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Abstract

Topic modeling utilizing neural variational
inference has shown promising results re-
cently. Unlike traditional Bayesian topic
models, neural topic models use deep neu-
ral network to approximate the intractable
marginal distribution and thus gain strong
generalisation ability. However, neural topic
models are unsupervised model. Directly us-
ing the document-specific topic proportions
in downstream prediction tasks could lead
to sub-optimal performance. This paper
presents Topic Attention Model (TAM) 1, a
supervised neural topic model that integrates
with a recurrent neural network. We de-
sign a novel way to utilize document-specific
topic proportions and global topic vectors
learned from neural topic model in the atten-
tion mechanism. We also develop backpropa-
gation inference method that allows for joint
model optimisation. Experimental results on
three public datasets show that TAM not
only significantly improves supervised learn-
ing tasks, including classification and regres-
sion, but also achieves lower perplexity for
the document modeling.

1 Introduction

Topic modeling is a frequently used data exploration
tool for discovering latent semantics in a large collec-
tion of documents. Latent Dirichlet Allocation (LDA)

1The implementation is released at
https://github.com/WANGXinyiLinda/Neural-Topic-
Model-with-Attention-for-Supervised-Learning.
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(Blei, Ng, and Jordan, 2003) is one of the most influ-
ential topic modeling examples. LDA and other sta-
tistical topic models are based on Bayesian inference
Markov chain Monte Carlo (MCMC) and variational
inference. Traditional Bayesian inference method be-
comes intractable for highly expressive models of text.
Recently, neural topic models (NTM) based on varia-
tional autoencoding framework (Kingma and Welling,
2014; Rezende, Mohamed, and Wierstra, 2014) have
shown promising results in document modeling (Miao,
Yu, and Blunsom, 2016; Miao, Grefenstette, and Blun-
som, 2017). It approximates the intractable distri-
butions over the latent variables using a deep neural
network (variational autoencoder), and thus gain non-
linear complex representations for documents with
strong generalisation abilities.

In addition to data exploration, unsupervised topic
models LDA or NTM also act to reduce data di-
mension. Therefore, the learned low dimensional
document-specific topic representations are usually
used for downstream supervised tasks such as classifi-
cation and regression. However, fitting unsupervised
topics may be sub-optimal for the supervised task, as
the side information of the documents, such as the cat-
egory of a document or a numerical rating of a movie
review, is not used in discovering the low-dimensional
topic representations of the documents. Therefore,
there are existing work that extends LDA to super-
vised learning tasks by utilizing document categorical
or numerical labels (Mcauliffe and Blei, 2008; Chong,
Blei, and Li, 2009; Lacoste-Julien, Sha, and Jordan,
2009; Zhu, Ahmed, and Xing, 2012; Ramage et al.,
2009; Chen et al., 2015). However, the literature is
still missing for extending neural topic model for su-
pervised learning tasks.

In this work, we consider the problem of topic mod-
eling in a supervised setting, where each document is
paired with a response label, either categorical or nu-
merical. We present Topic Attention Model (TAM), a
neural topic model for supervised learning, i.e., classi-
fication and regression tasks. Our proposed method is
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an integration of recurrent neural network and neural
topic model by optimizing a single objective function
using variational autoencoding framework. Specifi-
cally, the global topic vectors learned from neural topic
model are used as attention queries in the recurrent
neural network and the resulting attention weights are
averaged by the document-specific topic proportions.
In this context, attention mechanism (Bahdanau, Cho,
and Bengio, 2015) offers a natural way to bridge the
unsupervised neural topic model with supervised RNN
model. The topic relevant information is captured by
the variational autoencoder and helps to attend topic
keywords from the document. Moreover, the response
label can in turn improve the latent topic structure
learned by variational autoencoder for better docu-
ment modeling. The interplay yields latent topic rep-
resentations more suitable for supervised prediction
tasks. An effective variational inference method is de-
veloped using backpropagation so that the model pa-
rameters can be jointly learned.

