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Remark. The equations (1)–(39) and Assumptions 1–4 are referenced with respect to the indexing used in the
paper.

A Proof of Proposition 1

We start off the proof by introducing the following auxiliary function

g(k, T,Θk) := Θk+T −Θk − ε
k+T−1∑
j=k

f(Θk, Xj), ∀T ≥ 1 (40)

which is evidently well defined under our working Assumptions 1 and 3. Regarding the function g(k, T,Θk)
above, we present the following useful bound, whose proof details are, however, postponed to Appendix E for
readability.

Lemma 2. For any Θk ∈ Rd, the function g(k, T,Θk) satisfies for all k ≥ 0

‖g(k, T,Θk)‖ ≤ ε2L2T 2(1 + εL)T−2, ∀T ≥ 1. (41)

On the other hand, note from (8) that

g′(k, T,Θk) = Θk+T −Θk − εT f̄(Θk) (42)

which, in conjunction with (40), suggests that we can write

g′(k, T,Θk) = g(k, T,Θk) + ε

k+T−1∑
j=k

f(Θk, Xj)− εT f̄(Θk)

= g(k, T,Θk) + ε

k+T−1∑
j=k

(
f(Θk, Xj)− f̄(Θk)

)
. (43)

By taking expectation of both sides of (43) conditioned on the σ-field Fk, along with the fact that Θk is Fk-
measurable, we obtain

E
[
g′(k, T,Θk)

∣∣Fk] =E
[
g(k, T,Θk)

∣∣Fk]+ εE

k+T−1∑
j=k

(
f(Θk, Xj)− f̄(Θk)

) ∣∣∣Fk


=E
[
g(k, T,Θk)

∣∣Fk]+ εT

 1

T

k+T−1∑
j=k

E
[
f(Θk, Xj)

∣∣Fk]− f̄(Θk)


≤ εLT

[
εLT (1 + εL)

T−2
+ σ(T ; k)

]
(‖Θk‖+ 1) (44)

where the last inequality follows from Lemma 2 as well as the property of the averaged operator f̄ in (7) under
our working Assumption 3. This concludes the proof.

B Proof of Theorem 1

We prove this theorem by carefully constructing function for W ′(k,Θk) from W (Θk) (recall under our working
assumption 2 that W (Θk) exists and satisfies properties (52)—(6c)). Toward this objective, let us start with the
following candidate

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk)) (45)
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where, to make the dependence of Θj≥k on Θk explicit, we maintain the notation Θj = Θj(k,Θk), which is
understood as the state of the recursion (1) at time instant j ≥ k, with an initial condition Θk at time instant k.

In the following, we will show that there exists and also determine a value for the parameter T ∈ N+ such that
the inequalities (11) and (12) are satisfied.

For ease of exposition, we start by proving the second inequality (12). To this end, observe from the definition
of W ′(k,Θk) in (45) that

W ′(k + 1,Θk + εf(Θk, Xk))−W ′(k,Θk) =

k+T∑
j=k+1

W (Θj(k,Θk))−
k+T−1∑
j=k

W (Θj(k,Θk))

= W (Θk+T (k,Θk))−W (Θk(k,Θk))

= W (Θk+T (k,Θk))−W (Θk) (46)

where the last equality is due to the fact that Θk(k,Θk) = Θk.

To upper bound the term in (46), we will focus on bound the first term W (Θk+T (k,Θk)). Recall from (8) that

Θk+T (k,Θk) = Θk + εT f̄(Θk) + g′(k, T,Θk)

based on which we can find the second-order Taylor expansion of W (Θk+T (k,Θk)) (which is twice differentiable
under Assumption 2) around Θk, as follows

W (Θk+T (k,Θk)) = W (Θk) +

(
∂W

∂θ

∣∣∣∣
Θk

)> [
εT f̄(Θk) + g′(k, T,Θk)

]
+
[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]
(47)

where we have employed the so-called mean-value theorem, suggesting that (47) holds with Θ′k := Θk +
η
[
εT f̄(Θk) + g′(k, T,Θk)

]
for some constant η ∈ [0, 1].

