
Assessing Local Generalization Capability in Deep Models

Huan Wang
huan.wang@salesforce.com

Nitish Shirish Keskar
nkeskar@salesforce.com

Caiming Xiong
cxiong@salesforce.com

Richard Socher
rsocher@salesforce.com

Salesforce Research

Abstract

While it has not yet been proven, empirical
evidence suggests that model generalization
is related to local properties of the optima,
which can be described via the Hessian. We
connect model generalization with the local
property of a solution under the PAC-Bayes
paradigm. In particular, we prove that model
generalization ability is related to the Hessian,
the higher-order “smoothness” terms charac-
terized by the Lipschitz constant of the Hes-
sian, and the scales of the parameters. Guided
by the proof, we propose a metric to score the
generalization capability of a model, as well
as an algorithm that optimizes the perturbed
model accordingly.

1 Introduction

Deep models have proven to work well in applications
such as computer vision (Krizhevsky et al., 2012) (He
et al., 2014) (Karpathy et al., 2014), speech recog-
nition (Mohamed et al., 2012) (Hinton et al., 2012),
and natural language processing (Socher et al., 2013)
(Graves, 2013) (McCann et al., 2018). Despite often
having many more parameters than number of training
samples, deep models generalize well (Huang et al.,
2017).

Classical learning theory suggests that model gener-
alization capability should be closely related to the
“complexity” of the hypothesis space, usually measured
in terms of number of parameters, Rademacher com-
plexity or VC-dimension. However, this theoretical
result contradicts the empirical observation that over-
parameterized models generalize well on unseen test
data. For example, over-parameterized neural net-

Proceedings of the 23
rd
International Conference on Artificial

Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.

PMLR: Volume 108. Copyright 2020 by the author(s).

works can fit any function of sample size n, making the
Rademacher complexity large, but empirically those
neural networks generalize well (Zhang et al., 2016).
Indeed, even if the hypothesis space is complex, the
final solution learned from a given training set may
still be simple. This suggests the generalization capa-
bility of the model is also related to the property of
the solution.

Keskar et al. (2017) and Chaudhari et al. (2017) em-
pirically observe that the generalization ability of a
model is related to the spectrum of the Hessian matrix
r2

L(w⇤) evaluated at the solution w
⇤, and that large

eigenvalues of the r2
L(w⇤) often leads to poor model

generalization. Also, (Keskar et al., 2017), (Chaudhari
et al., 2017) and (Novak et al., 2018b) introduce several
di↵erent metrics to measure the “sharpness” of the so-
lution and demonstrate the connection between these
sharpness metrics and the generalization empirically.
Dinh et al. (2017) later point out that most of the
Hessian-based sharpness measures are problematic and
cannot be applied directly to explain generalization.
In particular, they show that the geometry of the pa-
rameters in RELU-MLP can be modified drastically by
re-parameterization.

Another line of work originates from Bayesian analysis.
Mackay (1995) first introduced Taylor expansion to ap-
proximate the (log) posterior of the parameters given
the data, and considered the second-order term, char-
acterized by the Hessian of the loss function, as a way
of evaluating the model simplicity, or “Occam factor”.
Recently Smith and Le (2018) use this factor to penal-
ize sharp minima, and determine the optimal batch size.
Germain et al. (2016) connect the PAC-Bayes bound
and the Bayesian marginal likelihood when the loss is
(bounded) negative log-likelihood, which leads to an
alternative perspective on Occam’s razor. (Langford
and Caruana, 2001), and more recently, (Harvey et al.,
2017) (Neyshabur et al., 2017) (Neyshabur et al., 2018)
use PAC-Bayes bound to analyze the generalization
behavior of the deep models.

Since the PAC-Bayes bound holds uniformly for all
“posteriors”, it also holds for some particular “poste-

mailto:huan.wang@salesforce.com
mailto:nkeskar@salesforce.com
mailto:cxiong@salesforce.com
mailto:rsocher@salesforce.com


Assessing Local Generalization Capability in Deep Models

rior” (i.e. the solution parameter perturbed with noise).
This provides a natural way to incorporate the local
properties of the solution into the generalization anal-
ysis. In particular, Neyshabur et al. (2017) suggest
to use the di↵erence between the perturbed loss and
the empirical loss as the sharpness metric. Dziugaite
and Roy (2017) try to optimize the PAC-Bayes bound
instead for a better model generalization. Still some
fundamental questions remain unanswered.

In this paper we are interested in the following question:

How is model generalization related to the
local “smoothness” of a solution?

The question above is also related to several practical
questions, for example, during training how to balance
the sharpness of the local optima and the empirical
loss? It has been observed that adding perturbation
in training can help boosting the generalization per-
formance (Zhu et al., 2018) (Jastrzȩbski et al., 2017),
but how to choose the perturbation level for di↵erent
parameters remains unknown. We try to answer these
questions from the PAC-Bayes perspective. Under mild
assumptions on the Hessian of the loss function, we
prove that the generalization error of the model is re-
lated to this Hessian, the Lipschitz constant of the
Hessian, the scales of the parameters, and the number
of training samples. Our analysis also gives rise to a
new metric for generalization, which we show can be
use to identify an approximately optimal perturbation
level to aid generalization. Interestingly, the latter
turns out to be related to Hessian as well. Inspired by
this observation, we propose a perturbation based algo-
rithm that makes use of the estimation of the Hessian
to improve model generalization.

