
Supplementary Material: Learning High-dimensional
Gaussian Graphical Models under Total Positivity without

Adjustment of Tuning Parameters

A Additional discussion of Condition 3.1
In this section, we explain why a sufficient condition for “λmin(ΣS) ≥ σmin” is that all diagonal entries of Θ
scale as constants:

When all diagonal entries of Θ scale as constants, standard results on the Schur complement yield that all
diagonal entries in (ΣS)−1 also scale as constants. Hence, λmax((ΣS)−1) ≤ trace((ΣS)−1) =

∑
i∈S [(ΣS)−1]ii

is also upper bounded by a constant (since |S| ≤ d+ 4). By combining this with the fact that λmin(ΣS) =
λ−1

max(Σ−1
S ), we can conclude that λmin(ΣS) ≥ σmin for a positive constant σmin.

B Proof of Lemma 3.7

B.1 Characterization of maximal overlaps
Our proof of Lemma 3.7 relies on the following lemma that characterizes the size of maximal overlaps between
any two batches.

Lemma B.1 (Tail-bounds on maximum overlap of subsets). Consider a set of data B := {x(i)}Ni=1 with size
N . Let B1, · · · , BK ⊆ B denote K subsets where each Bk is created by uniformly drawing M samples from
the set B, then ∀ε > 0,

Pr

(
max
i,j
|Bi ∪Bj | <

M2

N
+ εN

)
≥ 1− exp(−2ε2N + 2 logK).

Proof. By union bound, we have for any T > 0,

Pr(max
i,j
|Bi ∩Bj | > T ) ≤

(
K

2

)
Pr(|Bi ∩Bj | > T ). (1)

For any i 6= j, let the random variable y` := 1{x(`) ∈ Bi}·1{x(`) ∈ Bj}, it follows that |Bi∩Bj | =
∑N
l=1 y`

and thus

Pr (|Bi ∩Bj | > T ) = Pr

(
N∑
`=1

y` > T

)
. (2)

In addition, y` is a binary variable satisfying Pr(y` = 1) =
(
M
N

)2.
In this case, it suffices to provide an upper bound on the probability Pr

(∑N
`=1 y` > T

)
. Using basic

results in combinatorics, one can rewrite the conditional probability Pr(y` = 1|y`′ = 1) as follows:

Pr(y` = 1|y`′ = 1) =
|{Bi : x(`′), x(`) ∈ Bi}| · |{Bj : x(`′), x(`) ∈ Bj}|

|{Bi : x(`′) ∈ Bi}| · |{Bj : x(`′) ∈ Bj}|
=

(
N−2
M−2

)2(
N−1
M−1

)2 .
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It follows that

Pr(y` = 1|y`′ = 1) =

(
N−2
M−2

)2(
N−1
M−1

)2 =

(
M − 1

N − 1

)2

≤
(
M

N

)2

= Pr(y` = 1),

which means for any ` 6= `′, the random variables y` and y`′ are negatively correlated. By applying
Chernoff-Hoeffding bounds on sum of negatively associated random variables (see e.g. (Dubhashi et al., 1996,
Theorem 14)), we obtain

Pr

(
N∑
`=1

(y` − E(y`)) > εN

)
≤ exp(−2ε2N). (3)

Combining (1), (2) and (3) and that E (y`) = M2

N2 , we obtain the statement in the lemma.

B.2 Proof of Lemma 3.7
Notations and proof ideas for Lemma 3.7. To simplify notation, we denote each ρ̂ij|Sk as ρ̂k and
denote the subset of data points used to estimate ρ̂k as Bk. Let Σ̂k ∈ R|Sk|+2×|Sk|+2 denote the sample
covariance matrix of the nodes Sk ∪{i, j}. Note that here Σ̂k is estimated from the data in Bk. Let σ̂k denote
the vectorized form of Σ̂k and let σk denote the expectation of σ̂k. Standard results in calculating partial
correlation coefficients show that ρ̂k can be taken as a function of σ̂k, which we denote as

ρ̂k = gk(σ̂k).