Next, we will pursue an upper bound for each individual term on the right hand side of (47) by conditioning on
the σ-field Fk. Again, using the fact that Θk is Fk-measurable and invoking (6b), we have that

E

[
εT
( ∂W
∂θ

∣∣∣∣
Θk

)>
f̄(Θk)

∣∣∣Fk] ≤ −c3εLT‖Θk‖2. (48)

One can further verify the following bounds

E

(∂W
∂θ

∣∣∣∣
Θk

)>
g′(k, T,Θk)

∣∣∣Fk
 =

(
∂W

∂θ

∣∣∣∣
Θk

)>
E
[
g′(k, T,Θk)

∣∣Fk]
≤

∥∥∥∥∥ ∂W∂θ
∣∣∣∣
Θk

∥∥∥∥∥ · ∥∥E[g′(k, T,Θk)
∣∣Fk]∥∥ (49)

≤ c4‖Θk‖ · εLTβk(T, ε)(‖Θk‖+ 1) (50)

≤ 2c4εLTβk(T, ε)(‖Θk‖2 + 1). (51)

In particular, (49) uses the Cauchy-Schwartz inequality, (50) calls for Proposition 1, and the last one follows
from the inequality ‖θ‖(‖θ‖+ 1) ≤ 2(‖θ‖2 + 1).

As far as the last term of (46) is concerned, it is clear that

E
{[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]∣∣∣Fk}
≤ c4 E

[∥∥εT f̄(Θk) + g′(k, T,Θk)
∥∥2
∣∣∣Fk] (52)

≤ 2c4ε
2T 2

∥∥f̄(Θk)
∥∥2

+ 2c4E
[∥∥g′(k, T,Θk)

∥∥2
∣∣∣Fk] (53)
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≤ 2c4ε
2T 2L2‖Θk‖2 + 2c4E

[∥∥g′(k, T,Θk)
∥∥2
∣∣∣Fk] (54)

where (52) leverages the upper bound on the Hessian matrix of W (θ) arising from the property (6c), (53) follows
from the inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any real-valued vectors a, b ∈ Rd, and (54) uses the Lipschitz
property of function f̄(θ) that can be easily verified since f(θ, x) is Lipschitz in θ.

To further upper bound the last term of (54), we establish the following helpful result whose proof is also
postponed to Appendix F for readability.

Lemma 3. The following bound holds for any fixed θk ∈ Rd

E
[∥∥g′(k, T, θk)

∥∥2∣∣Fk] ≤ ε2L2T 2
[
ε2L2T 2(1 + εL)

2T−4
+ 12

]
‖θk‖2 + 8ε2L2T 2. (55)

Coming back to inequality (54), as E[Θk|Fk] = Θk, Lemma 3 now applies. Plugging (55) into (54), we establish
an upper bound on the last term of (46) as follows

E
{[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]∣∣∣Fk}
≤ 2c4ε

2T 2L2
[
ε2L2T 2(1 + εL)

2T−4
+ 13

]
‖Θk‖2 + 16c4ε

2L2T 2. (56)

Putting together the bounds in (48), (51), and (56), it follows from (47) that

E
[
W (Θk+T (k,Θk))−W (Θk)

∣∣Fk]
= E

εT( ∂W

∂θ

∣∣∣∣
Θk

)>
f̄(Θk) +

(
∂W

∂θ

∣∣∣∣
Θk

)>
g′(k, T,Θk)

∣∣∣Fk


+ E
{[
εT f̄(Θk) + g′(k, T,Θk)

]>∇2W (Θ′k)
[
εT f̄(Θk) + g′(k, T,Θk)

]∣∣∣Fk}
≤ −εLT

{
c3 − 2c4βk(T, ε)− 2c4εLT

[
ε2L2T 2(1 + εL)

2T−4
+ 13

]}
‖Θk‖2

+ 2c4εLTβk(T, ε) + 16c4ε
2L2T 2

= −εLT [c3 − c4ρk(T, ε)]‖Θk‖2 + c4εLTκk(T, ε) (57)

where in the last equality, we have defined for notational brevity the following two functions

ρk(T, ε) := 2βk(T, ε) + 2εLT
[
ε2L2T 2(1 + εL)

2T−4
+ 13

]
(58)

κk(T, ε) := 2βk(T, ε) + 16εLT (59)

both of which depend on parameters T ∈ N+ and ε > 0.

