < j  d.

We have 0 < 1
1+e2B  µ⇤

ij 
1

1+e�2B < 1, for any i < j. Since B is a constant, we have that µ⇤
ij is bounded

away from 0 and 1 by a constant. Set t = ⌧ where ⌧ is any constant such that 0 < ⌧ < 1
1+e2B . Then for all

1  i < j  d, we have

P(0 < µij < 1) > P(µ⇤
ij � ⌧ < µij < µ⇤

ij + ⌧)

� 1� P(|µij � µ⇤
ij | > ⌧)

> 1� 2e�ck,

for some constant c > 0 .

Recall that the random variables {µij} are independent across all 1  i < j  d. Hence, the probability of the
undirected graph G0 being connected is at least the probability of an (undirected) Erdős-Rényi random graph
being connected, where each edge independently exists with probability 1� 2e�ck.

The following lemma from Gilbert (1959) provides an upper bound on the probability of an (undirected) Erdős-
Rényi random graph being disconnected (and hence a lower bound on the probability of the graph being con-
nected).
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Lemma A.15 (Theorem 1 from Gilbert (1959)). For an (undirected) Erdős-Rényi graph of d nodes, where each
edge independently exists with probability p. Let q := 1� p. Then the probability of the graph being disconnected
is at most

✓
1�

d� 1

2
qd�1

◆
dqd�1.

To apply Lemma A.15, we set p = 1� 2e�ck and therefore q = 2e�ck. Then we have

P[G0 disconnected] 

✓
1�

d� 1

2
qd�1

◆
dqd�1

 dqd�1

= de�ck(d�1)


c0

dk
, for some constant c0 > 0. (97)

Combining (96) and (97) completes the proof of the lemma.

A.4.3 Proof of Lemma A.4

We first consider any fixed m 2 [d]. By the definition of {µij} in (10), we have

X

i 6=m

µmi =
1

k

X

i 6=m

kX

r=1

X(r)
mi . (98)

There are (d � 1)k terms of the form X(r)
mi in (98). It can be verified that the terms X(r)

mi involved in (98) are

independent. Moreover, since X(r)
mi 2 {0, 1}, changing the value of a single term X(r)

mi changes the value of (98)
by 1

k . By McDiarmid’s inequality, we have that for any t > 0,

P

2

4

������

X

i 6=m

µmi �

X

i 6=m

µ⇤
mi

������
> t

3

5  2 exp

✓
�

2t2

(d� 1)k · ( 1k )
2

◆
= 2 exp

✓
�

2kt2

(d� 1)

◆
. (99)

Setting t = c
q

d(log d+log k)
k in (99), we have

P

2

4

������

X

i 6=m

µmi �

X

i 6=m

µ⇤
mi

������
 c

r
d(log d+ log k)

k

3

5 � 1� 2 exp

✓
�c0

d

d� 1
(log d+ log k)

◆

� 1�
c00

d2k
, (100)

for some constants c0, c00 > 0, provided that the constant c > 0 is su�ciently large.

Taking a union bound over m 2 [d] on (100) completes the proof.

A.4.4 Proof of Lemma A.5

Denote the random variables m+ := argmaxi2[d] �i and m� := argmini2[d] �i. When there are multiple maximiz-
ers or minimizers, we arbitrarily choose one.

Setting m = m+ in the first-order optimality condition (35), we have

dX

i=1

[f(✓⇤m+ � ✓⇤i + �m+ � �i)� f(✓⇤m+ � ✓⇤i )]

| {z }
R+

=
X

i 6=m+

(µmi � µ⇤
mi)

(i)

.
r

d(log d+ log k)

k
, (101)
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where (i) is true by Lemma A.4 (recall that the lemma statement is conditioned on the event E0 that both
Lemma A.3 and Lemma A.4 hold).

Denote the function g(x, t) := f(x+ t)� f(x) = 1
1+e�(x+t) �

1
1+e�x . The following lemma states three properties

for the function g, which are used in later parts of the proof.

Lemma A.16. We have the following properties for the function g.

g(x, t) = �g(�x,�t), for all x, t 2 R (102a)

g(x, t) � g(⌧, t) > 0, for all ⌧ > 0, t > 0, and all x such that � ⌧  x  ⌧ (102b)

g(⌧, t1) + g(⌧, t2) � g(⌧, t1 + t2), for all ⌧ > 0, and all t1, t2 � 0. (102c)

Lemma A.16 can be verified by straightforward algebra. For completeness, we include the proof of Lemma A.16
at the end of this appendix.