Moreover, since the derivatives of all orders of gk(·) at the point σ̂k can be expressed as polynomials of σ̂k
and its inverse (see e.g. Eq. 36 in Wasserman et al. (2014) and the two equations after that), gk(·) is infinitely
differentiable whenever the inputs are non-singular matrices. Let `k denote the first order derivative of gk at
the point σk. It follows that `k(σ̂k − σk) is the first order approximation of gk(σ̂k). Let the residual

rk := gk(σ̂k)− `k(σ̂k − σk). (4)

Let ‖σ̂k − σk‖∞ denote the `∞ norm of the vector σ̂k − σk. Standard results in Taylor expansion show that
when ‖σ̂k − σk‖∞ is negligible, one can rewrite the residual as

rk =
1

2
(σ̂k − σk)THk(σ̃k)(σ̂k − σk),

where Hk(·) is the Hessian matrix of gk and σ̃k is some point in the middle between σ̂k and σk. Let
ρ := (ρ̂1, · · · , ρ̂K)T , L := (`1(σ̂1 − σ1), · · · , `K(σ̂K − σK))T and R := (r1, · · · , rK)T . Since each σ̂k is
estimated using a subset of data with batch size M , there may be overlaps between the set of data used to
calculate different σ̂k’s. Let σ̂

(1)
k denote the sample covariance matrix estimated from the data in Bk\

(
∪

k′ 6=k
Bk′
)

and let σ̂(2)
k denote the sample covariance matrix estimated from the data in the overlaps, i.e., the data in

Bk ∩
(
∪

k′ 6=k
Bk′
)
. Then one can decompose σ̂k as σ̂k = M−Tk

M σ̂
(1)
k + Tk

M σ̂
(2)
k , where Tk is the size of data in the

overlaps. It is obvious that the σ̂(1)
k ’s are independent from each other. Based on the above decomposition,

we denote L = L(1) + L(2), where

L(1) :=
(M − Tk

M
`1(σ̂

(1)
1 − σ1), · · · , M − Tk

M
`K(σ̂

(1)
K − σK)

)T
and

L(2) :=
(Tk
M
`1(σ̂

(2)
1 − σ1), · · · , Tk

M
`K(σ̂

(2)
K − σK)

)T
.

In addition, for any vector a, we write a ≥ 0 whenever all elements of the vector a are greater than or equal
to zero.
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Let the random event

B :=
{

(B1, · · · , BK) : max
k,k′∈[K]

|Bk ∩Bk′ | ≤ 2
M2

N

}
.

By applying Lemma B.1, it follows that there exists some positive constant C that depends on γ such that
Pr(B) ≥ 1− exp(−CN4γ−3). By combining this with the decomposition, we have

Pr(ρ ≥ 0) = Pr(ρ ≥ 0,B) + Pr(ρ ≥ 0,¬B) ≤ Pr(ρ ≥ 0 | B) Pr(B) + Pr(¬B)

≤ Pr(ρ ≥ 0 | B) + Pr(¬B),

where ¬B denotes the complement of the random event B. It is sufficient to prove Lemma 3.7 by proving

Pr(ρ ≥ 0 | B) ≤ exp(−CN
1−γ
2 ) (5)

for some positive constant C that depends on σmax, σmin and d. In other words, it remains to prove that
Pr(ρ ≥ 0) ≤ exp(−CN

1−γ
2 ) when we are under a particular subsampling assignment (B1, · · · , BK) that is in

the random event B.
Preliminary lemmas for Lemma 3.7.

Since the only remaining task is to deal with Eq. (5), for the remainder of the proof of Lemma 3.7 we can
assume that we are under a particular subsampling assignment (B1, · · · , BK) in B. To simplify notation we
omit “ | B” in the remainder of the proof.

Lemma B.2. For all ε > 0, there exists some positive constant C that depends on d, σmax and σmin such
that the following inequality holds:

Pr(‖σ̂k − σk‖∞ > ε) ≤ 2(d+ 2)2e−CMε2 .

Proof. This is a direct consequence of (Wasserman et al., 2014, Lemma 7) and the Gaussianity of the
underlying distribution.

Lemma B.3. For all ε > 0, there exist positive constants C1 and C2 that depend on σmax, σmin and d such
that

Pr(‖R‖∞ ≤ ε) ≥ 1− 2(d+ 2)2e
1−γ
2 logN−C1Mε − 2(d+ 2)2e

1−γ
2 logN−C2

√
M .

