
Deontological Ethics By Monotonicity Shape Constraints

A Proofs

Lemma 1. Let (⌦,F) be a measurable space with a reg-

ular conditional probability property, and let X : ⌦ !
RD

, Z : ⌦ ! R be F-measurable random variables.

Suppose Pj and Pk are �-finite probability measures

on (⌦,F), where Pj denotes the conditional probability

measure of X given that Z = j, and Pk denote the

same for Z = k, and Pj is absolutely continuous with

respect to Pk. Let f : RD ⇥ R ! R be defined as in

Section 3, and f(x, z) � 0 for all x 2 RD
, z 2 R. If

the function f satisfies monotonicity in the second ar-

gument such that f(x, j)  f(x, k) for all x 2 RD
and

for j  k, and if the Radon Nikodym derivative
dPj

dPk

is bounded almost everywhere with respect to Pk by a

finite constant C > 0, then

E[f(X,Z)|Z = j]  CE[f(X,Z)|Z = k]. (4)

Proof. Under Lemma 1’s assumptions,

E[f(X,Z)|Z = j] =

Z

RD

f(x, j)dPj


Z

RD

f(x, k)dPj

=

Z

RD

f(x, k)
dPj

dPk
dPk

 C

Z

RD

f(x, k)dPk

= CE[f(X,Z)|Z = k].

The second inequality follows from monotonicity, and
the third by the Radon Nikodym theorem since Pj <<

Pk.

Lemma 2. Let f : X⇥Z ! R, where X ✓ RD
, Z ✓ R.

Assume that X ,Z are both finite, with X 2 X , Z 2 Z.

Let f̃ be the projection of f onto the set of functions

over X ⇥ Z that are monotonic with respect to Z such

that for j  k, f(x, j)  f(x, k). For z(i) 2 Z, let

z(1)  z(2)  ...  z(|Z|). Define the average statistical

parity violation:

Rf
4
=

|Z|X

i=1

E[f(X,Z)|Z = z(i)]� E[f(X,Z)|Z = z(i+1)]

|Z|

Then Rf̃  Rf .

Proof. Let f̃ : X ⇥ Z ! R be the projection of f

onto the class of functions monotonic in the second
argument, defined as follows:

f̃ = argmin
f 0

||f � f
0||

s.t. f 0(x, j)  f
0(x, k) 8j, k 2 Z; j  k

(5)

where

||f � f
0||2 =

X

x2X ,z2Z
(f(x, z)� f

0(x, z))2.

The projection f̃ can be computed in O(|X ||Z|) time
using the pool-adjacent-violators algorithm from iso-
tonic regression (Ayer et al., 1955; JB, 1964), since a
one dimensional projection can be done independently
in O(|Z|) time for each x 2 X .

Rf is a telescoping sum:

Rf =
E[f(X,Z)|Z = z(1)]� E[f(X,Z)|Z = z(|Z|)]

|Z|

For discrete X and Z, we have

E[f(X,Z)|Z = j] =
X

x2X
f(x, j)P (X = x|Z = j)

which implies

Rf =
1

|Z|
X

x2X

✓
f(x, z(1))P (X = x|Z = z(1))

�f(x, z(|Z|))P (X = x|Z = z(|Z|))

◆
.

We now show that f̃(x, z(1))  f(x, z(1)), and
f̃(x, z(|Z|)) � f(x, z(|Z|)):
Suppose f̃(x, z(1)) > f(x, z(1)). Then we can set
f̃
0(x, z(1)) = f(x, z(1)) without violating the monotonic-

ity constraints, and ||f � f̃
0|| < ||f � f̃ ||, which con-

tradicts that f̃ solves (5). A similar argument can be
made for z(|Z|).

Since f̃(x, z(1))  f(x, z(1)) and
f̃(x, z(|Z|)) � f(x, z(|Z|)), we have

f(x, z(1))P (X = x|Z = z(1))

� f(x, z(|Z|))P (X = x|Z = z(|Z|))

� f̃(x, z(1))P (X = x|Z = z(1))

� f̃(x, z(|Z|))P (X = x|Z = z(|Z|))

Since the above inequality is true for all x, it holds for
the sum over x 2 X , therefore Rf̃  Rf .