2 Sharp minimum v.s. Flat Minimum
- A Toy Example

Let us start with a toy example to demonstrate di↵erent
behaviors of local optima. We construct a small 2-
dimensional sample set from a mixture of 3 Gaussians,
and then binarize the labels by thresholding them from
the median value. The sample distribution is shown
in Figure 1b. For the model we use a 5-layer MLP
with sigmoid as the activation and cross entropy as the
loss. There are no bias terms in the linear layers, and
the weights are shared. For the shared 2-by-2 linear
coe�cient matrix, we treat two entries as constants
and optimize the other 2 entries. In this way the whole
model has only two free parameters w1 and w2.

The model is trained using 100 samples. Fixing the
samples, we plot the loss function with respect to
the model variables L̂(w1, w2), as shown in Figure 1a.

Many local optima are observed even in this simple
two-dimensional toy example. In particular: a sharp
one, marked by the vertical green line, and a flat one,
marked by the vertical red line. The colors on the
loss surface display the values of the generalization
metric scores (pacGen) which we will define in Section
7. Smaller metric value indicates better generalization
power.

As displayed in the figure, the metric score around the
global optimum, indicated by the vertical green bar, is
high, suggesting possible poor generalization capability
as compared to the local optimum indicated by the red
bar. We also plot a plane on the bottom of the figure.
The color projected on the bottom plane indicates an
approximated generalization bound, which considers
both the loss and the generalization metric.1 The local
optimum indicated by the red bar, though has a slightly
higher loss, has a similar overall bound compared to
the “sharp” global optimum.

On the other hand, fixing the parameter w1 and w2,
we may also plot the labels predicted by the model
given the samples. Here we plot the prediction from
both the sharp minimum (Figure 1c) and the flat mini-
mum (Figure 1d). The sharp minimum, even though
it approximates the true label better, has some com-
plex structures in its predicted labels, while the flat
minimum seems to produce a simpler classification
boundary.

3 PAC-Bayes and Model
Generalization

We consider the supervised learning in PAC-
Bayes scenario (McAllester, 2003) (McAllester, 1998)
(McAllester, 1999) (Langford and Shawe-Taylor, 2002).
Suppose we have a labeled data set S = {si = (xi, yi) |
i 2 {1, . . . , n}, xi 2 Rd

, yi 2 {0, 1}k}, where (xi, yi) are
sampled i.i.d. from a distribution xi, yi ⇠ Ds.

The PAC-Bayes paradigm assumes probability mea-
sures over the function class F : X ! Y. In particular,
it assumes a “posterior” distribution Df as well as a
“prior” distribution ⇡f over the function class F. We
are interested in minimizing the expected loss, in terms
of both the random draw of samples as well as the
random draw of functions:

L(Df ,Ds) = Ef⇠DfEx,y⇠Ds l(f, x, y). (1)

Correspondingly, the empirical loss in the PAC-Bayes
paradigm is the expected loss over the draw of functions

1
the bound was approximated with ⌘ = 39 using inequal-

ity (11)



Huan, Nitish, Caiming, and Richard

(a) Loss landscape. (b) Sample distribution
(c) Predicted labels by the

sharp minimum

(d) Predicted labels by the flat

minimum

Figure 1: Loss Landscape and Predicted Labels of a 5-layer MLP with 2 parameters. In (a), the color on the loss
surface shows the pacGen scores. The color on the bottom plane shows an approximated generalization bound.

from the posterior:

L̂(Df ,S) = Ef⇠Df

1

n

nX

i=1

l(f, xi, yi) (2)

PAC-Bayes theory suggests the gap between the ex-
pected loss (1) and the empirical loss (2) is bounded by
a term that is related to the KL divergence between Df

and ⇡f (McAllester, 1999) (Langford and Shawe-Taylor,
2002). In particular, if the function f is parameterized
as f(w) with w 2 W, when Dw is perturbed around
any w, we have the following PAC-Bayes bound (Seldin
et al., 2012b) (Seldin et al., 2012a) (Neyshabur et al.,
2017) (Neyshabur et al., 2018):

Theorem 1 (PAC-Bayes-Hoe↵ding Perturbation). Let
l(f, x, y) 2 [0, 1], and ⇡ be any fixed distribution over
the parameters W. For any � > 0 and ⌘ > 0, with
probability at least 1 � � over the draw of n samples,
for any w and any random perturbation u,

Eu[L(w + u)] Eu[L̂(w + u)]

+
KL(w + u||⇡) + log 1

�

⌘
+

⌘

2n
(3)

One may further optimize ⌘ to get a bound that scales
approximately as Eu[L(w + u)] . Eu[L̂(w + u)] +

2
q

KL(w+u||⇡)+log 1
�

2n (Seldin et al., 2012a).2 A nice
property of the perturbation bound (3) is it connects
the generalization with the local properties around the
solution w through some perturbation u around w. In
particular, suppose L̂(w⇤) is a local optimum, when the
perturbation level of u is small, Eu[L̂(w⇤ + u)] tends
to be small, but KL(w⇤ + u||⇡) may be large since the
posterior is too “focused” on a small neighboring area
around w

⇤, and vice versa. As a consequence, we may
need to search for an “optimal” perturbation level for
u so that the bound is minimized.