Proof. For each rk, let C1 − C3 denote a positive constant that depends on σmin, σmax and d and may vary
from line to line. We have that

Pr(|rk| > ε) = Pr(|rk| > ε, ‖σ̂k − σk‖∞ ≤M−1/4) + Pr(|rk| > ε, ‖σ̂k − σk‖∞ ≥M−1/4)

≤ Pr((|rk| > ε, ‖σ̂k − σk‖∞ ≤M−1/4) + Pr(‖σ̂k − σk‖∞ ≥M−1/4). (6)

Under the random event where ‖σ̂k − σk‖∞ ≤M−1/4, standard results in Taylor expansion show that rk can
be expressed in the form rk = (σ̂k − σk)THk(σ̃k)(σ̂k − σk). Thus one can rewrite (6) as

Pr(|rk| > ε) ≤ Pr
(∣∣∣1

2
(σ̂k − σk)THk(σ̃k)(σ̂k − σk)

∣∣∣ > ε, ‖σ̂k − σk‖∞ ≤M−1/4
)

+ Pr(‖σ̂k − σk‖∞ ≥M−1/4).

Under the random event ‖σ̂k−σk‖∞ ≤M−1/4, σ̃k is in the middle of σ̂k and σk. It follows that ‖σ̃k−σk‖∞ ≤
M−1/4. By combining this with the fact that the Hessian function Hk(·) is infinitely differentiable at the point
σk, there exists some positive constant C1 such that ‖Hk(σ̃k)−Hk(σk)‖∞ ≤ C1. Using that ‖Hk(σk)‖∞ is
also bounded by a positive constant (since it is a function of σk, see e.g. (Wasserman et al., 2014, Section 6.5)
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and (Magnus and Neudecker, 1988, Page 185) for the explicit form), we further obtain that ‖Hk(σ̃k)‖∞ ≤ C1.
As a consequence, one can further rewrite (6) as

Pr(|rk| > ε) ≤ Pr(d
√
C1‖σ̂k − σk‖∞ >

√
ε, ‖σ̂k − σk‖∞ ≤M−1/4)

+ Pr(‖σ̂k − σk‖∞ ≥M−1/4)

≤ Pr(d
√
C1‖σ̂k − σk‖∞ >

√
ε) + Pr(‖σ̂k − σk‖∞ ≥M−1/4).

By applying Lemma B.2, we conclude that Pr(|rk| > ε) ≤ 2(d+ 2)2e−C2Mε + 2(d+ 2)2e−C3

√
M . By taking

the union bound over all k ∈ [K], we obtain the desired statement in the lemma.

Lemma B.4. Let T := maxk Tk. For all ε > 0, there exists some positive constant C that depends on σmax,
σmin and d such that

Pr(‖L(2)‖∞ ≤ ε) ≥ 1− 2(d+ 2)2e
1−γ
2 logN−CM2

T ε2 .

Proof. For each σ̂(2)
k , it follows from Lemma B.2 that for all ε > 0, there exists some positive constant C that

depends on σmax, σmin as well as d such that

Pr(|`k(σ̂
(2)
k − σk)| > ε) ≤ Pr(‖`k‖1‖σ̂(2)

k − σk‖∞ > ε) ≤ 2(d+ 2)2e−CTkε
2

,

where the term ‖`k‖1 is absorbed into the positive constant C since ‖`k‖1 is a constant that depends on
σmax, σmin and d. By taking the union bound and using that Tk ≤ T , we obtain

Pr(‖L(2)‖∞ > ε) ≤
K∑
k=1

Pr
(Tk
M
|`k(σ̂

(2)
k − σk)| > ε

)
≤ 2(d+ 2)2N

1−γ
2 e
−CM2

Tk
ε2

≤ 2(d+ 2)2N
1−γ
2 e−C

M2

T ε2 ,

which completes the proof.

With these preparations we can now prove Lemma 3.7.