Lemma 3. Suppose X is a continuous (or with a

straightforward extension, discrete) random variable,

and let S be a nonempty set such that for all x 2 S,

the joint probability density values pX,Ŷ |Z=z(x, 1) > 0
for z = j, k. Suppose we have monotonicity where

f(x, j)  f(x, k) for j  k for all x 2 S. For a

binary classifier this implies P (Ŷ = 1|X = x, Z = j) 
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P (Ŷ = 1|X = x, Z = k). Then we can bound one-sided

statistical parity as follows:

P (Ŷ = 1|Z = j)

P (Ŷ = 1|Z = k)
 inf

x2S

pX|Z=j(x)pX|Ŷ=1,Z=k(x)

pX|Z=k(x)pX|Ŷ=1,Z=j(x)

Proof. Fix x 2 S. By Bayes’ theorem and monotonic-
ity,

P (Ŷ = 1|Z = j)

= P (Ŷ = 1|X = x, Z = j)
pX|Z=j(x)

pX|Ŷ=1,Z=j(x)

 P (Ŷ = 1|X = x, Z = k)
pX|Z=j(x)

pX|Ŷ=1,Z=j(x)

= P (Ŷ = 1|Z = k)
pX|Ŷ=1,Z=k(x)

pX|Z=k(x)

pX|Z=j(x)

pX|Ŷ=1,Z=j(x)

Since the inequality holds for all x 2 S, the tightest
bound holds for the infimum.

Lemma 4. Let Y 2 {0, 1} be a random variable repre-

senting the target. Let S be a nonempty set such that

for all x 2 S, the following joint probability density val-

ues are non-zero for z = j, k: pX,Y,Ŷ |Z=z(x, 1, 1) > 0

and pX,Y |Ŷ=1,Z=z(x, 1) > 0. Then,

P (Ŷ = 1|Y = 1, Z = j)

P (Ŷ = 1|Y = 1, Z = k)
 inf

x2S

cj(x)

ck(x)

where cz(x) =
pX|Z=z(x)P (Y = 1|Ŷ = 1, Z = z)

pX|Ŷ=1,Z=z(x)P (Y = 1|Z = z)

Proof. Let S be a nonempty set such that for all x 2 S,
the following joint probability density values are non-
zero for z = j, k:

pX,Y,Ŷ |Z=z(x, 1, 1) > 0 and pX,Y |Ŷ=1,Z=z(x, 1) > 0

Fix x 2 S.

Suppose we have a monotonic binary classifier, where
P (Ŷ = 1|X = x, Z = j)  P (Ŷ = 1|X = x, Z = k) for
j  k.

By Bayes’ theorem, we have
P (Y = 1|Z = j)P (Ŷ = 1|Y = 1, Z = j)pX|Y=1,Ŷ=1,Z=j(x)

= pX|Z=j(x)P (Ŷ = 1|X = x, Z = j)P (Y = 1|X = x, Ŷ = 1, Z = j)

and pX|Ŷ=1,Z=j(x)P (Y = 1|X = x, Ŷ = 1, Z = j)

= pX|Y=1,Ŷ=1,Z=j(x)P (Y = 1|Ŷ = 1, Z = j)

Let cz(x) =
pX|Z=z(x)P (Y=1|Ŷ=1,Z=z)
pX|Y =1,Z=z(x)P (Y=1|Z=z) . This is well de-

fined for x 2 S.

Combining both applications of Bayes’ theorem and
the monotonicity assumption:

P (Ŷ = 1 |Y = 1, Z = j)

=
pX|Z=j(x)P (Y = 1|X = x, Ŷ = 1, Z = j)

P (Y = 1|Z = j)pX|Y=1,Ŷ=1,Z=j(x)

⇤ P (Ŷ = 1|X = x, Z = j)

=
pX|Z=j(x)P (Y = 1|Ŷ = 1, Z = j)

P (Y = 1|Z = j)pX|Ŷ=1,Z=j(x)

⇤ P (Ŷ = 1|X = x, Z = j)

= cj(x)P (Ŷ = 1|X = x, Z = j)

 cj(x)P (Ŷ = 1|X = x, Z = k)

=
cj(x)

ck(x)
P (Ŷ = 1|Y = 1, Z = k)

Since this holds for all x 2 S, it holds for the infimum.