By the definition of m+, we have �m+ = maxi2[d] �i, and therefore �m+ � �i � 0 for all i 2 [d]. Hence, we have

R+ =
dX

i=1

f(✓⇤m+ � ✓⇤i + �m+ � �i)� f(✓⇤m+ � ✓⇤i )

=
dX

i=1

g(✓⇤m+ � ✓⇤i , �m+ � �i)

(i)
�

dX

i=1

g(2B, �m+ � �i), (103)

where (i) is true by (102b) combined with the fact that |✓⇤i � ✓⇤j |  |✓⇤i | + |✓⇤j |  2B for all i, j 2 [d].

Similarly, setting m = m� in the first-order optimality condition (35), we have

dX

i=1

[f(✓⇤m� � ✓⇤i + �m� � �i)� f(✓⇤m� � ✓⇤i )]

| {z }
R�

.
r

d(log d+ log k)

k
. (104)

By the definition of m�, we have �m� = mini2[d] �i, and therefore �i � �m� � 0 for all i 2 [d]. Hence, we have

R� =
dX

i=1

f(✓⇤m� � ✓⇤i + �m� � �i)� f(✓⇤m� � ✓⇤i )

=
dX

i=1

g(✓⇤m� � ✓⇤i , �m� � �i)

(i)
=

dX

i=1

�g(✓⇤i � ✓⇤m� , �i � �m�)

(ii)


dX

i=1

�g(2B, �i � �m�), (105)

where (i) is true by (102a), and (ii) is true by (102b) combined with the fact that |✓⇤i � ✓⇤j |  2B for all i, j 2 [d].

Combining (103) and (105), we have

R+
�R�

�

dX

i=1

g(2B, �m+ � �i) +
dX

i=1

g(2B, �i � �m�)

(i)
�

dX

i=1

g(2B, �m+ � �m�)

= d · g(2B, �m+ � �m�)
(ii)
� 0, (106)
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where (i) is true due to (102c) since �m+ � �i � 0 and �i � �m� � 0 for all i 2 [d], and (ii) is true since
�m+ � �m� � 0. On the other hand, combining (101) and (104), we have

R+
�R� .

r
d(log d+ log k)

k
. (107)

Combining (106) and (107), we have

0  d · g(2B, �m+ � �m�)  R+
�R+ .

r
d(log d+ log k)

k

g(2B, �m+ � �m�) .
r

log d+ log k

dk

f(2B + �m+ � �m�)� f(2B) .
r

log d+ log k

dk
. (108)

By the first-order mean value theorem on the LHS of (108), we have

f(2B + �m+ � �m�)� f(2B) = f 0(�) · (�m+ � �m�)  c

r
log d+ log k

dk
, (109)

where � is a random variable that takes values in the interval [2B, 2B + �m+ � �m� ].

Let ✏ be any constant such that 0 < ✏ < 1� f(2B). Then there exists a constant ⌧ > 0 such that f(2B + ⌧)�
f(2B) = ✏. On the other hand, there exist constants d0 > 0 and k0 > 0 such that

c

r
log d+ log k

dk
< ✏, for any d � d0 and k � k0. (110)

Combining (109) and (110), we have

f(2B + �m+ � �m�)� f(2B)  c

r
log d+ log k

dk
< ✏ = f(2B + ⌧)� f(2B)

f(2B + �m+ � �m�)  f(2B + ⌧). (111)

By (13a), we have f 0 > 0 on (�1,1), and hence the function f is monotonically increasing. Hence, from (111),
we have �m+��m�  ⌧ , and therefore the interval [2B, 2B+�m+��m� ] is bounded. By the property (13a) of the
sigmoid function f , we have f 0 > c3 > 0 for some constant c3 > 0 in the bounded interval [2B, 2B+ �m+ � �m� ].
Recall that � takes values in the interval [2B, 2B + �m+ � �m� ]. Therefore, we have

c3(�m+ � �m�) < f 0(�) · (�m+ � �m�). (112)

Combining (109) and (112), we have

c3(�m+ � �m�) < f 0(�) · (�m+ � �m�)  c

r
log d+ log k

dk

�m+ � �m� .
r

log d+ log k

dk
. (113)

By the assumption that ✓⇤ 2 ⇥B , we have
Pd

i=1 ✓
⇤
i = 0. Similarly, by the centering constraint on the uncon-

strained MLE b✓(1) in (15), we have
Pd

i=1
b✓(1)
i = 0. Hence, we have the deterministic relation

dX

i=1

b✓(1)
i �

dX

i=1

✓⇤i =
dX

i=1

�i = 0. (114)

Hence, �m+ � 0 and �m�  0. By (113), we have

�m+ � �m� = |�m+ | + |�m� | .
r

log d+ log k

dk
.
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Hence, |�m+ | .
q

log d+log k
dk and |�m� | .

q
log d+log k

dk . Therefore,

|�m| .
r

log d+ log k

dk
, for all m 2 [d],

completing the proof of the lemma.