Proof of Lemma 3.7. Let C1 − C6 denote positive constants that depend on σmin, σmax and d and may vary
from line to line. For any ε > 0, standard results in probability yield that

Pr(ρ ≥ 0) = Pr(ρ ≥ 0, ‖R‖∞ ≤ ε) + Pr(ρ ≥ 0, ‖R‖∞ ≥ ε)
≤ Pr(L + R ≥ 0, ‖R‖∞ ≤ ε) + Pr(‖R‖∞ ≥ ε)
≤ Pr(L ≥ −ε, ‖R‖∞ ≤ ε) + Pr(‖R‖∞ ≥ ε) ≤ Pr(L ≥ −ε) + Pr(‖R‖∞ ≥ ε).

Then using the decomposition that L = L(1) +L(2), it follows from the same derivation as the above inequality
that for any ε > 0,

Pr(ρ ≥ 0) ≤ Pr(L ≥ −ε) + Pr(‖R‖∞ ≥ ε)
≤ Pr(L(1) ≥ −2ε) + Pr(‖L(2)‖∞ ≥ ε) + Pr(‖R‖∞ ≥ ε).

Then by choosing ε = 1
2
√
M
, it follows directly from Lemmas B.3 and B.4 that there exist positive constants

C1, C2 and C3 such that

Pr(ρ ≥ 0) ≤Pr(L(1) ≥ − 1√
M

) + 2(d+ 2)2e
1−γ
2 logN−C1

√
M (7)

+ 2(d+ 2)2e
1−γ
2 logN−C2

√
M + 2(d+ 2)2e

1−γ
2 logN−C3

M
T .
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Using that the subsampling assignment is from the random event B, it follows that T ≤ 2M2

N ·N
1−γ
2 . By

combining this with (7) and the fact that M = Nγ , we obtain

Pr(ρ ≥ 0) ≤ Pr(L(1) ≥ − 1√
M

) + elog(2(d+2)2)+ 1−γ
2 logN−C1N

γ/2

(8)

+ elog(2(d+2)2)+ 1−γ
2 logN−C2N

γ/2

+ elog(2(d+2)2)+ 1−γ
2 logN−C3N

1−γ
2 .

Then using logN = o(Nγ/2∧ 1−γ
2 ) and log(2(d+ 2)2) = o(Nγ/2∧ 1−γ

2 ), we can absorb the terms log(2(d+ 2)2)

and 1−γ
2 logN into Nγ/2 and N

1−γ
2 respectively and obtain

Pr(ρ ≥ 0) ≤ Pr(L(1) ≥ − 1√
M

) + e−C1N
γ/2

+ e−C2N
1−γ
2 .

It remains to bound the term Pr(L(1) ≥ − 1√
M

). Since all the σ̂(1)
k ’s are independent random vectors, we have

Pr(L(1) ≥ − 1√
M

) =

K∏
k=1

Pr(
M − Tk
M

`k(σ̂
(1)
k − σk) ≥ − 1√

M
)

≤
K∏
k=1

Pr(`k(σ̂
(1)
k − σk) ≥ − 2√

M
),

where the last inequality is based on the fact that Tk � M on the event B and therefore M−Tk
M ≥ 1

2 . Let
νk := M · var(`k(σ̂

(1)
k − σk)). By further applying the standard Berry-Essen theorem, we obtain

|Pr(`k(σ̂
(1)
k − σk) ≥ − 2√

M
)− Pr(Z ≥ −2/

√
νk)| ≤ C5/

√
M,

where Z represents a standard Gaussian random variable. Using that `k(σ̂
(1)
k − σk) can be expressed as the

mean of M − Tk independent random variables and that Tk �M , we obtain that there exists some positive
constant C4 such that for all k ∈ [K], νk ≥ C4. Hence, Pr(Z ≥ −2/

√
νk) ≤ Pr(Z ≥ −2/

√
C4) and

Pr(`k(σ̂
(1)
k − σk) ≥ − 2√

M
) ≤ Pr(Z ≥ −2/

√
C4) + C5/

√
M ≤ C6

for some positive constant C6 < 1. Hence, one can rewrite (8) as

Pr(ρ ≥ 0) ≤ (C6)K + e−C1N
γ/2

+ e−C2N
1−γ
2 ,

which finally yields

Pr(ρ ≥ 0) ≤ e−(log 1
C6

)·N
1−γ
2

+ e−C1N
γ/2

+ e−C2N
1−γ
2

under the random event B, which completes the proof.