2
Since ⌘ cannot depend on the data, one has to build a

grid and use the union bound.

4 Main Result

While some researchers have already discovered empiri-
cally the generalization ability of the models is related
to the second order information around the local op-
tima, to the best of our knowledge there is no work
on how to connect the Hessian matrix r2

L̂(w) with
the model generalization rigorously. In this section we
introduce the local smoothness assumption, as well as
our main theorem.

It may be unrealistic to assume global smoothness prop-
erties for the deep models. Usually the assumptions
only hold in a small local neighborhood Neigh(w⇤)
around a reference point w⇤. In this paper we define
the neighborhood set asNeigh(w⇤) = {w | |wi�w

⇤
i | 

i 8i}, where i 2 R+ is the “radius” of the i-th coor-
dinate. In our draft we focus on a particular type of
radius i(w⇤) = �|w⇤

i |+ ✏, but our argument holds for
other types of radius, too.

In order to get a control of the deviation of the opti-
mal solution we need to assume in Neigh�,✏(w⇤), the

empirical loss function L̂ in (2) is Hessian Lipschitz,
which is defined as:

Definition 1 (Hessian Lipschitz). A twice di↵eren-
tiable function f(·) is ⇢-Hessian Lipschitz if:

8w1, w2, kr2
f(w1)�r2

f(w2)k  ⇢kw1 � w2k,

where k · k is the operator norm.

The Hessian Lipschitz condition has been used in
the numeric optimization community to model the
smoothness of the second-order gradients (Nesterov
and Polyak, 2006) (Carmon et al., 2018) (Jin et al.,
2018). In the rest of the draft we always assume the
following:

Assumption 1. In Neigh(w⇤) the empirical loss
L̂(w) defined in (2) is convex, and ⇢-Hessian Lipschitz.

For the uniform perturbation, the following theorem
holds:



Assessing Local Generalization Capability in Deep Models

Figure 2: Loss Landscape as the perturbation level increases. From left to right: ⌘ = 1000, 0.1, 0.01, 1e-5.

Theorem 2. Suppose the loss function l(f, x, y) 2
[0, 1], and model weights are bounded |wi| + i(w) 
⌧i 8i. With probability at least 1 � � over the draw
of n samples, for any w̌ 2 Rm such that assumption 1
holds

Eu[L(w̌ + u)]  L̂(w̌) +O

0

@

s
m+

P
i log

⌧i
�̌i

+ log 1
�

n

1

A

where ui ⇠ U(��̌i, �̌i) are i.i.d. uniformly distributed
random variables, and �̌i(w̌, ⌘, �) =

min

 s
1

p
mn(r2

i,iL̂(w̌)/3 + ⇢m1/2i(w̌)/9)
,i(w̌)

!

(4)

Theorem 2 says if we choose the perturbation levels
carefully, the expected loss of a uniformly perturbed
model is controlled. The bound is related to the di-
agonal element of Hessian (logarithmic), the Lipschitz
constant ⇢ of the Hessian (logarithmic), the neigh-
borhood scales characterized by  (logarithmic), the
number of parameters m, and the number of samples n.
Also roughly the perturbation level is inversely related

to
q
r2

i,iL̂, suggesting the model be perturbed more

along the coordinates that are “flat”.3

Similar argument can be made on the truncated Gaus-
sian perturbation, which is presented in Appendix C.
In the next section we walk through some intuitions of
our arguments.

5 Connecting Generalization and
Hessian

Suppose the empirical loss function L̂(w) satisfies the
local Hessian Lipschitz condition, then by Lemma 1 in
(Nesterov and Polyak, 2006), the perturbation of the
function around a fixed point can be bounded by terms

3
Unfortunately the bound in theorem 2 does not explain

the over-parameterization phenomenon since when m� n
the right hand side explodes.

up to the third-order,

L̂(w + u)  L̂(w) +rL̂(w)Tu+
1

2
u
Tr2

L̂(w)u

+
1

6
⇢kuk3 for w + u 2 Neigh(w) (5)

For perturbations with zero expectation, i.e., E[u] = 0,
the linear term in (5), Eu[rL̂(w)Tu] = 0. Because
the perturbation ui for di↵erent parameters are inde-
pendent, the second order term can also be simplified,
since

Eu[
1

2
u
Tr2

L̂(w)u] =
1

2

X

i

r2
i,iL̂(w)E[u2

i ], (6)

where r2
i,i is simply the i-th diagonal element in Hes-

sian.