Proof of Lemma A.16: We prove the three parts of the lemma separately.

(a) It can be verified that f(x) = 1� f(�x). Hence,

g(x, t) = f(x+ t)� f(x) = [1� f(�x� t)]� [1� f(�x)]

= �[f(�x� t)� f(�x)] = �g(�x,�t).

(b) We prove the two parts of the inequality separately.

We first prove that g(⌧, t) > 0. By (13a), the function f is strictly increasing. Therefore, for any t > 0, we have

g(⌧, t) = f(⌧ + t)� f(⌧) > 0.

Now we prove that g(x, t) � g(⌧, t). We have

g(x, t)� g(⌧, t) = f(x+ t)� f(x)� [f(⌧ + t)� f(⌧)]

=

Z x+t

x
f 0(u) du�

Z ⌧+t

⌧
f 0(u) du

=

Z t

0
f 0(x+ u) du�

Z t

0
f 0(⌧ + u) du

=

Z t

0
[f 0(x+ u)� f 0(⌧ + u)] du. (115)

By (115), it remains to prove that

f 0(x+ u) � f 0(⌧ + u), for any u 2 [0, t]. (116)

Fix any u 2 [0, t]. By assumption we have ⌧ > 0. Hence, ⌧ + u > 0. Now we consider the sign of (x+ u).

If x + u � 0, then by the assumption that x  ⌧ , we have 0  x + u  ⌧ + u. It can be verified that f 0 is
decreasing on [0,1). Therefore,

f 0(x+ u) � f 0(⌧ + u). (117)

If x+ u < 0, we have

0 < �x� u
(i)
 ⌧ � u

(ii)
 ⌧ + u, (118)

where (i) is true by the assumption that x � �⌧ , and (ii) is true because u 2 [0, t] and therefore u � 0. We have

f 0(x+ u)
(i)
= f 0(�x� u)

(ii)
� f 0(⌧ + u), (119)

where (i) holds because it can be verified that f 0(x) = f 0(�x) for any x 2 R, and (ii) is true by combining (118)
with the fact that f 0 is decreasing on [0,1).

Combining the two cases of (117) and (119) completes the proof of (116).



Stretching the E↵ectiveness of MLE from Accuracy to Bias for Pairwise Comparisons

(c) We have

g(⌧, t1) + g(⌧, t2) = f(⌧ + t1)� f(⌧) + f(⌧ + t2)� f(⌧)

=

Z ⌧+t1

⌧
f 0(u) du+

Z ⌧+t2

⌧
f 0(u) du

(i)
�

Z ⌧+t1

⌧
f 0(u) du+

Z ⌧+t1+t2

⌧+t1

f 0(u) du

=

Z ⌧+t1+t2

⌧
f 0(u) du

= f(⌧ + t1 + t2)� f(⌧) = g(⌧, t1 + t2),

where (i) is true because f 0 is decreasing on (0,1), and because ⌧ > 0 and t1, t2 � 0 by assumption.

A.4.5 Proof of Lemma A.6

We fix any i, j 2 [d] where i 6= j. By the law of iterated expectation, we have

E[µij | E] = E[µij | E0, E] · P(E0
| E) + E[µij | E

0
, E] · P(E0

| E). (120)

Subtracting E[µij | E0, E] from both sides of (120), we have

E[µij | E]� E[µij | E0, E] = E[µij | E0, E] · [P(E0
| E)� 1] + E[µij | E

0
, E] · P(E0

| E)

= (�E[µij | E0, E] + E[µij | E
0
, E]) · P(E0

| E). (121)

Taking an absolute value on (121), we have

|E[µij | E]� E[µij | E0, E]| =
����E[µij | E0, E] + E[µij | E

0
, E]
��� · P(E0

| E)

(i)

. 1

dk
,

where (i) is true due to the deterministic inequality 0  µij  1 and the fact that event E0 happens w.h.p.( 1
dk | E).