C Proof of Theorem 3.6
Proof of Theorem 3.6. For any i 6= j, without loss of generality, we assume that |adji(G)| ≤ |adjj(G)|. Also,
let Sij := adji(G) \ {j}. We denote the random event A by:

A :=
{
for any (i, j) 6∈ G,∃t ∈ [p] \ Sij ∪ {i, j} such that ρ̂i,j|Sij∪{t} ≤ 0

}
.
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Similarly, for each (i, j) 6∈ G, we let

Aij :=
{
∃t ∈ [p] \ Sij ∪ {i, j} such that ρ̂i,j|Sij∪{t} ≤ 0

}
.

Let t1, · · · , tK ∈ [p] \ Sij ∪ {i, j} denote a list of nodes with size K = N
1−γ
2 (this is a valid choice since

Condition 3.3 gives us that p ≥ N
1−γ
2 + d + 2 for any γ ∈ ( 3

4 , 1)). It is straightforward to show that
ρij|Sij∪{tk} = 0 for all k ∈ [K]. Then by setting each Sk in Lemma 3.7 as Sk := Sij ∪ {tk}, it follows
from Lemma 3.7 that with probability at least 1 − exp(−CN

1−γ
2 ∧4γ−3), there exists some tk such that

ρ̂i,j|Sij∪{tk} ≤ 0, which yields Pr(Aij) ≥ 1 − exp(−CN
1−γ
2 ∧4γ−3). By taking the union bound over all the

edges (i, j) 6∈ G, we obtain that Pr(A) ≥ 1− p2e−C
1−γ
2 ∧4γ−3.

Thus, to complete the proof of the theorem, it remains to prove that under the random event A, all
edges (i, j) 6∈ G are deleted by Algorithm 1 when the algorithm is at iteration ` = d+ 1. We prove this by
contradiction. Suppose there exists an edge (i, j) 6∈ G that is not deleted by the algorithm at ` = d + 1.
By applying Theorem 3.5, we obtain that the estimated graph Ĝ in the iteration ` = |adji(G)| satisfies
adji(G) ⊆ adji(Ĝ) and as a consequence the edge (i, j) will be selected at Step 5 of Algorithm 1 at iteration
` = |adji(G)|. Then by choosing the S at Step 7 to be Sij and using that we are on the event A, we obtain
that there exists a node k such that ρ̂ij|S∪{k} ≤ 0. As a consequence, the edge (i, j) will be deleted at Step 8.
This contradicts the fact that the edge (i, j) exists in the final output, which completes the proof.

D Proof of Theorem 3.5
Lemma D.1. Consider a Gaussian random vector X = (X1, · · · , Xp)

T that follows an MTP2 distribution.
Then for any i, j ∈ [p] and any S ⊆ [p] \ {i, j}, it holds that ρij|S ≥ ρij|[p]\{i,j}.

Proof. For ρij|S , if we let M = Si,j , we have

ρij|S = − ((ΣM )−1)iM ,jM√
((ΣM )−1)iM ,iM ((ΣM )−1)jM ,jM

.

Using that the precision matrix Θ is an M-matrix, it follows from basic calculations using Schur complements
that ((ΣM )−1)iM ,iM ≤ Θii, ((ΣM )−1)jM ,jM ≤ Θjj and ((ΣM )−1)iM ,jM ≤ Θij ≤ 0. By combining this with
the fact that ρij|[p]\{i,j} = − Θij√

ΘiiΘjj
, we obtain the lemma.

With this, we can now provide the proof of Theorem 3.5.

Proof. For any edge (i, j) ∈ G and any conditioning set S ⊆ [p] \ {i, j} with |S| ≤ d+ 2, by using the same
decomposition as in (8), we can decompose the random variable ρ̂ij|S as

ρ̂ij|S = ρij|S + `ij|S + rij|S ,

where the random variable `ij|S is the first order approximation of ρ̂ij|S − ρij|S and rij|S is the residual. It
follows from Lemma B.2 and the proof of Lemma B.3 that there exists some positive constant τ such that
with probability at least 1− p−(τ+d+4),

|ρ̂ij|S − ρij|S | ≤ C1

√
(τ + d+ 4)

log p

Nγ
,

where C1 is some positive constant that depends on σmin, σmax and d. By further taking union bound over
all (i, j) ∈ G and all S ⊆ [p] \ {i, j} with |S| ≤ d+ 2, it follows that