Considering (3),(5) and assumption 1, it is straightfor-
ward to see the bound below holds with probability at
least 1� �

Eu[L(w
⇤ + u)]  L̂(w⇤) +

1

2

X

i

r2
i,iL̂(w

⇤)E[u2
i ]

+
⇢

6
E[kuk3] +

KL(w⇤ + u||⇡) + log 1
�

⌘
+

⌘

2n
(7)

Suppose ui ⇠ U(��i,�i), and �i  i(w) 8i. That is,
the “posterior” distributions of the model parameters
are uniform distribution, and the distribution supports
vary for di↵erent parameters. We also assume the
perturbed parameters are bounded, i.e., |wi|+i(w) 
⌧i 8i.4 If we choose the prior ⇡ to be ui ⇠ U(�⌧i, ⌧i),
and then KL(w + u||⇡) =

P
i log(⌧i/�i).

When � is small, the third order terms ⇢
6E[kuk

3]
are small compared to the second order terms
1
2

P
i r2

i L̂(w)E[u2
i ]. In this case we bound the third

4
One may also assume the same ⌧ for all parameters for

a simpler argument. The proof procedure goes through in

a similar way.



Huan, Nitish, Caiming, and Richard

order terms simply by

⇢

6
E[kuk3]  ⇢m

1/2

6
E[kuk33]

 ⇢m
1/2

6

X

i

i(w)E[u2
i ] =

⇢m
1/2

18

X

i

i(w)�
2
i , (8)

where we use the inequality kuk2  m
1
6 kuk3 and m is

the number of parameters. Pluging in (7), we get

Eu[L(w + u)]  L̂(w) +
1

6

X

i

r2
i,iL(w)�

2
i

+
⇢m

1/2

18

X

i

i(w)�
2
i +

P
i log

⌧i
�i

+ log 1
�

⌘
+

⌘

2n
(9)

If r2
i,iL̂(w) + ⇢m

1/2(�|wi|+ ✏)/3 > 0, solve for � that
minimizes the right hand side, and we have

�
⇤
i (w, ⌘, �) =

min

✓s
1

⌘(r2
i,iL(w)/3 + ⇢m1/2(�|wi|+ ✏)/9)

, �|wi|+ ✏

◆

(10)

Otherwise if r2
i,iL(w) + ⇢m

1/2(�|wi| + ✏)/3  0,
�
⇤
i (w, ⌘, �) = �|wi|+ ✏.

Equation (10) suggests that the optimal perturba-
tion level approximately decreases with a speed of

1/
q
r2

i,iL̂(w) as the corresponding Hessian diagonal

increases.

If we assume L̂(w) is locally convex around w
⇤ so that

r2
i,iL̂(w

⇤) � 0 for all i, solve for � that minimizes the
right hand side, and we have the following lemma:

Lemma 3. Suppose the loss function l(f, x, y) 2 [0, 1],
and model weights are bounded |wi| + i(w)  ⌧i 8i.
Given any � > 0 and ⌘ > 0, with probability at least
1 � � over the draw of n samples, for any w

⇤ 2 Rm

such that assumption 1 holds,

Eu[L(w
⇤ + u)]  L̂(w⇤) +

m/2 +
P

i log
⌧i
�⇤
i
+ log 1

�

⌘

+
⌘

2n
(11)

where ui ⇠ U(��
⇤
i ,�

⇤
i ) are i.i.d. uniformly perturbed

random variables, and �
⇤
i (w

⇤
, ⌘, �) =

min

 s
1

⌘(r2
i,iL(w

⇤)/3 + ⇢m1/2i(w⇤)/9))
,i(w

⇤)

!
.

(12)

Figure (2) shows the e↵ect of increasing the perturba-
tion levels, i.e., decreasing ⌘, on the toy example. It is

Figure 3: Sharpness Metric for L̂(w), 1-dimensional
case. If we fix the perturbation level and integrate over
the window of u around w, the flat minimum has a
lower loss value, so sharper local minimum leads to
larger M(S, w,Du).

observed that as the perturbation level increases, the
“flat” minimum becomes lower compared to the “sharp”
minimum. However if the perturbation level is too
high the whole loss surface will be smoothed out. Thus
a reasonable level of perturbation is desired. In our
experiment, we simply treat ⌘ as a hyper-parameter.

On other hand, one may further build a weighted grid
over ⌘ and optimize for the best ⌘ (Seldin et al., 2012a).
That leads to Theorem 2. Details of the proof are
presented in the Appendix D and E.

5.1 Generalization and Spectrum of Hessian

Note by extrema of the Rayleigh quotient, the quadratic
term on the right hand side of inequality (5) is further
bounded by

u
Tr2

L̂(w)u  �max(r2
L̂(w))kuk2. (13)

This is consistent with Keskar et al. (2017) ’s empirical
observations that the generalization ability of the model
is related to the eigenvalues of r2

L̂(w). The inequality
(13) still holds even if the perturbations ui and uj are
correlated. This suggests the following lemma:

Lemma 4. Suppose the loss function l(f, x, y) 2 [0, 1].
Let ⇡ be any distribution on the parameters that is
independent from the data. Given � > 0 ⌘ > 0, with
probability at least 1 � � over the draw of n samples,
for any local optimal w⇤ such that assumption 1 holds,
we have

Eu[L(w
⇤ + u)]  L̂(w⇤) +

1

2
�max

⇣
r2

L̂(w⇤)
⌘X

i

E[u2
i ]

+
⇢

6
E[kuk3] +

KL(w⇤ + u||⇡) + log 1
�

⌘
+

⌘

2n
.

where u is any bounded perturbation s.t. w
⇤ + u 2

Neigh(w⇤).