A.4.6 Proof of Lemma A.7

Denote m+ := argmaxi2[d] �i and m� := argmini2[d] �i. When there are multiple maximizers or minimizers,
we arbitrarily choose one. The proof works similarly in spirit to the proof of Lemma A.5. We first show that
�m+ � �m� satisfies the desired upper bound. Then we show that �m+ and �m� have di↵erent signs, and
therefore the desired upper bound holds on |�m| uniformly across all m 2 [d].

Recall from (38) that for every m 2 [d],

dX

i=1

f 0(✓⇤m � ✓⇤i ) · (�m ��i) =
X

i 6=m

(E[µmi | E0]� µ⇤
mi)

| {z }
R1

�
1

2

dX

i=1

E[f 00(�mi)(�m � �i)
2

| E0]

| {z }
R2

, (122)

where �mi is a random variable that takes values between ✓⇤m � ✓⇤i and ✓⇤m � ✓⇤i + (�m � �i).

We consider the two terms on the RHS of (38) separately. For the term R1, recall from (40) that

|E[µmi | E0]� µ⇤
mi| .

1

dk
.

Therefore,

|R1| . (d� 1) ·
1

dk
. 1

k
. (123)
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Now consider the term R2. Recall that ✓⇤ 2 ⇥B . Therefore, for every m 2 [d], we have |✓⇤m|  B. Recall from
Lemma A.5 that for every m 2 [d], we have

|�m| .
r

log d+ log k

dk
, conditioned on E0. (124)

Let c > 0 be any constant. By (124), we have |�m|  c, for all d � d0 and k � k0, where d0 and k0 are constants
which may only depend on c. Hence, conditioned on E0, the interval between ✓⇤m � ✓⇤i and ✓⇤m � ✓⇤i + (�m � �i)
is contained in the interval [�2B � 2c, 2B + 2c]. By the property (13b) of the sigmoid function f , we have

|f 00
| < c5, on the bounded interval [�2B � 2c, 2B + 2c].

Therefore,

��E
⇥
f 00(�mi) · (�m � �i)

2
| E0

⇤��  c5 · E[(�m � �i)
2

| E0]
(i)

. log d+ log k

dk
, for all i,m 2 [d],

where (i) is again by (124). Therefore,

|R2| . d ·
log d+ log k

dk
=

log d+ log k

k
. (125)

Taking an absolute value on (122) and using the triangle inequality, we have

�����

dX

i=1

f 0(✓⇤m � ✓⇤i ) · (�m ��i)

�����  |R1| + |R2|

(i)

. log d+ log k

k
, (126)

where (i) is true by combining the term R1 from (123) and the term R2 from (125). Taking m = m+ in (126),
we have

dX

i=1

f 0(✓⇤m+ � ✓⇤i ) · (�m+ ��i)  c
log d+ log k

k
. (127)

Taking m = m� in (126), we have

dX

i=1

f 0(✓⇤m� � ✓⇤i ) · (�m� ��i) � �c
log d+ log k

k

and hence

dX

i=1

f 0(✓⇤m� � ✓⇤i ) · (�i ��m�)  c
log d+ log k

k
. (128)

Adding (127) and (128), we have

dX

i=1

f 0(✓⇤m+ � ✓⇤i ) · (�m+ ��i) +
dX

i=1

f 0(✓⇤m� � ✓⇤i ) · (�i ��m�)

| {z }
R

 c
log d+ log k

k
. (129)

Consider the term R. We have |✓⇤m � ✓⇤i |  2B for all i,m 2 [d]. By the property (13a) of the sigmoid function,
there exists some constant c3, such that

f 0(✓⇤m � ✓⇤i ) > c3 > 0, for all i,m 2 [d]. (130)
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By the definition of m+ and m�, we have �m+ ��i � 0 and �i ��m� � 0 for every i 2 [d]. Plugging (130)
into (129), combined with the fact that �m+ ��i � 0 and �i ��m� � 0, we have

c3

"
dX

i=1

(�m+ ��i) +
dX

i=1

(�i ��m�)

#
 R  c

log d+ log k

k

c3d · (�m+ ��m�)  c
log d+ log k

k

�m+ ��m� . log d+ log k

dk
. (131)

By (114) in the proof of Lemma A.5, we have the deterministic relation

dX

i=1

�i = 0. (132)

Taking an expectation over (132) conditional on E0, we have

dX

i=1

�i = 0.

Hence, �m+ � 0 and �m�  0. By (131), we have

�m+ ��m� = |�m+ | + |�m� | . log d+ log k

dk
.