Pr

{
∀(i, j) ∈ G, ∀S ⊆ [p] \ {i, j} with |S| ≤ d+ 2, |ρ̂ij|S − ρij|S | ≤ C1

√
(τ + d+ 4)

log p

Nγ

}
≥ 1− p−τ .
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As a consequence, by assuming that cρ in Condition 3.2 is sufficiently large such that cρ > C1

√
d+ 4 and

choosing τ such that τ <
( cρ
C1

)2 − d− 4, it follows from Lemma D.1 that with probability at least 1− p−τ ,
ρ̂ij|S > 0 for all the (i, j, S)’s where (i, j) ∈ G and |S| ≤ d+ 2. Hence, we obtain that the edges (i, j) ∈ G
will not be deleted by Algorithm 1, which completes the proof.

E Additional comments on empirical evaluation

E.1 Stability selection
Overview of stability selection: Stability selection (Meinshausen and Bühlmann, 2006) is a well-known
technique for enhancing existing variable selection algorithms with tuning parameters. Stability selection
works by taking an existing algorithm with a tuning parameter and running it multiple times on different
subsamples of the data with various reasonable values for the tuning parameter. A variable is selected if there
exists a tuning parameter for which it is selected often enough (in our case we use the threshold π = 0.8,
meaning a variable must be present in at least 80% of trials for a given tuning parameter). Because for each
tuning parameter, the algorithm is run many times on different subsamples of the data, stability selection is
very computationally expensive. It is important to note that stability selection is better than simply choosing
the best tuning parameter for a given algorithm, as it is able to combine information across various tuning
parameters where appropriate and adapt to different settings.

The advantages of stability selection: As can be seen from Figure 1(c), the purple line corresponds
to the SH algorithm with stability selection and the pink line corresponds to the SH algorithm where the
best tuning parameter is chosen for each different N (i.e. the y-axis contains the best MCC across all tuning
parameters). Note that the pink line is not a realistic scenario, as in a real-world application we would not
have access to the evaluation metric on the test dataset as we do in this simulated example. However this
example is instructive in showing that even when a particular algorithm is evaluated with the best possible
tuning parameter, stability selection is able to outperform it, showing that stability selection truly offers a
tremendous advantage for the performance of algorithms with tuning parameters. Thus it is remarkable that
our algorithm with theoretically optimal γ is able to compete with other algorithms using stability selection.

Variation of γ and our algorithm with stability selection: It is also worth noting that although our
algorithm doesn’t have a “tuning parameter" in a traditional sense (i.e. our consistency guarantees are valid
for all γ ∈ (0.75, 1)), it is still possible to perform stability selection with our algorithm by using various
choices of γ in the valid range. In particular, we see from Figure 1(c) that our algorithm with γ = 0.85
out-performs the theoretically “optimal" value of γ = 7/9. Thus in practice, because different values of γ lead
to different performance (and in some cases better performance than the theoretically optimal value), our
algorithm would likely be improved by performing stability selection. This would likely offer an improvement
in performance for our algorithm at the expense of higher computational costs. Although it is worth noting
that in our experiments our algorithm without stability selection performed quite competitively.

E.2 FPR and TPR
In Figures E.1 and E.2 we report performance of various methods based on the false positive rate (FPR) and
true positive rate (TPR) respectively. From these figures we can get similar conclusion as using the MCC
measure. In particular, it is important to note that although the TPR of CMIT is higher than our algorithm
across all simulation set ups, its FPR is also high, which makes the overall performance less compelling than
our algorithm. The performance of TIGER is worse than our method in terms of both TPR and FPR.
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(a) Random graphs (b) Chain graphs (c) Grid graphs

Figure E.1: Comparison of different algorithms evaluated on TPR.

(a) Random graphs (b) Chain graphs (c) Grid graphs

Figure E.2: Comparison of different algorithms evaluated on FPR.

E.3 ROC Curves
To generate the ROC curve for each setting of N , we sample 30 different random graphs (random as defined
in Section 4)) and then draw N samples from a multivariate normal with the resulting precision matrix. For
each of the 30 trials, we get an ROC curve for each algorithm based on the range of tuning parameters tried.
To get a mean ROC curve for each algorithm, we average together the 30 trials. The averaged ROC curves
are shown Figure 2(a) as well as Figure E.3. The range of tuning parameters tried for each algorithm is listed
below:

• SH: 20 equally spaced points for q ∈ [0.00, 1.0].