Our topic attention model TAM combines the merits
of both neural topic model and attention RNN. As a
supervised learning model, it obtains better document
representations and achieves higher prediction accu-
racy. Attention mechanism also allows us to investi-
gate the keywords that have high impact to the pre-
diction outcome, which provides some degree of inter-
pretability. As a supervised topic model, the improve-
ment on prediction does not come at the cost of doc-
ument modeling quality. In fact, it fits the document
data better than unsupervised topic model. The esti-
mated document-specific topic proportions and global
topic vectors can also facilitate corpus exploration.

2 Related Work

For an overview of statistical topic modeling, see Blei
(2012). Latent Dirichlet Allocation (LDA) (Blei, Ng,
and Jordan, 2003) is the most widely cited statisti-
cal topic model. Prior research on supervised topic
models mostly focuses on extending unsupervised LDA
to supervised tasks. Mcauliffe and Blei (2008) pro-
poses supervised LDA (sLDA) by adding to LDA a
response variable associated with each document and
then defining for the variable a Gaussian distribution
whose mean value is computed by a linear regression
of topics. Chong, Blei, and Li (2009) extends sLDA
that is used for regression to multi-class classification.
DiscLDA (Lacoste-Julien, Sha, and Jordan, 2009) and
MedLDA (Zhu, Ahmed, and Xing, 2012) share the
same goal with sLDA but differ in the training pro-
cedure. DiscLDA is trained to maximize the condi-
tional likelihood of response variables, and MedLDA
utilizes the max-margin principle to jointly train LDA
with SVM. Similarly, Wang and Zhu (2014) proposes a

spectral decomposition algorithm that more efficiently
estimates parameters of sLDA. Labeled LDA (Ram-
age et al., 2009) utilizes document labels and makes
a strong assumption that each document can be only
represented by the associated topics, and it only works
with categorical response variable. On the other hand,
some existing work exploits deep neural network struc-
ture to extend LDA for supervised task. For example,
BP-SLDA (Chen et al., 2015) introduces a supervised
LDA model using back propagation, and Cao et al.
(2015) tackles the bags-of-words assumption of topic
model and uses neural network to learn the word-topic
and topic-document distributions. TopicRNN (Dieng
et al., 2017) incorporates LDA with a RNN model.

While statistical topic models are based on Bayesian
learning, recent advance in neural topic models fall
under the variational autoencoder (VAE) framework
(Kingma and Welling, 2014; Rezende, Mohamed, and
Wierstra, 2014). Existing neural topic modeling work
(Miao, Yu, and Blunsom, 2016; Miao, Grefenstette,
and Blunsom, 2017; Srivastava and Sutton, 2016)
leverages the generalizability of deep learning (VAE)
to fit an approximate posterior using variational infer-
ence. However, these neural topic models are unsuper-
vised model, and it is still unknown how to integrate
side information (such as document labels) into the
models. Towards this end, Ding, Nallapati, and Xi-
ang (2018) proposes to incorporate a topic coherence
objective into neural topic modeling training so that
the topics are more human-readable, and Gemp et al.
(2019) presents a weakly semi-supervised extension so
that users can explicitly provide a subset of topics that
they want the model to learn.

Our work is built upon recent neural topic models us-
ing VAE framework (Miao, Grefenstette, and Blun-
som, 2017; Srivastava and Sutton, 2016). We extend
those work by integrating an RNN model with the neu-
ral topic model for supervised learning. To the best of
our knowledge, our work is the first supervised topic
model where the topic model is trained with neural
variational inference.

3 Model

We first give a brief introduction on neural topic model
using variational autoencoding. Then we describe the
details of our topic attention model that jointly opti-
mizes topic modeling and supervised learning.

3.1 Neural Topic Model

Neural topic model (Miao, Yu, and Blunsom, 2016;
Miao, Grefenstette, and Blunsom, 2017; Srivastava
and Sutton, 2016) utilizes the variational autoencoder
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(VAE) paradigm to model the documents genera-
tive process and uses gradient ascent to maximize
its evidence lower bound (ELBO). Below we describe
Gaussian Softmax distribution model (GSM) (Miao,
Grefenstette, and Blunsom, 2017).

