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Abstract

Inspired by the widespread use of Q-learning
algorithms in reinforcement learning (RL),
this present paper studies a class of biased
stochastic approximation (SA) procedures
under an ‘ergodic-like’ assumption on the un-
derlying stochastic noise sequence. Leverag-
ing a multistep Lyapunov function that looks
ahead to several future updates to accom-
modate the gradient bias, we prove a gen-
eral result on the convergence of the iter-
ates, and use it to derive finite-time bounds
on the mean-square error in the case of con-
stant stepsizes. This novel viewpoint ren-
ders the finite-time analysis of biased SA al-
gorithms under a broad family of stochas-
tic perturbations possible. For direct com-
parison with past works, we also demon-
strate these bounds by applying them to Q-
learning with linear function approximation,
under the realistic Markov chain observation
model. The resultant finite-time error bound
for Q-learning is the first of its kind, in the
sense that it holds: i) for the unmodified ver-
sion (i.e., without making any modifications
to the updates), and ii), for Markov chains
starting from any initial distribution, at least
one of which has to be violated for existing
results to be applicable.

1 INTRODUCTION

Stochastic approximation (SA) algorithms are widely
used in a number of areas, including statistical sig-
nal processing, control, optimization, machine learn-
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ing, and RL. Ever since the seminal contribution
[Robbins and Monro, 1951], there have been a mul-
titude of efforts on SA schemes, applications, and
theoretical developments [Kushner and Yin, 2003],
[Nemirovski et al., 2009]. On the theory side, con-
ventional SA convergence analysis and error bounds
are mostly asymptotic—that hold only in the limit as
the number of iterations increases to infinity. Yet, re-
cent efforts have focused on developing non-asymptotic
performance guarantees—that hold even for finite
iterations—for SA algorithms in different settings
[Nemirovski et al., 2009], [Bach and Moulines, 2011],
[Wainwright, 2019] mainly motivated by the emerging
need for dealing with massive data examples in modern
large-scale optimization and statistical learning tasks.

Many stochastic control tasks can be naturally for-
mulated as Markov decision processes (MDPs), which
provide a flexible framework for modeling decision
making in scenarios where outcomes are partly ran-
dom and partly under the control of a decision maker.
Reinforcement learning is a collection of tools for solv-
ing MDPs, especially when the underlying transition
mechanism is unknown [Watkins, 1989]. Originally
introduced by [Watkins, 1989], Q-learning has become
one of the most widely used RL algorithms nowadays,
on which much of the modern artificial intelligence is
built [Mnih et al., 2015]. The goal of Q-learning is
to obtain a policy that informs an agent what action
to taken under what circumstances. It is model-free,
namely it does not require a model of the environment,
and iteratively estimates the optimal state-action
value function (a.k.a. Q-function) based on a sequence
of samples generated by operating a fixed policy in
the unknown environment. For any MDP with finite
state and action spaces, Q-learning finds a policy that
is optimal in the sense that it maximizes the expected
value of the total reward from each state. Despite
its popularity, convergence analysis of Q-learning
(with function approximation) has proved challeng-
ing; see, e.g., [Tsitsiklis, 1994], [Szepesvári, 1998],
[Melo et al., 2008], [Eryilmaz and Srikant, 2012],
[Beck and Srikant, 2012]. Connections between Q-
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learning and SA were drawn in [Tsitsiklis, 1994],
and [Bertsekas and Tsitsiklis, 1996]. Non-asymptotic
guarantees of RL algorithms appeared only recently,
and they remain limited [Bhandari et al., 2019],
[Srikant and Ying, 2019], [Wainwright, 2019],
[Chen et al., 2019].

Finite-time analysis of temporal-difference (TD)
learning with linear approximation was studied in
[Dalal et al., 2018], but their results require i.i.d.
samples, which are difficult to obtain in prac-
tice. Dealing with the more realistic yet challenging
Markov chain observation model, finite-time analysis
of TD learning was studied in [Bhandari et al., 2019],
[Srikant and Ying, 2019], and that of Q-learning ap-
peared lately in [Chen et al., 2019]. However, the
bound in [Chen et al., 2019] becomes applicable only
after a certain mixing-time number of iterations, that
is, after the Markov chain gets sufficiently “close” to
its stationary distribution.