Note Lemma 4 does not make any zero-centering or in-
dependence assumption about the perturbations. The
detailed proof is in Appendix H.



Assessing Local Generalization Capability in Deep Models

(a) Test Loss - Train Loss (b)  

Figure 4: Generalization gap and   as a function of
epochs for di↵erent batch sizes on MNIST. SGD is used
as the optimizer. The learning rate is set as 0.1 for all
configurations.

5.2 Tradeo↵ between Sharpness and
Divergence

If we look at the right hand side of the inequality (7),
and compare it with the inequality (5) in (Neyshabur
et al., 2017), we see

M(S, w,Du) = EuL̂(w + u)� L̂(w) 

=
1

2

X

i

r2
i,iL̂(w)E[u2

i ] +
⇢

6
E[kuk3]

M(S, w,Du) can be interpreted as the “sharpness” of
the empirical loss. It is closely related to the Hessian
r2

L̂(w), but it is also related to the perturbation dis-
tributions Du. Figure 3 visualizes the M(S, w,Du) of
“flat” and “sharp” minima. The other term

G�,n(⌘,Dw+u,⇡) =
KL(w + u||⇡) + log 1

�

⌘
+

⌘

2n

is related to the divergence between the posterior and
prior distributions of the parameters.

Ideally we would like both M(S, w,Du) and
G�,n(⌘,Dw+u,⇡) to be small for better generalization
capability. However, generally the perturbation distri-
bution that leads to small M(S, w,Du) tends to have
large G�,n(⌘,Dw+u,⇡) for a given prior. As we will see
in the following sections, in the end we have to make
trade-o↵s between the two terms by choosing the right
level of perturbations for each parameter.

6 Comparison to Previous Works

Generalization of deep models has been investigated re-
cently from di↵erent perspectives. Bartlett et al. (2017)
bound the generalization gap by product of spectral
norms of the coe�cients based on techniques related
to Rademacher complexity. Similarly Neyshabur et al.
(2018) derive a spectral norm bound from the PAC-
Bayes framework. Both works get to a frequentist

(a) Test Loss - Train Loss (b)  

Figure 5: Generalization gap and   as a function of
epochs for di↵erent learning rates on MNIST. SGD is
used as the optimizer. The batch size is set as 256 for
all configurations.

bound on the generalization gap, where the expecta-
tion in the population loss is only over the random
draw of samples. However the loss in our bound is an
expectation over both “posterior” of the function as
well as the sample as defined in (1).

Even though the worst-case solution of the neural net-
work function class could be bad, in application due to
some implicit bias the optimizer may not return the
worst-case solution (Soudry et al., 2018) (Arora et al.,
2019) (Gunasekar et al., 2017). According to our bound
as long as the solution is locally smooth the model can
generalize. Our bound is not directly comparable to
the previous works since most previous works do not
depend on local Hessian.

On the Re-parameterization of RELU-MLP
Dinh et al. (2017) points out the spectrum of r2

L̂ itself
is not enough to determine the generalization power.
In particular, for a multi-layer perceptron with RELU
as the activation function, one may re-parameterize the
model and scale the Hessian spectrum arbitrarily with-
out a↵ecting the model prediction and generalization
when cross entropy (negative log likelihood) is used as
the loss and w

⇤ is the “true” parameter of the sample
distribution.

In general our bound does not assume the loss to
be the cross entropy. Also we do not assume the
model is RELU-MLP. As a result we would not
expect our bound stays exactly the same during the
re-parameterization. On the other hand, the optimal
perturbation levels in our bound scales inversely when
the parameters scale, so the bound only changes
approximately with a speed of logarithmic factor.
According to Lemma (3), if we use the optimal
�
⇤ on the right hand side of the bound, r2

L̂(w),
⇢, and w

⇤ are all behind the logarithmic function.
As a consequence, for RELU-MLP, if we do the
re-parameterization trick, the change of the bound is
small.



Huan, Nitish, Caiming, and Richard

7 An Approximate Generalization
Metric

Assuming L̂(w) is locally convex around w
⇤, so that

r2
i,iL̂(w

⇤) � 0 for all i. If we look at Lemma 3, for
fixed m and n, the only relevant term is

P
i log

⌧i
�⇤
i
.

Replacing the optimal �⇤, and using |wi| + i(w) to
approximate ⌧i, we come up with PAC-Bayes based
Generalization metric, called pacGen,5

 (L̂, w
⇤) =

X

i

log (|w⇤
i |+ i(w

⇤))

·max

✓q
r2

i,iL̂(w
⇤) + ⇢(w⇤)

p
mi(w⇤),

1

i(w⇤)

◆
.

A self-explained toy example is displayed in Figure 1.
To calculate the metric on real-world data we need to
estimate the diagonal elements of the Hessian r2

L̂ as
well as the Lipschitz constant ⇢ of the Hessian. For
e�ciency concern we follow Adam (Kingma and Ba,
2014) and approximate r2

i,iL̂ by (rL̂[i])2. Also we use
the exponential smoothing technique with � = 0.999
as in (Kingma and Ba, 2014).