In the sequel, we will show that there exist parameters ε > 0 and T ≥ 1 such that the coefficient of (57) obeys
c3 − c4ρk(T, ε) > 0 for all k ∈ N+. Formally, such a result is summarized in Proposition 2 below, whose proof is
relegated to Appendix G.

Proposition 2. Consider functions βk(T, ε) and ρk(T, ε) defined in (10) and (58), respectively. Then for any
δ > 0, there exist constants εδ > 0 and Tδ ≥ 1, such that the following inequality holds for each ε ∈ (0, εδ)

σ(Tδ, k) < ρk(Tδ, ε) < ρ0(Tδ, ε) < ρ0(Tδ, εδ) ≤ δ, ∀k ≥ 1. (60)

As such, by taking any δ < c3/c4, feasible parameter values T ∗ and εc can be obtained according to (114) and
(116), respectively. Now by choosing

T ∗ = Tδ (61)

εc = εδ (62)

it follows that
c′3 := LT ∗ [c3 − c4ρ0(T ∗, εδ)] = LT ∗ (c3 − c4δ) > 0. (63)
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It follows from (57) that

E
[
W (Θk+T (k,Θk))−W (Θk)

∣∣Fk] ≤ −c′3ε‖Θk‖2 + c4εLT
∗κk(T ∗, ε)

= −c′3ε‖Θk‖2 + c′4ε
2 + c′5σ(T ∗; k)ε (64)

where we have defined constants c′4 := c4LT
∗[2L(1 + εδL)T

∗−2 + 16LT ∗
]
, and c′5 := 2c4LT

∗.

Finally, recalling (46), we deduce that

E
[
W ′(k + 1,Θk + εf(Θk, Xk))−W ′(k,Θk)

∣∣Fk] ≤ −c′3ε‖Θk‖2 + c′4ε
2 + c′5σ(T ∗; k)ε (65)

concluding the proof of (12).

Now, we turn to show the first inequality. It is evident from the properties of W (Θk) in Assumption 2 that

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk)) ≥W (Θk(k,Θk))

≥ c1‖Θk(k,Θk)‖2

= c1‖Θk‖2 (66)

where the second inequality follows from (6a), and the last equality from the fact that Θk(k,Θk) = Θk. Therefore,
by taking c′1 = c1, we have shown that the first part of inequality (11) holds true. For the second part, it follows
that

‖Θj+1‖ = ‖Θj + εf(Θj , Xj)‖ ≤ (1 + εL)‖Θj‖+ εL, ∀j ≥ k (67)

yielding by means of telescoping series

‖Θj(k,Θk)‖ ≤ (1 + εL)j−k‖Θk‖+

j−k∑
j=1

(1 + εL)j−1εL

≤ (1 + εL)j−k‖Θk‖+ (1 + εL)j−k − 1, ∀j ≥ k.

Using further the inequality (a+ b)2 ≤ 2(a2 + b2), we deduce that

‖Θj(k,Θk)‖2 ≤ 2(1 + εL)2(j−k)‖Θk‖2 + 2
[
(1 + εL)

j−k − 1
]2
. (68)

Taking advantage of the properties of W (Θk) in Assumption 2 and (68), it follows that

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk))

≤
k+T−1∑
j=k

c2‖Θj(k,Θk)‖2

≤ 2c2

k+T−1∑
j=k

(1 + εL)2(j−k)‖Θk‖2 + 2c2

k+T−1∑
j=k

[
(1 + εL)

j−k − 1
]2
. (69)

Let us now examine the two coefficients of (69) more carefully. Note that

k+T−1∑
j=k

(1 + εL)2(j−k) =
(1 + εL)2T − 1

(1 + εL)2 − 1
= T

2 + (2T − 1)(1 + ε′L)2T−2εL

2 + εL
(70)

k+T−1∑
j=k

[
(1 + εL)j−k − 1

]2
=

k+T−1∑
j=k+1

[
(j − k)εL

(
1 +

1

2
(j − k − 1)