Targeting a deeper understanding for the statistical ef-
ficiency of Q-learning algorithms, the objective of this
present paper is to derive finite-time guarantees for a
certain class of biased SA procedures. In particular,
we first characterize a set of easy-to-check conditions
on the nonlinear operators used in SA updates, and
introduce a mild assumption on the stochastic noise
sequence satisfied by a broad family of discrete-time
stochastic processes. We prove a general convergence
result leveraging a novel multistep Lyapunov function,
which relies on a number of future SA updates to gain
control over the gradient bias arising from instanta-
neous stochastic perturbations. We further develop
finite-time bounds on the mean-square error of the it-
erates. Finally, for direct comparison to past works, we
specialize the results established for general SA algo-
rithms to Q-learning with linear function approxima-
tion, from data samples gathered along a single tra-
jectory of a Markov chain. We thereby obtain finite-
time error bounds for Q-learning using (non-)linear
function approximators in the case of constant step-
sizes, under the most general assumptions to date.
The merits of our bounds are that they directly ap-
ply to i) the unmodified Q-learning algorithm and, iii)
Markov chains starting from any initial distribution,
as well, as from the first iteration (meaning there is
no need to wait until the Markov chain gets “close” to
its unique stationary distribution as required by e.g.,
[Chen et al., 2019])).

2 PROBLEM SETUP

Consider the following nonlinear recursion with a con-
stant stepsize ε > 0, starting from Θ0 ∈ Rd

Θk+1 = Θk + εf(Θk, Xk), k = 0, 1, 2 . . . (1)

where Θk ∈ Rd denotes the k-th iterate, {Xk ∈ Rm}k
is a stochastic noise sequence defined on a complete
probability space, and f : Rd × Rm → Rd is a con-
tinuous function of (θ, x). In the simplest setting, for
example, {Xk} is an i.i.d. random sequence of vec-
tors, while f(Θk, Xk) is a conditionally unbiased esti-
mate of the gradient f̄(Θk) := E[f(Θk, Xk)|Fk]. Here,
(Fk)k≥0 is an increasing family of σ-fields, with Θ0 be-
ing F0-measurable, and f(θ,Xk) being Fk-measurable.
Depending on whether F0 is a trivial σ-field, the initial
guess Θ0 can be random or deterministic. For simplic-
ity, the rest of this paper assumes a deterministic Θ0,
yet the obtained bounds hold true for a random Θ0 af-
ter replacing ‖Θ0‖2 with E[‖Θ0‖2]. In a more compli-
cated setting pertaining to MDPs, {Xk}k is a Markov
chain assumed to have a unique stationary distribu-
tion, and f(Θk, Xk) can be viewed as a biased estimate
of some gradient f̄(Θk) = limk→∞ EXk [f(Θk, Xk)]. In
both cases, we are prompted to assume that the fol-
lowing limit exists for each θ ∈ Rd

f̄(θ) = lim
k→∞

E[f(θ,Xk)]. (2)

Taking a dynamical system viewpoint [Borkar, 2008],
the corresponding ODE for (1) is given by

θ̇(t) = f̄(θ(t)). (3)

Assume that this ODE admits an equilibrium point
θ∗ at the origin, i.e., f̄(0) = 0. This assumption is
made without loss of generality, as one can always
shift a nonzero equilibrium point to zero through cen-
tering θ ← θ − θ∗. Following the terminology in
[Borkar, 2008], the recursion (1) is termed nonlinear
SA. Our goal here is to provide a non-asymptotic con-
vergence analysis of the iterate sequence {Θk}k∈N+

generated by a recursion of the form (1) to the equi-
librium point θ∗ of its corresponding ODE (3).

The motivating impetus for considering recursion
(1) was to gain a deeper insight into the classi-
cal Q-learning algorithm [Watkins, 1989] from dis-
counted MDPs and RL [Sutton and Barto, 2018],
[Bertsekas and Tsitsiklis, 1996]. It is a biased
SA procedure for solving a fixed point equa-
tion defined by the so-called Bellman’s operator
[Bertsekas and Tsitsiklis, 1996]. In fact, a large family
of basic RL algorithms [Sutton and Barto, 2018], in-
cluding TD(0), TD(λ), and GTD, as well as stochas-
tic gradient descent for nonlinear least-squares esti-
mation can also be described in this form (see e.g.,
[Srikant and Ying, 2019] for a detailed discussion).

Certainly, convergence guarantees of SA procedures as
in (1) would not be possible without imposing assump-
tions on the operators f(θ, x) and f̄(θ). In this work,
motivated by the analysis of TD-learning and related
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algorithms in RL, we consider a class of SA procedures
that satisfy the following properties.