To estimate ⇢, we first estimate the Hessian of a ran-
domly perturbed model r2

L̂(w + u), and then ap-

proximate ⇢ by ⇢ = maxi
|r2

iL(w+ui)�r2
iL(w)|

|ui| . For the
neighborhood radius  we use � = 0.1 and ✏ = 0.1 for
all the experiments in this section.

We used the same model without dropout from the
PyTorch MNIST example 6. Fixing the learning rate
as 0.1, we vary the batch size for training. The gap
between the test loss and the training loss, and the
metric  (L̂, w⇤) are plotted in Figure 4. We had the
same observation as in (Keskar et al., 2017) that as the
batch size grows, the gap between the test loss and the
training loss tends to get larger. Our proposed metric
 (L̂, w⇤) also shows the exact same trend. Note we
do not use LR annealing heuristics as in (Goyal et al.,
2017) which enables large batch training.

Similarly we also carry out experiment by fixing the
training batch size as 256, and varying the learning
rate. Figure 5 shows generalization gap and  (L̂, w⇤)
as a function of epochs. It is observed that as the
learning rate decreases, the gap between the test loss
and the training loss increases. And the proposed
metric  (L̂, w⇤) shows similar trend compared to the
actual generalization gap.

5
Even though we assume the local convexity in our

metric, in application we may calculate the metric on every

points. When r2
i,iL̂(w

⇤
) + ⇢(w⇤

)
p
mi(w

⇤
) < 0 we simply

treat it as 0.
6https://github.com/pytorch/examples/tree/

master/mnist

8 A Perturbed Optimization
Algorithm

Adding noise to the model for better generalization
has proven successful both empirically and theoreti-
cally (Zhu et al., 2018) (Ho↵er et al., 2017) (Jastrzȩbski
et al., 2017) (Dziugaite and Roy, 2017) (Novak et al.,
2018a). Instead of only minimizing the empirical loss,
(Langford and Caruana, 2001) and (Dziugaite and Roy,
2017) assume di↵erent perturbation levels on di↵erent
parameters, and minimize the generalization bound led
by PAC-Bayes for better model generalization. How-
ever how to integrate the smoothness property of the
local optima is not clear.

The right hand side of (3) has Eu[L̂(w + u)]. This
suggests rather than minimizing the empirical loss
L̂(w), we should optimize the perturbed empirical loss
Eu[L̂(w + u)] instead for a better model generalization
power.

We introduce a systematic way to perturb the model
weights based on the PAC-Bayes bound. Again we use
the same exponential smoothing technique as in Adam
(Kingma and Ba, 2014) to estimate the Hessian r2

L̂.
The details of the algorithm is presented in Algorithm
1, where we treat ⌘ as a hyper-parameter.

Algorithm 1 Perturbed OPT

1: Require ⌘, � = 0.1, �1 = 0.999, �2 = 0.1, ✏=1e-5.

2: Initialization: �i  0 for all i. t 0, h0  0

3: for epoch in 1, . . . , N do

4: for minibatch in one epoch do

5: for all i do
6: if t > 0 then

7: ⇢[i] |ht[i]�ht�1[i]|
kwt�wt�1k

8: [i] �
log(1+epoch) |wt�1[i]|+ ✏

9: �i  min

✓
1

log(1+epoch)
p

⌘(ht[i]+⇢[i]·[i])
,[i]

◆
·

1|gt[i]|<�2

10: end if

11: ut[i] ⇠ U(��i,�i)(sample a set of perturba-

tions)

12: end for

13: gt+1  rwL̂t(wt + ut) (get stochastic gradients

w.r.t. perturbed loss)

14: ht+1  �1ht+(1��1)g
2
t+1 (update second moment

estimate)

15: wt+1  OPT(wt) (update w using o↵-the-shell

algorithms)

16: t t+ 1

17: end for

18: end for

Even though in theoretical analysis Eu[rL̂ · u] = 0, in
applications, rL̂ · u won’t be zero especially when we
only implement 1 trial of perturbation. On the other
hand, if the gradient rL̂ is close to zero, then the
first order term can be ignored. As a consequence, in

https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/mnist


Assessing Local Generalization Capability in Deep Models

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny ImageNet

Figure 6: Training and validation accuracy of PertOPT and Dropout on CIFAR and tiny image net.

Algorithm 1 we only perturb the parameters that have
small gradients whose absolute value is below �2. For
e�ciency issues we used a per-parameter ⇢i capturing
the variation of the diagonal element of Hessian. Also
we decrease the perturbation level with a log factor as
the epoch increases.

9 Experiments

In this section we evaluate our PertOPT algorithm on
three real-world image recognition datasets: CIFAR-10,
CIFAR-100 (Krizhevsky, 2009), and Tiny ImageNet7.
We use the Wide-ResNet (Zagoruyko and Komodakis,
2018) as the prediction model.8 The depth of the
chosen model is 58, and the widen-factor is set as
3. The dropout layers are turned o↵. For CIFAR-10
and CIFAR-100, we use Adam with a learning rate of
10�4, and the batch size is 128. For the perturbation
parameters we use ⌘ = 0.01, � = 10, and ✏=1e-5. For
Tiny ImageNet, we use SGD with learning rate 10�2,
and the batch size is 200. For the perturbed SGD
we set ⌘ = 100, � = 1, and ✏=1e-5. Also we use the
validation set as the test set for the Tiny ImageNet.