B Counterexamples

To supplement Section 7, we give various counterexam-
ples showing that certain relations between statistical

parity and monotonicity do not hold.

B.1 Monotonicity does not imply statistical

parity.

We show that monotonic function f may violate one-

sided statistical parity by an example that illustrates
Simpson’s paradox. Suppose X 2 {0, 1}, where X = 1
means a law student passed the bar and X = 0 means
the student did not. Let Z 2 {0, 1, 2, 3} be the poverty
level of the student, where Z = 3 represents the highest
poverty level. Suppose f(X,Z), or the admissions score,
is monotonic in Z and takes the values shown in Fig.
6. Suppose that the distributions P (X = x|Z = z)
are given by figure 7. Then the maximum one-sided

statistical parity violation is

E[f(X,Z)|Z = 1]� E[f(X,Z)|Z = 2]

= f(0, 1)P (X = 0|Z = 1)� f(0, 2)P (X = 0|Z = 2)

� f(1, 1)P (X = 0|Z = 1) + f(1, 2)P (X = 0|Z = 2)

= 1.5(0.9)� 1.5(0.1)

= 1.2.

Thus, there is a positive one-sided satistical parity
violation even though f(X,Z) is monotonic in Z.
This violation comes from the fact that even though
f(0, 1)  f(0, 2), this is outweighed by the fact that
P (X = 0|Z = 1) � P (X = 1|Z = 2). This illus-
trates that for a monotonic function, the statistical

parity violation depends on the conditional probabil-
ities P (X = x|Z = z), and indeed Lemma 1 bounds
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the one-sided statistcal parity violation by a ratio of
conditional probabilities.

Figure 6: Monotonic admissions scores for Counterex-
amples B.1 and B.3.

P (X = x|Z = z)

Figure 7: Distribution of X,Z for Counterexamples
B.1 and B.3. The displayed values are P (X = x|Z = z)
for X 2 {0, 1} and Z 2 {0, 1, 2, 3}.

B.2 Statistical Parity does not imply a

bound on monotonicity violations.

We show that the converse of Lemma 1 does not hold:
a model that satisfies statistical parity may have arbi-
trarily high monotonicity violations regardless of the
likeihood ratio C. Suppose the distribution of men
and women for a given height x is equal for all heights,
such that C = 1. Suppose that statistical parity is
satisfied such that men and women were equally likely
to be selected for a sports team on average.Statistical

parity could hold if the model accepted all men over
some height h that splits the population in half (say
h = 50800), and accepted all women under height h. But
then for a height less than h, P (Ŷ = 1|Z = female) = 0

while P (Ŷ = 1|Z = male) = 1, and for height over
h, P (Ŷ = 1|Z = male) = 0 while P (Ŷ = 1|G =
female) = 1. Therefore, neither a positive nor a neg-
ative monotonicity constraint holds: there is no con-
stant C

0
> 0 such that P (Ŷ = 1|X = x, Z = male) 

C
0
P (Ŷ = 1|X = x, Z = female) or P (Ŷ = 1|X =

x, Z = female) � C
0
P (Ŷ = 1|X = x, Z = male) for all

x.

B.3 Monotonic projection can be more

unfair in the worst case.