Suppose document d contains Nd word tokens
{x1, x2, ...xNd

}, and document d is associated with a
response label ld. ld can be either categorical such
as document class or numerical such as review rating.
We use l to replace ld for notation simplicity. d is the
bag-of-word representation of document d. We use la-
tent variable t ∈ RK to denote the topic proportion
of document, where K is the number of topics. zn is
the topic variable assigned to word token xn. Suppose
the vocabulary size for the topic model is Vtopic. GSM
uses a neural network to parameterise the multinomial
topic distribution, and the generative process for doc-
ument d is:

ω ∼ N (µ0, σ
2
0) t = softmax(Wωω + bω)

zn ∼ Multi(t) xn ∼ Multi(βzn)

The prior p(ω) = N (µ0, σ
2
0) is a diagonal Gaussian dis-

tribution with mean µ0 and σ2
0 as the diagonal of its

covariance matrix. By using the Gaussian prior dis-
tribution, GSM can employ the re-parameterisation
trick (Kingma and Welling, 2014) and build an un-
biased gradient estimator for the variational distribu-
tion. Moreover, without using conjugate prior as in
LDA, GSM can update the model parameters directly
from the variational lower bound. In GSM, β is ex-
plicitly defined as the topic distribution over words,
i.e. βij = p(wj |ti), where wj is the j-th word from the
topic model vocabulary, ti is the i-th topic. Wω, bω are
trainable parameters. The parameters in this genera-
tive part is denoted by Θ.

Following the framework of neural variational infer-
ence, the inference network is:

µ(d) = g1(f(d)) log(σ2(d)) = g2(f(d))

Here, f, g1, g2 are fully-connected neural networks with
batch normalizaton and drop-out. The parameters in
this variational part is denoted by Φ. The variational
distribution qΦ(ω|d) = N (µ(d), σ2(d)) is a diagonal
Gaussian distribution used to approximate the true
distribution p(ω|d). To inference the parameters of the
neural topic model, the evidence lower bound (ELBO)
of log p(d|µ0, σ0,β) is derived and served as the objec-
tive of back-propagation.

3.2 GRU-based Sequence Encoder

Our goal is to integrate neural topic model GSM with
a supervised model. Thus, sequential recurrent neural
network (RNN) serves our purpose.

Suppose the input of the RNN is a sequential word
tokens of document d. First we convert it into a word
embedding sequence X∗ = (x1, ..., xN ) via a trainable
word embedding matrix M ∈ RVRNN×D, where VRNN
is the vocabulary size for RNN input and D is the
dimension of the word embedding. It is worth noting
that we have two vocabularies. Vtopic is the bag-of-
words vocabulary for neural topic model, and VRNN
is the vocabulary for RNN. The two vocabularies are
not necessarily the same size.

We adopt Bi-directional Gated Recurrent Unit (GRU)
to encode the embedding sequence. See (Cho et al.,
2014) for a detailed mathematical description for the
GRU gating mechanism. Here we useGRU() to denote
the GRU transformation for simplicity. Bi-directional
GRU captures both the contextual information from
the previous text and the later text in a document.
Give a timestep t, the hidden state ht can be com-
puted by concatenating forward hidden state

−→
ht and

backward hidden state
←−
ht together using the current

input xt and the previous hidden state ht−1:

ht =

[−→
ht←−
ht

]
=

[−−−→
GRU(xt,

−−→
ht−1)

←−−−
GRU(xt,

←−−
ht−1)

]

3.3 Topical Attention Model: TAM

The proposed TAM model takes two forms of inputs of
documents: a bag-of-word representation for GSM and
a sequence of word tokens for RNN. The TAM frame-
work is shown in Figure 1. Neural topic model GSM is
used to fit document generative process and estimate
document-specific topic distribution t. Each sequen-
tial word tokens xt is encoded to hidden states ht via
the GRU-based sequence encoder. Next, we propose
to use attention mechanism to bridge two components,
so that both models can be jointly optimized.

The attention mechanism is originally proposed by
(Bahdanau, Cho, and Bengio, 2015) in machine trans-
lation. Attention mechanism calculates the similarity
between a context vector (query) and each key (word)
to obtain the attention score corresponding to the key.
The trainable context vector can be seen as a high level
representation of a fixed query “what is the informative
word” in the sequence.