We compare the PertOPT algorithm against the origi-
nal model as well as the one with dropout (Srivastava
et al., 2014). Dropout can be viewed as multiplicative
perturbation using Bernoulli random variables. It has
already been widely used in almost every deep models.
We present results using the exact same wide resnet
architectures except the dropout layers are turned on
or o↵. We report the accuracy with dropout rate of
0.0, 0.1, 0.3, and 0.5 on CIFAR-10 and CIFAR-100.
For Tiny ImageNet we report the result with dropout
rate being 0.0, 0.1, and 0.3. For our Pertubed OPT
algorithm all the dropout layers are turned o↵.

Figure (6a), (6b), and (6c) show the accuracy ver-
sus epochs for training and validation in CIFAR-10,
CIFAR-100, and Tiny ImageNet respectively. In Fig-

7https://tiny-imagenet.herokuapp.com/
8https://github.com/meliketoy/wide-resnet.

pytorch/blob/master/networks/wide_resnet.py

ure (6a) and (6b), Adam-train, and adam-val use the
wide resnet model with 0 dropout rate. Perturbed-val
and perturbed-train use the same wide resnet with 0
dropout rate, but add perturbation according to algo-
rithm 1. It is pretty clear that with added dropout
the validation/test accuracy gets boosted compared to
the original method. For CIFAR-10, dropout rate 0.3
seems to work best compared to all the other dropout
configurations. For CIFAR-100 and Tiny ImageNet,
dropout 0.1 seems to work better. This may be due
to the fact that CIFAR-10 has less training samples so
more regularization is needed to prevent overfit.

For our PertOPT algorithm, we observe the e↵ect with
perturbation appears similar to regularization. With
the perturbation, the accuracy on the training set tends
to decrease, but the test on the validation set increases.

Although both PertOPT and dropout can be viewed
as certain kind of regularization, in all experiments
the PertOPT algorithm shows better performance on
the validation/test data sets compared to the dropout
methods. One possible explanation is maybe the Per-
tOPT algorithm puts di↵erent levels of perturbation on
di↵erent parameters according to the local smoothness
structures, while only one dropout rate is set for all
the parameters across the model.

10 Conclusion

We connect the smoothness of the solution with the
model generalization in the PAC-Bayes framework. We
prove that the generalization power of a model is re-
lated to the Hessian and the smoothness of the solution,
the scales of the parameters, as well as the number of
training samples. To the best of our knowledge, this
is the first work that integrate Hessian in the model
generalization bound rigorously. Based on our gener-
alization bound, we propose a new metric to test the
model generalization and a new perturbation algorithm
that adjusts the perturbation levels according to the
Hessian.

https://tiny-imagenet.herokuapp.com/
https://github.com/meliketoy/wide-resnet.pytorch/blob/master/networks/wide_resnet.py
https://github.com/meliketoy/wide-resnet.pytorch/blob/master/networks/wide_resnet.py


Huan, Nitish, Caiming, and Richard

References

S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit
regularization in deep matrix factorization. CoRR,
abs/1905.13655, 2019.

P. L. Bartlett, D. J. Foster, and M. Telgarsky.
Spectrally-normalized margin bounds for neural
networks. Neural Information Processing Systems
(NeurIPS), 2017.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford.
Accelerated methods for nonconvex optimization.
SIAM Journal on Optimization, 2018.

P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun,
C. Baldassi, C. Borgs, J. Chayes, L. Sagun, and
R. Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. International Conference on Learn-
ing Representations (ICLR), 2017.

L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp
minima can generalize for deep nets. International
Conference on Machine Learning (ICML), 2017.

G. K. Dziugaite and D. M. Roy. Computing nonvacuous
generalization bounds for deep (stochastic) neural
networks with many more parameters than training
data. Uncertainty in Artificial Intelligence (UAI),
2017.

P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien.
Pac-bayesian theory meets bayesian inference. Con-
ference on Neural Information Processing Systems
(NIPS), 2016.

P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He. Accurate, large minibatch SGD: training im-
agenet in 1 hour. http://arxiv.org/abs/1706.02677,
2017.

A. Graves. Generating sequences with recurrent neural
networks. http://arxiv.org/abs/1308.0850, 2013.

S. Gunasekar, B. E. Woodworth, S. Bhojanapalli,
B. Neyshabur, and N. Srebro. Implicit regulariza-
tion in matrix factorization. Advances in Neural
Information Processing Systems 30, 2017.

N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight
VC-dimension bounds for piecewise linear neural
networks. Conference on Learning Theory (COLT),
2017.

K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid
pooling in deep convolutional networks for visual
recognition. European Conference on Computer Vi-
sion (ECCV), 2014.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman
Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingsbury. Deep neu-
ral networks for acoustic modeling in speech recogni-
tion. Signal Processing Magazine, 2012.