Assumption 1. The function f(θ, x) satisfies the
globally Lipschitz condition in θ, uniformly in x, i.e.,
there exists a constant L1 > 0 such that for all θ, θ′ ∈
Rd and each x ∈ X , it holds that

‖f(θ, x)− f(θ′, x)‖ ≤ L1‖θ − θ′‖. (4)

Moreover, there exists a constant L2 > 0 such that, for
each x ∈ X , it holds for all θ

‖f(θ, x)‖ ≤ L2(‖θ‖+ 1) (5)

where X ⊆ Rm denotes the living space of the stochas-
tic process {Xk}.

It is worth pointing out that (5) is equivalent to as-
suming that f(0, x) satisfying (4) is uniformly bounded

for all x ∈ X . To see this, suppose that ‖f(0, x)‖ ≤ f̂
holds for all x ∈ X . Using (4), it follows readily that
‖f(θ, x)‖ ≤ L1‖θ − θ′‖ + ‖f(θ′, x)‖, in which taking
θ′ = 0 confirms that ‖f(θ, x)‖ ≤ L1‖θ‖ + ‖f(0, x)‖ ≤
L1‖θ‖ + f̂ ≤ max(L1, f̂)(‖θ‖ + 1). By defining L :=
max{L1, L2}, we will assume for simplicity that (4)
and (5) hold with the same constant L.

Assumption 2. Consider the ODE θ̇(t) = f̄(θ(t)) in
(3). There exists a twice differentiable function W (θ)
(a.k.a., Lyapunov function) that satisfies globally and
uniformly the following conditions for all θ, θ′ ∈ Rd

c1‖θ‖2 ≤W (θ) ≤ c2‖θ‖2 (6a)(
∂W

∂θ

∣∣∣∣
θ

)>
f̄(θ) ≤ −c3L‖θ‖2 (6b)∥∥∥∥ ∂W∂θ

∣∣∣∣
θ

− ∂W

∂θ

∣∣∣∣
θ′

∥∥∥∥ ≤ c4‖θ − θ′‖ (6c)

for some constants c1, c2, c3, c4 > 0.

For an introduction to Lyapunov theory, see e.g., stan-
dard source [Khalil, 2002, Ch. 4]. Regarding these
assumptions, two remarks come in order.

Remark 1. As. 1 is standard and widely adopted
in convergence analysis of SA algorithms; see e.g.,
[Borkar, 2008, Ch. 3], [Bach and Moulines, 2011],
[Tsitsiklis, 1994] and [Srikant and Ying, 2019] in the
case of linear SA (i.e., f(θ, x) is linear in θ).

Remark 2. By evaluating inequality (6a) at θ = 0,
one confirms that W (θ) > W (0) = 0 for all θ 6=
0. Since W (θ) is twice differentiable, it implies that
∂W
∂θ |θ=0 = 0. From (6b), it holds that both f̄(θ) 6= 0

and ∂W
∂θ |θ 6= 0 at any point θ 6= 0. In words, As-

sumption 2 states that the equilibrium point θ = 0
is unique, and globally, asymptotically stable for the
ODE (3). This also appeared in e.g., [Borkar, 2008,

A5] and [Bach and Moulines, 2011] (strongly convex
case). This is in the same spirit of requiring a
Hurwitz matrix Ā (i.e., every eigenvalue has strictly
negative real part) for the ODE θ̇ = Āθ in lin-
ear SA by [Tsitsiklis and Van Roy, 1997, Thm. 2],
[Dalal et al., 2018], [Srikant and Ying, 2019].

In addition to As. 1 and 2, to leverage the ODE to
study convergence of SA procedures, we make an as-
sumption on the stochastic noise sequence {Xk}k∈N.

Assumption 3. For each θ ∈ Rd, the random vector
f(θ,Xk) is Fk-measurable, and there exists a func-
tion σ(T ;T0) : N+ × N+ → R+ monotonically de-
creasing to zero as either T → ∞ or T0 → ∞; i.e.,
limT→∞ σ(T ;T0) = 0 for any fixed T0 ∈ N+, and
limT0→∞ σ(T ;T0) = 0 for any fixed T ∈ N+, such that∥∥∥∥∥ 1

T

T0+T−1∑
k=T0

E
[
f(θ,Xk)

∣∣FT0

]
− f̄(θ)

∥∥∥∥∥≤ σ(T ;T0)L(‖θ‖+1)

(7)
where the expectation E is taken over {Xk}T0+T−1

k=T0
con-

ditioned on FT0
.