Recall that in the neural topic model, β is the topic
distribution over words. However, β is not regarded
as a single parameter matrix in the generative process,
and can be written as the product of two smaller ma-
trices:

β = softmax(EFT ) (1)

For a chosen positive integer L < V , E =
(v1, v2, ..., vK)T ∈ RK×L and F ∈ RV×L. Through



Neural Topic Model with Attention for Supervised Learning

Figure 1: Topical Attention Model structure. The left part is a unsupervised neural topic model learned by
variational autoencoding, and the right part is a supervised RNN model where input words are encoded by
Bi-GRU. Two parts are integrated in the attention mechanism by the topic vectors vi, i ∈ [1,K] and document-
specific topics t. Two separate parts are learned jointly using backpropagation inference.

this matrix factorization process, vi carries some use-
ful information of the i-th topic in the topic model but
with a much shorter length than βi. We call this vec-
tor vi the topic vector, or global topic embedding.
In our experiment, we use L = 100 as the dimension
for topic vectors.

In TAM, instead of using only one context query, we
use multiple topic vectors as queries. These queries
learned by neural topic model can help the supervised
model to focus on the information regarding to differ-
ent aspects of the corpus from a global topic perspec-
tive, which may otherwise be overlooked by the RNN
model that mostly focuses on the local contextual in-
formation. An intuitive explanation is that these topic
vectors are used as queries to resemble “what is the in-
formative word under this topic”. After calculating at-
tention weights with respect to all the topics, we then
average them by a shifted topic proportion, which not
only makes the final attention weights emphasize on
the most importation topics, but also diversifies differ-
ent topical attentions by backpropogation.

For a topic vector vi (i ∈ {1, 2, ..,K}), and step t ∈
{1, 2, ..., N}, the i-th topical attention weight at the
t-th step is:

ut = tanh(Wtht + bt) (2)

at,i = softmax(uTt vi) (3)

Where ut has the same dimension as vi. To put the K
topical attentions at the t-th step together as a scalar,
we average them by a shifted topic mixture:

αt =

K∑
i=1

at,i(ti − δ) (4)

Where 0 < δ < 1 is a scalar subtracted from each entry
of t. By applying this set of attention weights to the
hidden states, we get the final encoded document:

s =

N∑
t=1

αtht (5)

The encoded document can then be fed into a fully-
connected layer for prediction o = f(Wos+ bo), where
Wo, bo are trainable parameters and f is an activation
function depend on the nature of the labels.

The reason that we shift the topic mixture by a con-
stant is to make the resulting topical attention weight
more diverse among different topics. Recall that t =
(t1, ..., tK)T is the topic mixture of the document, so
0 ≤ ti ≤ 1 for i ∈ {1, 2, ...,K}. If a constant 0 < δ < 1
is subtracted, the larger entry of t would remain pos-
itive, while the smaller entry would become negative.
Suppose our objective is to minimize the loss function
L, then we have the update equation for at,i by gradi-
ent descent:

at,i ← at,i − γ
∂L
∂at,i

Where γ is the learning rate. We can rewrite the par-
tial derivative using the chain rule:

∂L
∂at,i

= (ti − δ)
∂L
∂αt

Note that ∂L
∂αt

is the same for at,1, at,2, ..., at,K . So the
gradient with respect to topical attentions would have
different signs for topics with a higher probability in
the topic mixture and those with a lower probability in
the topic mixture. By subtracting δ, topical attention
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for different topics can be separated more by learning
in opposite directions, otherwise the gradients would
all have the same sign.

Given document d and its label l, our objective is to
maximize the joint marginal likelihood:

p(l,d|µ0, σ0, β) =

∫
t

p(t|µ0, σ0)p(l,d|t, β)dt (6)

3.4 Model Inference

Since l is actually independent of the bag-of-word rep-
resentation d and only depend on the RNN input and
t, we can factorize the joint distribution:

p(l,d|µ0, σ0, β) =

∫
t

p(t|µ0, σ0)p(d|t, β)p(l|t)dt (7)

The direct optimization of the above integral is
intractable so we use variational inference to ap-
proximate this marginal. We reparameterize the
log-likelihood and derive its evidence lower bound
(ELBO):

log pΘ,Ψ(l,d) = log

∫
t

pΘ(t)

qΦ(t|d)
qΦ(t|d)pΨ(l|t)pΘ(d|t)dt

≥EqΦ(t|d)