Hence, |�m+ | . log d+log k
dk and |�m� | . log d+log k

dk . Therefore,

|�m| . log d+ log k

dk
, for all m 2 [d].

A.4.7 Proof of Lemma A.9

To compare the functions h and h+, we introduce an auxiliary function h0 : [0, 1]! [�B,B]:

h0(t) =

8
><

>:

�B if 0  t  µ�
B

µ+� 1
2
(t� 1

2 ) if µ� < t < µ+

B if µ+  t  1.

In words, the function h0 is piecewise linear. On the interval [0, µ�], its value equals the constant �B. On the
interval [µ�, µ+], it is a line passing through the points (µ�,�B) and (µ+, B). On the interval [µ+, 1], its value
equals the constant B. See Fig. 7 for a comparison of the three functions h, h+ and h0.

It can be verified that h+(t) � h0(t) for any t 2 [0, 1]. Hence,

E[h+(µ)] � E[h0(µ)]. (133)

Recall that our goal is to prove (52):

E[h(µ)]  E[h+(µ)].

Given (133), it su�ces to prove that

E[h(µ)]  E[h0(µ)]. (134)

The rest of the proof is devoted to proving (134).
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µ� 0.5 µ+ 1

B

0

�B

h

h+

h0

Figure 7: The functions h, h+ and h0.

It can be verified that h and h0 are anti-symmetric around 1
2 . That is, for any t 2 [0, 1], we have

h(t) = �h(1� t) (135a)

h0(t) = �h0(1� t). (135b)

In particular, we have

h

✓
1

2

◆
= h0

✓
1

2

◆
= 0. (136)

It can also be verified that

h(t) � h0(t), for all t 2


0,

1

2

�
. (137)

Recall the notation ofW = kµ representing the number of times that item 1 beats item 2 among the k comparisons
between them. We have W ⇠ Binom(k, µ+). Therefore,

E[h(µ)]� E [h0(µ)] = EW


h

✓
W

k

◆�
� EW


h0

✓
W

k

◆�

=
kX

w=0

h
h
⇣w
k

⌘
� h0

⇣w
k

⌘i
· P(W = w)

(i)
=

0

B@
b k

2 cX

w=0

+
kX

w=d k
2 e

1

CA
h
(h� h0)

⇣w
k

⌘i
· P(W = w)

(ii)
=

b k
2 cX

w=0

h
(h� h0)

⇣w
k

⌘
· P(W = w) + (h� h0)

⇣
1�

w

k

⌘
· P(W = k � w)

i

(iii)
=

b k
2 cX

w=0

(h� h0)
⇣w
k

⌘
· [P(W = w)� P(W = k � w)], (138)

where (i) is true by (136). Specifically, when k is even, we double-count the term of w = k
2 . This term equals

(h�h0)(
1
2 ) = 0, so double-counting this term does not a↵ect the equality. Moreover, step (ii) is true by a change

of variable w  k�w in the second summation, and step (iii) is true by the anti-symmetry (135) of the functions
h and h+.

Now consider the terms in the summation (138). By (137), we have

(h� h0)
⇣w
k

⌘
� 0, for all 0  w 

�
k

2

⌫
. (139)
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Using the binomial probabilities of W ⇠ Binom(k, µ+), we also have

P(W = w)� P(W = k � w) =

✓
k

w

◆
[(µ+)

w(1� µ+)
k�w
� (µ+)

k�w(1� µ+)
w]

=

✓
k

w

◆
(µ+)

w(1� µ+)
w

· [(1� µ+)
k�2w

� (µ+)
k�2w]

(i)
 0, for all 0  w 

�
k

2

⌫
, (140)

where (i) is true because µ+ = 1
1+e�2B > 1

2 , combined with the fact that k � 2w � 0, for all 0  w 
⌅
k
2

⇧
.

Plugging (139) and (140) back into (138), we have

E[h(µ)]� E[h0(µ)] � 0,

completing the proof of (134).

A.4.8 Proof of Lemma A.10

We have

E[h+(µ)]� ✓⇤1 = EW


h+

✓
W

k

◆�
�B

=
kX

w=0

h+
⇣w
k

⌘
· P(W = w)�B

(i)
=

bkµ+cX

w=0

2B

µ+

⇣w
k
� µ+

⌘
· P(W = w)

= c

0

BBBB@

bkµ+cX

w=0

w

k
· P(W = w)

| {z }
R1

�µ+

bkµ+cX

w=0

P(W = w)

| {z }
R2

1

CCCCA
, (141)

where (i) is true by plugging in the definition of the function h+ from (51).