(
1 + ε′j−kL

)j−k−2
εL

)]2

(71)
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= (εL)2
T−1∑
j=1

j2

[
1 +

1

2
(j − 1)

(
1 + ε′jL

)j−2
]2

(72)

where both (70) and (71) follow from the mean-value theorem (1 + εL)j−k = 1 + (j − k)εL + 1
2 (j − k − 1)(1 +

ε′j−kL)j−k−2(εL)2 for any j − k ≥ 1 and some constants ε′j ∈ [0, ε].

According to Proposition 2, or more specifically, the inequalities (61) and (62), we see that ε′j ≤ ε ≤ εδ for all
1 ≤ j ≤ T − 1.

On the other hand, it is easy to check that both terms [(70) and (72)] are monotonically increasing functions of
ε > 0. Therefore, if we define constants

c′2 := 2c2T
∗ 2 + (2T ∗ − 1)(1 + εδL)2T∗−2εδL

2 + εδL
(73)

c′′2 := 2c2

T∗−1∑
j=1

j2

[
1 +

1

2
(j − 1)(1 + εδL)

j−2

]2

(74)

which are independent of ε, then we draw from (69), (70), and (72) that

W ′(k,Θk) ≤ c′2‖Θk‖2 + c′′2(εL)2. (75)

concluding the proof of the second part of (11).

C Proof of Lemma 1

Taking expectation of both sides of (11) conditioned on Fk gives rise to

E
[
W ′(k,Θk)|Fk

]
≤ c′2‖Θk‖2 + c′′2(εL)2. (76)

On the other hand, it is evident from (12) that

E
[
W ′(k + 1,Θk+1)|Fk

]
≤ E

[
W ′(k,Θk)|Fk

]
− c′3ε‖Θk‖2 + c′4ε

2 + c′5σ(T ∗; k)ε

= E
[
W ′(k,Θk)|Fk

]
− c′3ε

c′2

[
c′2‖Θk‖2 + c′′2(εL)2

]
+
c′3
c′2
c′′2ε(εL)2 + c′4ε

2 + c′5σ(T ∗; k)ε

≤ E
[
W ′(k,Θk)|Fk

]
− c′3ε

c′2
E
[
W ′(k,Θk)|Fk

]
+
c′3
c′2
c′′2εδ(εL)2 + c′4ε

2 + c′5σ(T ∗; k)ε (77)

=

(
1− c′3ε

c′2

)
E
[
W ′(k,Θk)|Fk

]
+ c′′4ε

2 + c′5σ(T ∗; k)ε (78)

where, in order to obtain (77), we have employed the inequality in (76), and used the fact that ε < εδ to derive
(78); and the last equality follows from c′′4 := c′4 + c′3c

′′
2εδL

2/c′2.

Finally, taking expectation of both sides of (78) with respect to the σ-field Fk, concludes the proof.

D Proof of Theorem 2

Let us start with a basic Lemma, whose proof is elementary and is hence omitted here.

Lemma 4. Consider the recursion zt+1 = azt + b, where a 6= 1 and b are given constants. Then the following
holds for all t ≥ t0 ≥ 0

zt = at−t0zt0 +
b(at−t0 − 1)

a− 1
. (79)

Proof of Theorem 2 is established in two phases depending on the k values. Specifically, let us define kε :=
min{k ∈ N+|σ(T ∗; k) ≤ ε}; then the first phase is from k = 0 to kε, while the second phase consists of all k > kε.
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Phase I (k ≤ kε). We have from 2 that σ(T ∗; k) ≤ δ for all 0 ≤ k(≤ kε). Then, fixing t0 = 0, and substituting
a := 1−c′3ε/c′2 > 0 and b := c′′4ε

2 +c′5δε in (79), the recursion {E[W ′(k,Θk)]} in (14) can be recursively expressed
as follows

E
[
W ′(k,Θk)

]
≤
(

1− c′3ε

c′2

)
E
[
W ′(k − 1,Θk−1)