[
log pΘ(d|t) + log pΨ(l|t)]−KL(qΦ(t|d)||p(t))

(8)

Due to space limit, we put the detailed derivation in
the Supplementary Material. Here, Ψ represents all
the parameter from the RNN attention model. Θ is
the generative parameters and Φ is the variational pa-
rameters. Therefore, the expectation can be estimated
by a single sample:

L̂ = log pΘ(d|t̂) + log pΨ(l|̂t)−KL(qΦ(t|d)||p(t)) (9)

The objective of TAM (Eq. 6) becomes maximizing L̂,
which can be broken down into three parts: log data
likelihood log pΘ(d|̂t), log label likelihood log pΨ(l|̂t)
and topic KL-divergence KL(qΦ(t|d)||p(t)).

Data likelihood: log pΘ(d|̂t) can be directly calcu-
lated by marginal out the latent variable zn:

log pΘ(d|̂t) =

N∑
n=1

log p(xn |̂t)

=

N∑
n=1

∑
zn

log p(xn|βzn)p(zn |̂t) =

N∑
n=1

log βTxn
t̂ (10)

Where βxn is the corresponding column of β such that
the corresponding word is xn.

Topic KL-divergence: Since t = softmax(Wωω+bω)
in neural topic model, we have:

p(t) = p(ω) = N (µ0, σ
2
0) (11)

qΦ(t|d) = qΦ(ω|d) = N (µ(d), σ2(d)) (12)

So KL(qΦ(t|d)||p(t)) can be computed analytically as
a Gaussian KL-divergence.

Label likelihood: Classification and regression are
two common supervised learning tasks for documents.
Therefore, we focus on three supervised task: multi-
class classification (MCC), multi-label classification
(MLC) and regression, and we describe the label like-
lihood for each task accordingly. For MCC and MLC,
we assume that the label distribution conditioning on
the RNN input data and the topic variable t is a multi-
nomial distribution. For MCC, we use a softmax acti-
vation on the output, then:

pΨ(l|̂t) = ol (13)

Where ol is the entry of output corresponding to the
correct label l. For MLC, we use a sigmoid activation
on the output. Suppose there C classes in total, then:

pΨ(l|̂t) =

C∏
i=1

pΨ(li |̂t) =

C∏
i=1

[
lioi + (1− li)(1− oi)]

(14)

We abuse li as the indicator function of whether the
i-th class is assigned as a tag. Note that the negative
logarithm of the label likelihood here is the same as
the cross-entropy.

For regression task, we assume that pΨ(l|̂t) is a Gaus-
sian distribution with mean o and variance σ2

l :

pΨ(l|̂t) = N (o, σ2
l ) (15)

Where σ2
l is the variance of the label likelihood and is

treated as a hyper-parameter to be determined. Then
we have:

log pΨ(l|̂t) = − (l − o)2

2σ2
l

− 1

2
log [2πσ2

l ] (16)

Since the objective is to maximize L with respect to
Θ,Φ,Ψ, we can ignore the second term as it is a con-
stant.

Optimization: The objective L̂ is maximized by
stochastic gradient ascent and all the parameters are
jointly updated. It is intuitive to derive the gradi-
ent with respect to Ψ and Θ since all the parameters
are organized by arithmetic operations. But when it
comes to Φ, ω is an random variable following Gaus-
sian distribution and the gradient with respect to it
cannot be directly calculated. To estimate this gra-
dient, following (Miao, Grefenstette, and Blunsom,
2017), we sample one sample ω̂ and then use the fact
ω = µ(d) +σ(d)ε, ε ∼ N (0, 1). That is for a sample ε̂,
we have: ∂L̂

∂µ(d) ≈
∂L̂
∂ω̂ , and

∂L̂
∂σ(d) ≈ ε̂∂L̂∂ω̂ . Then we can

perform the back propagation on parameters of neural
networks f, g1, g2.
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4 Experiments