Now we consider the two terms R1 and R2 separately. For any integer n � 1, any integer s such that 0  s  n,
and any real number p 2 [0, 1], we define Ple(n, p, s) (resp. Peq(n, p, s)) as the probability that the value of the
random variable Binom(n, p) is at most (resp. equal to) s. That is,

Ple(n, p, s) = P[Binom(n, p)  s],

Peq(n, p, s) = P[Binom(n, p) = s].

Then the term R2 can be written as

R2 = Ple(k, µ+, bkµ+c). (142)
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For the term R1, we have

R1 =

bkµ+cX

w=0

w

k
· P(W = w) =

bkµ+cX

w=0

w

k
·

✓
k

w

◆
µw
+(1� µ+)

(k�w)

=

bkµ+cX

w=1

w

k
·

k!

w!(k � w)!
µw
+(1� µ+)

(k�w)

= µ+

bkµ+cX

w=1

(k � 1)!

(w � 1)!(k � w)!
µw�1
+ (1� µ+)

(k�w)

(i)
= µ+

bkµ+c�1X

w=0

(k � 1)!

(w)!(k � w � 1)!
µw
+(1� µ+)

(k�1�w)

= µ+

bkµ+c�1X

w=0

✓
k � 1

w

◆
µw
+(1� µ+)

(k�1�w)

= µ+ · Ple(k � 1, µ+, bkµ+c � 1), (143)

where (i) is true by a change of variable w  w � 1. Plugging (142) and (143) back into (141), we have

E[h+(µ)]� ✓⇤1 = cµ+ · [Ple(k � 1, µ+, bkµ+c � 1)� Ple(k, µ+, bkµ+c)]. (144)

For any integer n � 1, any integer s such that 0  s  n, and any p 2 [0, 1], we claim the combinatorial equality

Ple(n, p, s) = Ple(n� 1, p, s� 1) + (1� p) · Peq(n� 1, p, s). (145)

To prove (145), we use a standard combinatorial argument. Consider n balls, and we select each ball indepen-
dently with probability p. Then the LHS of (145) equals the probability that at most s balls are selected. This
event can be decomposed into two cases. Either there are at most (s � 1) balls selected from the first (n � 1)
balls; or there are exactly s balls selected from the first (n� 1) balls, and the last ball is not selected. These two
cases correspond to the two terms on the RHS of (145).

Now setting n = k, p = µ+, and s = bkµ+c in (145), we have

Ple(k, µ+, bkµ+c) = Ple(k � 1, µ+, bkµ+c � 1) + (1� µ+) · Peq(k � 1, µ+, bkµ+c]). (146)

Combining (144) and (146), we have

E[h+(µ)]� ✓⇤1 = �c(1� µ+) · Peq(k � 1, µ+, bkµ+c). (147)

It remains to bound the term Peq(k � 1, µ+, bkµ+c) on the RHS of (147). Writing out the binomial probability,
we have

Peq(k � 1, µ+, bkµ+c) =

✓
k � 1

bkµ+c

◆
µbkµ+c
+ (1� µ+)

k�1�bkµ+c. (148)

By the Stirling’s approximation, we have

p
2⇡ · kk+

1
2 e�k

 k!  e · kk+
1
2 e�k, for any integer k � 0.

Then for any integer n � 1, and any integer k such that 0  k  n, we have

✓
n

k

◆
=

n!

k!(n� k)!
� c

nn+ 1
2

kk+
1
2 (n� k)n�k+ 1

2

. (149)
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Plugging (149) into (148), we have

Peq(k � 1, µ+, bkµ+c) � c
(k � 1)k�

1
2

(k � 1� bkµ+c)k�
1
2�bkµ+c · (bkµ+c)bkµ+c+ 1

2

· µbkµ+c
+ (1� µ+)

k�1�bkµ+c

� c
(k � 1)k�

1
2

(k � kµ+)k�
1
2�bkµ+c · (kµ+)bkµ+c+ 1

2

· µbkµ+c
+ (1� µ+)

k�1�bkµ+c

� c
(k � 1)k�

1
2

kk · (1� µ+)k�
1
2�bkµ+c · (µ+)bkµ+c+ 1

2

· µbkµ+c
+ (1� µ+)

k�1�bkµ+c

= c
(k � 1)k�

1
2

kk
· µ

� 1
2

+ (1� µ+)
� 1

2

(i)
= c

(k � 1)k�
1
2

kk
� c

1
p
k � 1

(1�
1

k
)k & 1

p
k
, (150)

where (i) is true because µ+ = 1
1+e�2B is bounded away from 0 and 1 by a constant.