]
+ c′′4ε

2 + c′5δε

≤
(

1− c′3ε

c′2

)k
E
[
W ′(0,Θ0)

]
+

[
1−

(
1− c′3ε

c′2

)k ]
c′2
c′3

(
c′′4ε+ c′5δ

)
(80)

≤
(

1− c′3ε

c′2

)k
E
[
W ′(0,Θ0)

]
+
c′2
c′3

(
c′′4ε+ c′5δ

)
≤
(

1− c′3ε

c′2

)k
E
[
W ′(0,Θ0)

]
+
c′2
c′3

(
c′′4 + c′5

)
δ (81)

≤ c′2
(

1− c′3ε

c′2

)k
‖Θ0‖2 + c′′2L

2ε2 + c6δ (82)

where the last inequality follows from ε ≤ δ and the fact [cf. (11)] that

E[W ′(0,Θ0)] ≤ c′2E[‖Θ0‖2] + c′′2ε
2L2 ≤ c′2‖Θ0‖2 + c′′2ε

2L2 (83)

where the initial guess Θ0 ∈ Rd is assumed given for simplicity; and c6 := c2(c′′4 + c′5)/c′3.

On the other hand, using (11), the term E
[
W ′(k,Θk)

]
can be lowered bounded as follows

E
[
W ′(k,Θk)

]
≥ c′1‖Θk‖2 (84)

which, combined with (82), yields the finite-time error bound for iterations k ≤ kε

E[‖Θk‖2] ≤ c′2
c′1

(
1− c′3ε

c′2

)k
‖Θ0‖2 +

c′′2L
2

c′1
ε2 +

c6
c′1
δ. (85)

Phase II (k > kε). Using now the fact that σ(T ∗; k) ≤ ε due to the definition of kε, the recursion {E[W ′(k,Θk)]}
for all k > kε becomes

E
[
W ′(k + 1,Θk+1)

]
≤
(

1− c′3ε

c′2

)
E
[
W ′(k,Θk)

]
+ c′′4ε

2 + c′5σ(T ∗; k)ε (86)

≤
(

1− c′3ε

c′2

)
E
[
W ′(k,Θk)

]
+ (c′′4 + c′5)ε2. (87)

Letting t0 = kε, and replacing a and b in (79) by constants (1− c′3ε/c′2) and (c′′4 + c′5)ε2 accordingly, we arrive at

E
[
W ′(k,Θk)

]
≤
(

1− c′3ε

c′2

)k−kε
E
[
W ′(kε,Θkε)

]
+

[
1−

(
1− c′3ε

c′2

)k−kε ]c′2
c′3

(
c′′4 + c′5

)
ε

≤
(

1− c′3ε

c′2

)k−kε[(
1− c′3ε

c′2

)kε
E
[
W ′(0,Θ0)

]
+
c′2
c′3

(
c′′4ε+ c′5δ

)]
+
c′2(c′′4 + c′5)

c′3
ε

≤
(

1− c′3ε

c′2

)k
E
[
W ′(0,Θ0)

]
+

(
1− c′3ε

c′2

)k−kε c′2(c′′4 + c′5
)

c′3
δ +

c′2(c′′4 + c′5)

c′3
ε (88)

≤ c′2
(

1− c′3ε

c′2

)k
‖Θ0‖2 + c′′2ε

2L2 +

(
1− c′3ε

c′2

)k−kε
c6δ + c6ε (89)

where we have used the following bound at k = kε from Phase I in (80) along with (83)

E[W ′(kε,Θkε)] ≤
(

1− c′3ε

c′2

)kε
E
[
W ′(0,Θ0)

]
+

[
1−

(
1− c′3ε

c′2

)kε ]c′2
c′3

(
c′′4ε+ c′5δ

)
. (90)
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Plugging (84) into (89), yields the finite-time error bound for k ≥ kε

E
[
‖Θk‖2

]
≤ c′2
c′1

(
1− c′3ε

c′2

)k
‖Θ0‖2 +

c′′2L
2

c′1
ε2 +

(
1− c′3ε

c′2

)k−kεc6
c′1
δ +

c6
c′1
ε (91)

which converges to a small (size-ε) neighborhood of the optimal solution Θ∗ = 0 at a linear rate.