4.1 Datasets and settings

We conduct experiments on three public datasets:
20 Newsgroups, Movie Review Dataset (MRD), and
Wiki10. 20 Newsgroups is a classic dataset with 20
different classes for multi-class classification. Movie
Review Data (MRD) (Pang and Lee, 2005) is a col-
lection of movie reviews with scaled sentiment scores
ranging from 0 to 1. Wiki10 (Zubiaga, 2012) is a com-
monly used dataset for multi-label text classification.
It contains a collection of Wikipedia articles labeled
with multiple tags and have longer length compared to
the other two datasets. For our experiments, we use
the 100 most common tags and delete some generic
tags like ‘wiki’ and ‘wikipedia’, which yields 73 tags in
total, and articles without tags in this set are deleted.
Each article is labeled with 3.37 tags on average. The
dataset statistics are shown in Table 1.

dataset 20news MRD Wiki10
#train 11,218 3,337 12,966
#test 7,452 1,669 5,558
#vocab 18,563 17,007 84,693

avg. #words 129.0 188.6 1020.5
task MCC Regression MLC

Table 1: Dataset statistic descriptions.

For all the datasets, we tokenize the texts by remov-
ing all punctuation, numbers, stopwords and some rare
words appearing less than 5 times in the training set.
Note that TAM takes two forms of input: a sequence
model and a bag-of-words topic model. Therefore, for
the sequence model RNN input, we use the whole vo-
cabulary, and the word embedding matrix is initial-
ized by the word embeddings learned from Word2Vec
(Mikolov et al., 2013) trained on the training set. For
the topic model input, we choose the most frequent
2,000 words as the vocabulary for 20 newsgroups2,
MRD and Wiki10. Since 20 newsgroups and MRD
have shorter documents, we use a sequence length of
500 for RNN and hidden size of 64 for both GRU and
fully-connect layers in the topic model. For Wiki10, we
use a sequence length of 1,000 for RNN and a hidden
size of 256 for GRU. Batch size is 64 for 20 News-
groups and MRD, 128 for Wiki10. Note that δ is an
important hyper-parameter and should be proportion
to 1/K to maintain a consistent performance for dif-
ferent K. In the experiment, for 20NG and MRD,
δ = 0.2, 0.1, 0.05 for K = 25, 50, 100 respectively. For
Wiki10+, δ = 0.1, 0.05, 0.025 for K = 25, 50, 100 re-
spectively. For MRD, we take Gaussian label noise

2For 20 Newsgroups data, we adopt the vocabulary pro-
vided by (Srivastava and Sutton, 2016) for direct compar-
ison.

with σl = 0.1.

4.2 Baselines

We consider the following three groups of baselines:
unsupervised topic models, supervised topic models,
and one ablation baseline.

The two unsupervised topic model baselines are:

Latent Dirichlet allocation (LDA) (Blei, Ng, and
Jordan, 2003) is the most cited topic modeling work,
and we use the online LDA implementation.

Gaussian softmax model (GSM) (Miao, Grefen-
stette, and Blunsom, 2017) is the neural topic model
that we integrate into TAM.

LDA and GSM are the representative unsupervised
topic model that is based on Bayesian learning and
variational autoencoding framework respectively. In
our experiment, we adopt a standard two-step proce-
dure for the supervised learning tasks. This procedure
fits the training data to a topic model (either LDA
or GSM), and then use the latent topic representation
of the training documents as features to build a SVM
classifier or SVR regression model.

The four supervised topic model baselines are: 3

Supervised LDA (sLDAr) (Mcauliffe and Blei,
2008) is the first LDA extension for supervised regres-
sion task. sLDAc (Chong, Blei, and Li, 2009) extends
sLDAr to multi-class classification tasks. In our exper-
iment, we use sLDAc for multi-class and multi-label
classification, and we use sLDAr for regression. We
denote both as sLDA.

Labeled LDA (L-LDA) (Ramage et al., 2009) is
a supervised LDA extension. It assumes that each
category label corresponds to a topic and that each
document can use only topics that are in its label set.

MedLDA (Zhu, Ahmed, and Xing, 2012) combines
LDA with SVM for classification tasks. We use the on-
line inference version of MedLDA (Shi and Zhu, 2017).
It is not used in regression task.

Backpropagation Supervised LDA (BP-SLDA)
(Chen et al., 2015) is a supervised LDA model using
back propagation over a deep architecture.