Combining (147) and (150), we have

E[h+(µ)]� ✓⇤1  �
c
p
k
, for some constant c > 0.

A.4.9 Proof of Lemma A.11

First consider the unconstrained oracle e✓(1). We prove that for any ✓ 62 ⇥oracle, there exists some ✓0 2 ⇥oracle

such that `(✓0) < `(✓), where both ✓ and ✓0 satisfy the centering constraint.

Consider any ✓ 62 ⇥oracle. By the definition of ⇥oracle, there exist some integers i and j where 2  i < j  d,
such that ✓i 6= ✓j . By the symmetry of the manipulated observations {eµij} defined in (57) with respect to item
2 through item d, we have that for any ✓ 2 Rd,

`({eµi,j ; ✓}) = `({eµi,j ; ✓⇡}), (151)

where ⇡ : {2, . . . , d} ! {2, . . . , d} is any permutation of item 2 through item d, and ✓⇡ = [✓1, ✓⇡(2), . . . , ✓⇡(d)].
For every s 2 {0, 1, . . . , d� 2}, define ⇡s as the permutation where item 2 through item d are shifted s positions
to the left in a circle. That is, for every i 2 {2, . . . , d}, we have

⇡s(i) = 2 + [(i� 2 + s) mod (d� 1)].

Now define ✓0 = 1
d�1

Pd�2
s=0 ✓⇡s . It can be verified that

✓0 =

"
✓1,

1

d� 1

dX

i=2

✓i, . . . ,
1

d� 1

dX

i=2

✓i

#
2 ⇥oracle. (152)

Moreover, we have

`(✓0) = `

 
1

d� 1

d�2X

s=0

✓⇡s

!
(i)
<

1

d� 1

d�2X

s=0

`(✓⇡s)
(ii)
= `(✓),

where (i) is due to the strict convexity of the negative log-likelihood function ` in Lemma A.1, and (ii) is due
to (151).

Now we argue the equivalence of the unconstrained oracle e✓(1) defined in (58a) and (59a). If a solution e✓(1)

to (58a) exists, then we have e✓(1)
2 ⇥oracle and it is trivially also the solution to (59a). On the other hand, if a

solution e✓(1) to (59a) exists, assume for contradiction that e✓(1) is not a solution to (58a). Then either there

exists no solution to (58a), or the solution to (58a) is not e✓(1). In either case, there exists some ✓ such that

`(✓) < `(b✓(1)). By (152), we construct some ✓0 2 ⇥oracle such that `(✓0) < `(✓) < `(b✓(1)). This contradicts the
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assumption that b✓(1) is the optimal solution to (59a). Hence, Eq. (58a) and (59a) are equivalent definitions of

the unconstrained oracle b✓(1).

The same argument can be extended to the constrained oracle b✓(B), by noting that if ✓ 2 ⇥B , then in the
construction (152) we have ✓0 2 ⇥B .

A.4.10 Proof of Lemma A.12

Note that the lemma statement is conditioned on the event Ev. That is, we observe µ1 = v for some 1
2  v 

µ+ < 1. In particular, we have 0 < µ1 < 1. Then there exists at least one directed edge from node 1 to nodes
{2, . . . , d}, and at least one directed edge from nodes {2, . . . , d} to node 1. Then it su�ces to prove that the
subgraph consisting of nodes {2, . . . , d} is strongly-connected w.h.p.( 1

dk ).

Note that the observations {µij} for any 2  i < j  d are all independent of µ1, and therefore independent of
the event Ev. Using the arguments in Lemma A.3, we have that the subgraph consisting of nodes {2, . . . , d} is
strongly-connected w.h.p.( 1

dk ).

A.4.11 Proof of Lemma A.13

Note that the lemma statement is conditioned on the event Ev. That is, we observe µ1 = v for some 1
2  v 

µ+ < 1.

When m = 1, the desired inequality (67) holds trivially, because conditioned on Ev, we have

X

i 6=1

µ1i �

X

i 6=1

eµv
1i = (d� 1)v � (d� 1)v = 0.