While Lemma 2 shows that projecting a function onto
monotonicity constraints cannot increase the average

one-sided statistical parity violation, it can increase
violations in the worst case. Consider a continuation
of the example from B.1, but this time let f(X,Z) be
defined by Fig. 8, and let f̃(X,Z) be defined by Fig. 6.
In this case, Fig. 6 is the monotonic projection of Fig.
8. Then the worst case statistical parity violation for
the monotonic projection f̃ is higher than the worst
case statistical parity violation for the non-monotonic
f :

E[f̃(X,Z)|Z = 1]� E[f̃(X,Z)|Z = 2]

= 1.5(0.9)� 1.5(0.9)

= 1.2

E[f(X,Z)|Z = 1]� E[f(X,Z)|Z = 2]

= 1.0(0.9)� 0.5(0.9)

= 0.85

For a given pair j, k, as long as f̃(x, j)  f(x, j) and
f̃(x, k) � f(x, k), then the violation

Rf (j, k) = E[f(X,Z)|Z = j]� E[f(X,Z)|Z = k]

will not be worse for the monotonic projection f̃ :
Rf̃ (j, k)  Rf (j, k). Lemma 2 holds because the in-
equalities f̃(x, j)  f(x, j) and f̃(x, k) � f(x, k) hold
for j = z(1) and k = z(|Z|), but this counterexample
exists because those inequalities do not necessarily hold
for any other pairs j, k in between.

C Tradeoff between likelihood ratios
in Lemma 3

The bound in Lemma 3 contains two likelihood ratios:
pX|Z=j(x)
pX|Z=k(x)

and
pX|Ŷ =1,Z=k(x)

pX|Ŷ =1,Z=j(x)
. When the first likelihood

ratio is low, the second inverse likelihood ratio may be
high. For example, suppose Z is an individual’s poverty
level (j being low poverty and k being high poverty), X
is the number of extracurricular activities the individual
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Figure 8: Nonmonotonic admissions scores for Coun-
terexample B.3.

is involved in, and Ŷ = 1 means the individual is
accepted into university. Suppose all individuals with
above a certain number of extracurricular activities is
accepted. Then the first likelihood ratio could be low
when the number of extracurricular activities X is low.
Similarly, the likelihood that a high poverty individual
accepted into university has a low number of extra
curricular activities is probably also higher than the
likelihood that a low poverty individual accepted into
university has a low number of extracurricular activities.
This implies that the second inverse likelihood ratio
would be high, thus trading off with the first likelihood
ratio.

D Further Analysis of Law School
Admissions Experiments

Figure 9 shows the distribution of the LSAT scores, un-
dergraduate GPA, and bar exam outcomes. Examples
where the bar exam outcome was missing were omitted
in our experiments.

E Further Analysis of Funding
Proposals Experiments

Figure 10 gives a histogram of the four different poverty
levels, which are ordinal with level 3 being the most
impoverished.

Figure 11 (top) shows the training examples’ average
number of exciting projects, where the error bars show
the standard error of the mean. The poverty level
feature ranges from 0 to 3, with 0 denoting low poverty
and 3 denoting the highest poverty level. For ease of
visualization, we show the quartiles of the students-
reached feature.

Figure 11 (middle) shows the predicted probability

Students that Passed the Bar Exam

Students that Failed the Bar Exam

Figure 9: Distribution over the full Law School Admis-
sions dataset of undergraduate GPA and LSAT score
students for students that passed the bar exam (top)

and students that failed the bar exam (bottom).
The dataset consists of 94.86% students that passed
the bar exam.

that a project is exciting for a GAM model without
the proposed ethical constraints. The model gives
lower scores to poverty level 2 (poorer schools) than
to poverty level 1 (richer schools) for every quartile of
students reached. The model also gives higher scores
for project that reach 30-100 students tahn to projects
that reach 100+ students.

Figure 11 (bottom) shows that training with an ethi-
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cal monotonicity shape constraint works: at the same
poverty level, projects that affect more students are
given a higher score. For the same quartile of students
reached, the score also does not decrease for higher
poverty levels.

Figure 10: Histogram of the poverty level feature from
the Funding Proposals dataset. 0 represents lowest
poverty and 3 represents highest poverty.

Funding Proposals: Training Examples

Funding Proposals: Unconstrained Model Predictions

Funding Proposals: Monotonic Model Predictions

Figure 11: (top) Plot of the observed rate of excit-
ing projects (mean number of exciting projects) as a
function of each project’s poverty level and number
of students reached. Error bars show the standard
deviation. (middle) Unconstrained model predictions.
(bottom) Shape-constrained model predictions.