In addition to the above unsupervised/supervised
topic model baselines, we also consider an ablation
baseline Attention-RNN. It is a Bi-directional re-
current neural network composed of GRUs with atten-

3Note that sNTM (Cao et al., 2015) and TopicRNN (Di-
eng et al., 2017) are two related baselines that incorporate
LDA with a neural network structure. However, our own
implementations are unsuccessful so we do not report them
as baselines.
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dataset 20NG/(Accuracy) MRD/(pR2) Wiki10(F1)
K 25 50 100 25 50 100 25 50 100

LDA 0.479 0.558 0.567 0.174 0.142 0.185 0.175 0.231 0.261
sLDA 0.588 0.689 0.693 0.478 0.490 0.482 0.312 0.334 0.341

MedLDA 0.679 0.693 0.544 – – – 0.352 0.388 0.410
BP-SLDA 0.602 0.621 0.662 0.465 0.435 0.463 0.347 0.339 0.330
L-LDA – 0.345 – – – – – 0.414 –

Attention-RNN – 0.730 – – 0.597 – – 0.491 –
GSM 0.300 0.349 0.264 0.152 0.144 0.097 0.181 0.172 0.241

TAM (This work) 0.762 0.760 0.765 0.598 0.602 0.598 0.517 0.517 0.519

Table 2: Supervised Learning evaluation of different methods on different datasets. For 20NG and Wiki10,
Labeled LDA are evaluated with K = 20 and K = 73 only, as Labeled-LDA requires that number of topics
equals to number of labels. Attention-RNN has no topic variable thus only one number is reported.

tion. Our implementation is a variant of Bi-directional
RNN as proposed in (Bahdanau, Cho, and Bengio,
2015). We encode word sequence using the same word
embeddings as in TAM. Attention-RNN does not use
topic vectors as queries, instead it utilizes a single ran-
domly initialized learnable query. With this baseline,
we aim to understand the benefit of using learnable
topic vectors in the attention mechanism.

4.3 Supervised Learning Performance

The main results for supervised learning are present
in Table 2. Each model is run for five times, and the
average number is reported.

Multi-class Classification. We conduct multi-class
classification experiment on 20 Newsgroups dataset
with all twenty categories. We use accuracy, the frac-
tion of correct predictions, to evaluate the MCC per-
formance.

Multi-label Classification. We conduct multi-label
classification experiment on Wiki10 dataset. We use
the F1 score, the harmonic mean of the precision and
recall, to evaluate the MLC performance.

Regression. We conduct regression experiment on
the Movie Review dataset. We use the predictive R2

(pR2) to evaluate the regression performance. Follow-
ing Mcauliffe and Blei (2008), the pR2 measures how
well a regression model predicts numerical responses
for testing samples.

From the table, we can clearly draw the conclusion
that TAM outperforms neural topic model GSM on
prediction accuracy by large margin. For example,
on movie review dataset, at K = 50, TAM achieves
0.602 pR2 while GSM only has 0.144. This significant
improvement can be contributed to the topic atten-
tion mechanism that integrates RNN with GSM. On
the other hand, we observe that TAM also outperform
vanilla Attention-RNN model on three datasets. For
example, on Wiki10 dataset, at K = 50, the F1 score
is 0.491 for Attention-RNN and 0.517 for TAM. Note

that TAM extends the Attention-RNN model by feed-
ing multiple topic vectors as the query vectors. This
result indicates that the global topic information cap-
tured by the neural topic model can offer additional
utility so that the predictive document representations
are more suitable for supervised learning tasks.

Another interesting result worth noting is that GSM
underperforms LDA in the supervised learning tasks
on three datasets, although it achieves better docu-
ment modeling (see Section 4.4) in terms of perplexity.
We leave it for future study.

4.4 Document Modeling Performance

We evaluate document modeling performance us-
ing perplexity on the testing dataset. In docu-
ment modeling, perplexity is computed as a func-
tion of the data log-likelihood of a held-out test
set: exp(− 1

Dtest

∑Nd 1
Nd

log p(d|t)), where Dtest is the
number of testing documents, Nd denotes the number
of tokens in testing document d, and log p(d|t) is the
log likelihood of the words in the document.