Now consider every m 2 {2 . . . , d}. Consider the (unconditional) McDiarmid’s inequality of (100) in the proof
of Lemma A.4. Replacing the summation sign

P
i 6=m on the LHS of (100) by the summation sign

P
i�2
i 6=m

(that

is, we further exclude i = 1 from the summation) yields the unconditional inequality:

P

2

664

��������

X

2id
i 6=m

µmi �

X

2id
i 6=m

µ⇤
mi

��������
 c

r
d(log d+ log k)

k

3

775 � 1�
c0

d2k
, (153)

where c, c0 > 0 are constants. Now we condition (153) on the event Ev. Note that for all i,m 2 {2, . . . , d}
with i 6= m, the terms {µmi} are independent of Ev. Moreover, by the expression of eµv

mi in (65), we have
µ⇤
mi =

1
2 = eµv

mi conditioned on Ev. Hence, we have

P

2

664

��������

X

2id
i 6=m

µmi �

X

2id
i 6=m

eµv
mi

��������
 c

r
d(log d+ log k)

k

��������
Ev

3

775 � 1�
c0

d2k
. (154)

Now we bound the quantity |µm1 � eµv
m1| conditioned on Ev. By the definition of µ1, we have that among the

(d�1)k comparisons {X(r)
1j }j2{2,...,d},r2[k] in which item 1 is involved, there are (d�1)kµ1 terms that have value

1, and the rest have value 0. Hence, each µ1j can be thought of as the mean of k comparisons sampled without

replacement from the (d � 1)k comparisons {X(r)
1j }j2{2,...,d},r2[k]. By Hoe↵ding’s inequality (sampling without

replacement), we have that for every j 2 {2, . . . , d},

P
"
��µ1j � eµv

1j

��  c

r
log d+ log k

k

����� Ev

#
� 1� 2 exp (�c0(log d+ log k))

� 1�
c00

d2k
,



Stretching the E↵ectiveness of MLE from Accuracy to Bias for Pairwise Comparisons

where c, c0, c00 > 0 are constants. Equivalently, by a change of variables, we have that for every j 2 {2, . . . , d},

P
"

|µm1 � eµv
m1|  c

r
log d+ log k

k

����� Ev

#
� 1�

c00

d2k
. (155)

Combining (154) and (155) by the triangle inequality, and taking a union bound over m 2 {2, . . . , d} completes
the proof.

B Proof of Theorem 2.2

In this appendix, we present the proof of Theorem 2.2. Both Theorem 2.2(a) and Theorem 2.2(b) are closely
related to Theorem 2 from Shah et al. (2016). Under our setting, the quantity � defined in Shah et al. (2016) is
a universal constant, and the quantities ⇣ and � defined in Shah et al. (2016) are constants that depend only on
the constant B.

B.1 Proof of Theorem 2.2(a)

Theorem 2.2(a) is a direct consequence of Theorem 2(a) from Shah et al. (2016). We now provide some details
on how to apply Theorem 2(a) from Shah et al. (2016). Under our setting, each pair of items is compared k
times. Therefore, the sample size n is

n =

✓
d

2

◆
k = ⇥(d2k). (156)

Moreover, under our setting the underlying topology is a complete graph. Let L denote the scaled Laplacian as
defined in Eq. (4) from Shah et al. (2016), and let L† denote the Moore-Penrose pseudoinverse of L. From Shah
et al. (2016), the spectrum of L for a complete graph is 0, 2

d�1 , . . . ,
2

d�1 . Therefore, we have

�2(L) =
2

d� 1
, (157a)

tr(L†) = (d� 1) ·
d� 1

2
=

(d� 1)2

2
. (157b)

Plugging (156) and (157) into Theorem 2(a) from Shah et al. (2016) shows that the Theorem 2.2(a) holds for all
k � k0, where k0 is a constant.

B.2 Proof of Theorem 2.2(b)

The proof of Theorem 2.2(b) closely mimics the proof of Theorem 2(b) from Shah et al. (2016) (which is in turn
based on Theorem 1(b) from Shah et al. (2016)). In what follows, we state a minor modification to be made in
order to extend the proof from Shah et al. (2016) to Theorem 2.2(b).

In the proof from Shah et al. (2016), the box constraint for the MLE b✓(B) is only used to obtain the following
bound (see Appendix A.2 from Shah et al. (2016)):

vTr2`(w)v �
�

n�2
kXvk22, for all v, w 2 ⇥B . (158)

Now we fix any constant A such that A > B. It can be verified that (158) still holds when replacing ⇥B by ⇥A,
where we now allow � to depend on both A and B. Since A is assumed to be a constant, we have that � is still
a constant. Then the rest of the arguments from Shah et al. (2016) carry to the proof of Theorem 2.2(b).