Combining the results in the two phases, we deduce the following error bound that holds at any k ∈ N+

E
[
‖Θk‖2

]
≤ c′2
c′1

(
1− c′3ε

c′2

)k
‖Θ0‖2 +

c′′2L
2

c′1
ε2 +

(
1− c′3ε

c′2

)max{k−kε,0}c6
c′1
δ +

c6
c′1
ε (92)

concluding the proof of Theorem 2.

E Proof of Lemma 2

When T = 1 and for any Θk ∈ Rd, one can easily check that

g(k, 1,Θk) = Θk+1 −Θk − εf(Θk, Xk) = 0

implying G1 := ‖g(k, 1,Θk)‖ = 0. To proceed, let us start by introducing the function

h(k, T,Θk) :=

k+T−1∑
j=k

f(Θk, Xj)

which can be bounded as follows

∥∥h(k, T,Θk)
∥∥ =

∥∥∥∥∥∥
k+T−1∑
j=k

f(Θk, Xj)

∥∥∥∥∥∥ ≤
k+T−1∑
j=k

∥∥f(Θk, Xj)
∥∥

≤ L
k+T−1∑
j=k

(‖Θk‖+ 1)

= TL(‖Θk‖+ 1) (93)

where the second inequality follows from (5) in Assumption 1.

It is evident that

g(k, T + 1,Θk) = Θk+T+1 −Θk − ε
k+T∑
j=k

f(Θk, Xj)

= Θk+T + εf(Θk+T , Xk+T )−Θk − ε
[
f(Θk, Xk+T0

) +

k+T−1∑
j=k

f(Θk, Xj)

]
= g(k, T,Θk) + ε

[
f(Θk+T , Xk+T )− f(Θk, Xk+T )

]
. (94)

By means of triangle inequality, it follows that

GT+1 = ‖g(k, T + 1,Θk)‖ ≤
∥∥g(k, T,Θk)

∥∥+ ε
∥∥f(Θk+T , Xk+T )− f(Θk, Xk+T )

∥∥
≤ GT + εL

∥∥Θk+T −Θk

∥∥ (95)

≤ GT + εL
[
ε
∥∥h(k, T,Θk)

∥∥+
∥∥g(k, T,Θk)

∥∥] (96)

≤ (1 + εL)GT + ε2L2T (‖Θk‖+ 1) (97)

≤ ε2L2(‖Θk‖+ 1)

T∑
k=0

(1 + εL)T−kk (98)

where the inequality (95) follows from the Lipschitz continuity of f(θ, x) in θ, (96) from the fact that Θk+T =
Θk+εh(k, T,Θk)+g(k, T,Θk), (97) from (93) as well as the definition GT := ‖g(k, T,Θk)‖, and the last inequality
is obtained by telescoping series and uses G1 = 0.
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Lemma 5. Given any positive constant d 6= 1, the following holds for all T ≥ 1

ST+1 =

T∑
k=0

kdk =
d(1− dT )

(1− d)2
− TdT+1

1− d
. (99)

Taking d = (1 + εL)−1 in (99), then (98) can be simplified as follows

GT ≤ ε2L2(1 + εL)T−1(‖Θk‖+ 1)

T−1∑
k=0

(1 + εL)−kk

=
[
(1 + εL)T − εLT − 1

]
(‖Θk‖+ 1). (100)

To further simplify this bound, the Taylor expansion along with the mean-value theorem confirms that the
following holds for some ε′ ∈ (0, 1)

(1 + εL)T = 1 + εLT +
1

2
T (T − 1)(1 + ε′L)T−2(εL)

2
, ∀T ≥ 1 (101)

or equivalently,

(1 + εL)T − 1− εLT =
1

2
T (T − 1)(1 + ε′L)T−2(εL)

2
(102)

≤ ε2L2T 2(1 + εL)T−2. (103)

F Proof of Lemma 3

Recalling that g′(k, T,Θk) = g(k, T,Θk) + ε
∑k+T−1
j=k [f(Θk, Xj)− f̄(Θk)], we have