E. Ho↵er, I. Hubara, and D. Soudry. Train longer,
generalize better: closing the generalization gap in
large batch training of neural networks. Interna-
tional Conference on Neural Information Processing
Systems (NIPS), 2017.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Wein-
berger. Densely connected convolutional networks.
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

S. Jastrzȩbski, Z. Kenton, D. Arpit, N. Bal-
las, A. Fischer, Y. Bengio, and A. Storkey.
Three factors influencing minima in sgd.
https://arxiv.org/abs/1711.04623, 2017.

C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated
gradient descent escapes saddle points faster than
gradient descent. Conference On Learning Theory
(COLT), 2018.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-
thankar, and L. Fei-Fei. Large-scale video classifi-
cation with convolutional neural networks. IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2014.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy,
and P. T. P. Tang. On large-batch training for deep
learning: Generalization gap and sharp minima. In-
ternational Conference on Learning Representations
(ICLR), 2017.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. International Conference on Learn-
ing Representations (ICLR), 2014.

A. Krizhevsky. Learning multiple layers of features
from tiny images. Tech Report, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural
networks. International Conference on Neural Infor-
mation Processing Systems (NIPS), 2012.

J. Langford and R. Caruana. (not) bounding the true
error. Advances in Neural Information Processing
Systems (NIPS), 2001.

J. Langford and J. Shawe-Taylor. Pac-bayes & margins.
International Conference on Neural Information Pro-
cessing Systems (NIPS), 2002.

D. J. C. Mackay. Probable networks and plausible pre-
dictions - a review of practical bayesian methods for
supervised neural networks. Network Computation
in Neural Systems, 1995.

D. A. McAllester. Some pac-bayesian theorems. Con-
ference on Learning Theory (COLT), 1998.

D. A. McAllester. Pac-bayesian model averaging. Con-
ference on Learning Theory (COLT), 1999.



Assessing Local Generalization Capability in Deep Models

D. A. McAllester. Simplified pac-bayesian margin
bounds. Conference on Learning Theory (COLT),
2003.

B. McCann, N. S. Keskar, C. Xiong, and
R. Socher. The natural language decathlon:
Multitask learning as question answering.
https://arxiv.org/abs/1806.08730, 2018.

A. Mohamed, G. E. Dahl, and G. Hinton. Acoustic
modeling using deep belief networks. IEEE Trans-
actions on Audio, Speech, and Language Processing,
2012.

Y. Nesterov and B. Polyak. Cubic regularization of
newton method and its global performance. Mathe-
matical Programming, 2006.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and
N. Srebro. Exploring generalization in deep learn-
ing. Conference on Neural Information Processing
Systems (NIPS), 2017.

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A pac-
bayesian approach to spectrally-normalized margin
bounds for neural networks. International Confer-
ence on Learning Representations (ICLR), 2018.

R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington,
and J. Sohl-Dickstein. Sensitivity and generaliza-
tion in neural networks: an empirical study. In-
ternational Conference on Learning Representations
(ICLR), 2018a.

R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington,
and J. Sohl-Dickstein. Sensitivity and generaliza-
tion in neural networks: an empirical study. In-
ternational Conference on Learning Representations
(ICLR), 2018b.

Y. Seldin, F. Laviolette, N. Cesa-Bianchi, J. Shawe-
Taylor, and P. Auer. Pac-bayesian inequalities for
martingales. IEEE Transactions on Information
Theory, 2012a.

Y. Seldin, F. Laviolette, and J. Shawe-Taylor. Pac-
bayesian analysis of supervised, unsupervised, and
reinforcement learning. International Conference on
Machine Learning (Tutorials), 2012b.

S. L. Smith and Q. V. Le. A bayesian perspective on
generalization and stochastic gradient descent. In-
ternational Conference on Learning Representations
(ICLR), 2018.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Man-
ning, A. Ng, and C. Potts. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2013.

D. Soudry, E. Ho↵er, and N. Srebro. The implicit bias
of gradient descent on separable data. International
Conference on Learning Representations, 2018.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of
Maching Learning Research, 2014.

S. Zagoruyko and N. Komodakis. Wide residual net-
works. British Machine Vision Conference (BMVC),
2018.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and
O. Vinyals. Understanding deep learning requires
rethinking generalization. International Conference
on Learning Representations (ICLR), 2016.

Z. Zhu, J. Wu, B. Yu, L. Wu, and J. Ma. The
anisotropic noise in stochastic gradient descent: Its
behavior of escaping from minima and regularization
e↵ects. https://arxiv.org/abs/1803.00195, 2018.


	Introduction
	Sharp minimum v.s. Flat Minimum - A Toy Example
	PAC-Bayes and Model Generalization
	Main Result
	Connecting Generalization and Hessian
	Generalization and Spectrum of Hessian
	Tradeoff between Sharpness and Divergence

	Comparison to Previous Works
	An Approximate Generalization Metric
	A Perturbed Optimization Algorithm
	Experiments
	Conclusion
	Details of The Toy Example
	Details of Figure 2
	Truncated Gaussian
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Lemma 5
	About the Re-parameterization Invariance
	A Lemma about Eigenvalues of Hessian and Generalization