We presents the test document perplexities of the topic
models on the three datasets in Table 3. For direct
comparison, we only present the results of LDA, sLDA
and GSM. Amongst different models, TAM achieves
the lowest perplexity in all cases, and GSM are also sig-
nificantly better than the benchmark LDA ans sLDA.
We confirm with prior finding that the supervised topic
model that leverages useful side information can in fact
achieve better document modeling. While TAM im-
proves prediction accuracy, the improvement does not
come at the cost of document modeling quality.

4.5 Qualitative Evaluation

Topics Quality. We first examine the discovered
topic qualities. Table 4 shows the top 10 keywords
of four topics in the MRD dataset. Since the task for
this dataset is to predict ratings associated with the
reviews, it is critical that the topic model can differen-



Neural Topic Model with Attention for Supervised Learning

dataset 20NG MRD Wiki10
K 25 50 25 50 25 50

LDA 1075 1100 1415 1714 1291 1137
sLDA 1041 1033 928 933 1028 1014
GSM 858 886 919 915 929 911
TAM 820 833 915 902 918 899

Table 3: Perplexity evaluation of different methods on
different datasets. The vocabularies used for the three
datasets are all set to be most frequent 2,000 words.

tiate words without regard to genre. We can see that
TAM is capable of distinguish “good comedy” topic
from “bad comedy” topic, and “good thriller” topic
from “bad thriller” topic.

good
comedy

bad
comedy

good
thriller

bad
thriller

comedy jokes noir van
funny lame western awful
laughs save noted pointless
got theaters sperb reasonably
tv liners chilling mess

good wait outstanding supposed
humor awful ford driven
films car morality nasty
made bland eerie william
parody badly harris promise

Table 4: The topics learned by TAM on the movie re-
view dataset. The labels on the top row are generated
manually by inspecting the keywords.

We also visualize topic vectors learned from TAM.
As described in section 3, the dimension of global
topic vectors are chosen to be 100. We use t-SNE
to project the global topic vectors (i.e. (v1, v2, ..., vK))
of 20Newsgroups dataset, as shown in Figure 2. It
shows that topics that are semantically similar, such
as electronics, Windows and hardwares, are closer in
the embedding space, while they are further away from
semantically dis-similar topics such as mideast, politics
and guns.

To further investigate the quality of neural topic
model, we use t-SNE to project the estimated topic
distribution (i.e. q(θ|d)) of each document in 20News-
groups test dataset, as shown in Figure 2. Qualita-
tively we observe that the projections form several nat-
ural clusterings for documents with the same category
label, as the same color is more clustered.

Topic Attention. Recent work in NLP has utilized
the attention weight to highlight words that are highly
correlated with the prediction outcome (Bahdanau,
Cho, and Bengio, 2015), to provide some degree of in-
terpretability. Here, we visualize the attention weights
(Eq.4) for one document in multi-label Wiki10 dataset,
in Figure 3. The corresponding labels of the docu-

Figure 2: Left: t-SNE projection for document-specific
topic proportions of 20Newsgroups documents. Doc-
uments within the same category are annotated with
the same color. Right: t-SNE projection for 50 topic
vectors of 20Newsgroups.

ment is health, design, reading and science. We can
see that word tokens in the sentence are assigned to
different weights under different topic vectors. In the
top sentence, word “pharmacology” has very high at-
tention weights under the red (medical) topic, while
the weights of other words under the blue (govern-
ment) topic is merely zero. In the bottom sentence,
words “orgnaization”, “billion people” and “drinking”
have high weights under the blue (politics) topic. The
results indicate that TAM is capable of matching dif-
ferent topic vectors to different keywords in the sen-
tence sequence, and thus results in better document
representation for downstream prediction tasks.

Figure 3: The number on the top is the token index
in the document. Two sentences from a document and
the corresponding word attention weights are shown.
We show two topic vectors: medical topic (red) and
politics topic (blue). Denser color indicates greater
attention weight.

5 Conclusion

In this paper, we present TAM, a supervised neu-
ral topic model that integrates unsupervised neural
topic modeling with supervised neural network, by us-
ing a novel design in the attention mechanism. This
integration yields a predictive document representa-
tion that is more suitable for classification or regres-
sion. We develop efficient variational inference method
for TAM. The empirical results on several standard
datasets demonstrate the effectiveness of TAM on pre-
diction accuracy and document modeling.
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