• glasso, nbsel: 20 equally spaced points in log space for λ ∈ [10−6, 101.2].

• CMIT: For computational reasons, we always set η = 1. However the tuning threshold λ is varied as
20 equally spaced points in log space between λ ∈ [10−4, 101.2].

• Our algorithm: We varied γ ∈ [0.75, 0.95] for 10 equally spaced points in this interval.
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(a) ROC Curve N = 50 (b) ROC Curve N = 100 (c) ROC Curve N = 200

Figure E.3: ROC curves for N = 50, 100, 200 respectively averaged across 30 trials of a random graph with
p = 100.

E.4 Normalization of Tuning Parameters
For each algorithm there is a reasonable range of tuning parameters that one might consider while attempting
to perform structure recovery for Gaussian graphical models with the particular algorithm in practice. For

glasso and nbsel it is well known that λ = O

(√
log p
N

)
is theoretically optimal (Friedman et al., 2008;

Meinshausen and Bühlmann, 2006). For all of the experiments shown in Figure 2, we have that p = 100 and

N = 500, giving
√

log p
N ≈ 0.1. To test the sensitivity of these algorithms’ performance to choice of λ close to

this optimal quantity, we let the minimum and maximum λ for both of these algorithms be a factor of 5 within
0.1. Thus, λmin(glasso) = λmin(nbsel) = 0.02 and λmax(glasso) = λmax(nbsel) = 0.5. We ran both algorithms with
a variety of tuning parameters in this range and mapped the tuning parameters linearly to [0, 1] so that 0.02
is mapped to 0 and 0.5 is mapped to 1 in the normalized tuning parameter x-axis in Figures 2(b) and (c).

For CMIT, the threshold is also optimal for O
(√

log p
N

)
, so we chose η = 1 for computational reasons and

let the threshold vary similarly as glasso and nbsel and be mapped to [0, 1] similarly for normalization.
For SH, we let the threshold q ∈ [0.7, 1.] as that is the range of threshold quantiles that the authors used

in their paper (Slawski and Hein, 2015). Once again, we performed a linear transformation such that the
interval of tuning parameters gets mapped to the unit interval.

For our algorithm, we let γ ∈ [0.75, 0.95] and also mapped this interval to [0, 1] for normalizing the γ
“tuning parameter". We decided this was an appropriate range for γ since the Algorithm is consistent for
γ ∈ (0.75, 1). We make a minor note that in our mapping, we let smaller values of γ correspond to higher
values of the normalized tuning parameter (still a linear mapping, simply a reflection of the x-axis) since as γ
decreases, it performs similarly to providing more regularization since more edges are removed. In general, an
increase in the normalized tuning parameter corresponds to more regularization.

Throughout, we wanted to use a reasonable range of tuning parameters for all algorithms to map onto
the unit interval after normalization, so that we could have a fair comparison of the sensitivity of different
algorithms’ performance to their respective choice of tuning parameters.

F Real data analysis
In this analysis, we consider the following metric that evaluates the community structure of a graph.
Modularity. Given an estimated graph G := ([p], E) with vertex set [p] and edge set E, let A denote the
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adjacency matrix of G. For each stock j let cj denote the sector to which stock j belongs and let kj denote
the number of neighbors of stock j in G. Then the modularity coefficient Q is given by

Q =
1

2|E|
∑
i,j∈[p]

(
Aij −

kikj
2|E|

)
δ(ci, cj),

where δ(·, ·) denotes the δ-function with δ(i, j) = 1 if i = j and 0 otherwise.
The modularity coefficient measures the difference between the fraction of edges in the estimated graph

that are within a sector as compared to the fraction that would be expected from a random graph. A high
coefficient Q means that stocks from the same sector are more likely to be grouped together in the estimated
graph, while a low Q means that the community structure of the estimated graph does not deviate significantly
from that of a random graph. Table 1 in the main paper shows the modularity scores of the graphs estimated
from the various methods; our method using fixed γ = 7/9 outperforms all the other methods.
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