∥∥g′(k, T,Θk)
∥∥2

=

∥∥∥∥g(k, T,Θk) + ε

k+T−1∑
j=k

(
f(Θk, Xj)− f̄(Θk)

) ∥∥∥∥2

≤ 2
∥∥g(k, T,Θk)

∥∥2
+ 2ε2T 2

∥∥∥∥ 1

T

k+T−1∑
j=k

f(Θk, Xj)− f̄(Θk)

∥∥∥∥2

(104)

≤ 4
[
(1 + εL)T − εLT − 1

]2
(‖Θk‖2 + 1)

+ 4ε2T 2

∥∥∥∥ 1

T

k+T−1∑
j=k

f(Θk, Xj)

∥∥∥∥2

+ 4ε2T 2
∥∥f̄(Θk)

∥∥2
(105)

where we have used the property ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any real-valued vectors a, b in deriving (104) and
(105), as well as Proposition 1.

Squaring both sides of (102) yields

[
(1 + εL)T − 1− εTL

]2
=

1

4
T 2(T − 1)2(εL)4(1 + ε′L)2T−4 ≤ 1

4
ε4L4T 4(1 + εL)2T−4. (106)

Thus, the first term of (105) can be upper bounded by

4
[
(1 + εL)T − εLT − 1

]2
(‖Θk‖2 + 1) ≤ ε4L4T 4(1 + εL)2T−4 (‖Θk‖2 + 1). (107)

Regarding the second term of (105), we have that∥∥∥∥ 1

T

k+T−1∑
j=k

f(Θk, Xj)

∥∥∥∥2

≤ 1

T

k+T−1∑
j=k

∥∥f(Θk, Xj)
∥∥2

(108)



Finite-Time Error Bounds for Biased Stochastic Approximation with Application to Q-Learning

≤ 1

T

k+T−1∑
j=k

L2(‖Θk‖+ 1)2 (109)

≤ 2L2‖Θk‖2 + 2L2 (110)

where (108) and (110) follow from the inequality ‖
∑n
i=1 zi‖2 ≤ n

∑n
i=1 ‖zi‖2 for all real-valued vectors {zi}ni=1,

and (109) from our working assumption on function f(θ, x).

Withe regards to the last term of (105), it follows directly from the Lipschitz property of the average operator
f̄(θ) that ∥∥f̄(Θk)

∥∥2 ≤ L2‖Θk‖2. (111)

Substituting the bounds in (107), (110), and (111) into (105), we arrive at

‖g′(k, T,Θk)‖2 ≤ ε2L2T 2
[
ε2L2T 2(1 + εL)

2T−4
+ 12

]
‖Θk‖2 + 8ε2L2T 2 (112)

concluding the proof.

G Proof of Proposition 2

We prove this claim by construction. By definition, it follows that for all k ∈ N+

ρk(T, ε) ≤ ρ0(T, ε) = 2εLT
[
(1 + εL)

T−2
+ 13

]
+ 2(εLT )3(1 + εL)2T−4 + 2σ(T ; 0). (113)

Under the assumption that limT→+∞ σ(T ; 0) = 0, the function value σ(T ; 0) ≥ 0 can be made arbitrarily small
by taking a sufficiently large integer T ∈ N+ in constructing the function W ′(k,Θk). Without loss of generality,
let us work with T such that

Tδ := min

{
T ∈ N+

∣∣∣∣σ(T ; 0) ≤ δ

4

}
. (114)

It is clear that Tδ ≥ 1. Define function

ν(ε) := εLTδ

[
(1 + εL)

Tδ−2
+ 13

]
+(εLTδ)

3
(1 + εL)2Tδ−4 (115)

which can be easily shown to be a monotonically decreasing function of ε > 0, and which attains its minimum
ν = 0 at ε = 0. Let εδ be the unique solution to the equation

ν(ε) =
δ

4
, ε > 0. (116)

As a result, for all ε ∈ (0, εδ], it holds that

ν(ε) ≤ δ

4
. (117)

Combining (114) and (117) concludes the proof of Proposition 2.