In fact, As. 3 requires that the bias of the ‘ergodic’
average of any T consecutive gradient estimates
{f(θ,Xk)}T0+T−1

k=T0
from their limit f̄(θ) vanishes (at

least) sublinearly in T . Indeed, this is fairly mild and
more general than those studied individually by e.g.,
[Bach and Moulines, 2011], [Bhandari et al., 2019],
[Srikant and Ying, 2019], each of which imposes
requirements on each gradient estimate f(θ,Xk).
For example, [Bach and Moulines, 2011] entails
an unbiased gradient estimate per iteration,
[Dalal et al., 2018, Bhandari et al., 2019] has to
incorporate a projection step for control of the instan-
taneous gradient bias, and [Srikant and Ying, 2019]
requires the initial distribution of the Markov chain
to be sufficiently close to the stationary distribution
for the bound to be applicable.

In contrast, our condition (7) can allow for large
instantaneous biased gradients f(Θk, Xk) of f̄(Θk).
Further, As. 3 is satisfied by a broad family of discrete-
time stochastic processes, including i.i.d. random
vector sequences [Bach and Moulines, 2011], finite-
state irreducible and aperiodic Markov chains, and
Ornstein-Uhlenbeck processes; whereas past works
[Bach and Moulines, 2011], [Bhandari et al., 2019],
[Srikant and Ying, 2019] deal only with one such type
of those stochastic processes.

3 FINITE-TIME BOUNDS ON THE
MEAN-SQUARE ERROR

In this paper, we seek to develop novel tools for prov-
ing non-asymptotic bounds on the mean-square error
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of the iterates {Θk}k≥1 generated by a recursion of the
form (1) (to the equilibrium point θ∗ = 0). Before pre-
senting the main results, we start off by introducing an
instrumental result which is the key to our novel ap-
proach to controlling possible bias present in the gra-
dient estimate of SA procedures. Its proof is provided
in Appendix A of the supplementary material.

Proposition 1. Under As. 1 and 3, there exists a
function g′(k, T,Θk) such that the next holds ∀T ∈ N+

Θk+T = Θk + εT f̄(Θk) + g′(k, T,Θk) (8)

satisfying∥∥E[g′(k, T,Θk)
∣∣Fk]∥∥ ≤ εLTβ(T, ε)(‖Θk‖+ 1) (9)

β(T, ε) := εLT (1 + εL)T−2 + σ(T ; k) (10)

where the expectation is taken over {Xj}k+T−1
j=k condi-

tioned on Fk.

Evidently, Prop. 1 offers a bound on the average gra-
dient bias over a number T > 0 of iterations, which is
indeed motivated by our As. 3. Based on the results
in Prop. 1, we present the following theorem, which
establishes a general convergence result that applies to
any stochastic sequence {Xk}k∈N satisfying As. 3.

Theorem 1. Under As. 1—3 and for any δ > 0,
there exist a function W ′(k,Θk), and constants (T ∗ ∈
N+, εδ) such that σ(T ∗; k) ≤ δ and the ensuing in-
equalities are globally and uniformly satisfied for all
ε ∈ (0, εδ) and k ∈ N

c′1‖Θk‖2 ≤W ′(k,Θk) ≤ c′2‖Θk‖2 + c′′2(εL)2 (11)

E
[
W ′(k+1,Θk+1)−W ′(k,Θk)

∣∣Fk]
≤ −εc′3‖Θk‖2 + c′4ε

2 + c′5σ(T ∗; k)ε (12)

where c′1, c
′
2, c
′′
2 , c
′
3, c
′
4, c
′
5 > 0 are constants dependent

on c1∼c4 of (6) but independent of ε > 0.

Proof of Thm. 1 is relegated to Appendix B of the
supplementary material. Our proof builds critically on
the construction of function W ′(k,Θk) from the Lya-
punov function W (θ) of the ODE (3). To use the con-
centration bound (7), we are motivated to introduce
a function candidate that necessarily looks ahead to a
number of T future iterates, with parameter T ≥ 1 to
be designed such that the gradient bias can be made
affordable, given by

W ′(k,Θk) =

k+T−1∑
j=k

W (Θj(k,Θk)) (13)

where, to make dependence of Θj≥k as a function of
Θk explicit, we intentionally write Θj = Θj(k,Θk),
understood as the iterate of the recursion (1) at time

j ≥ k with initial condition Θk at time k. It is just
this parameter T ≥ 1 that allows us to exploit the
monotonically decreasing function σ(T ; k) → 0 in (9)
to gain control over large instantaneous gradient bias.
This renders the general convergence bounds (11)–(12)
possible, in the sense that they hold for any nonlinear
SA procedure with underlying random sequence obey-
ing As. 1–3. For instance, when the underlying noise
sequence {Xk}k is i.i.d. [Bach and Moulines, 2011], or
a Markov chain that has approximately arrived at its
steady state (i.e., after a certain mixing time of recur-
sions) [Srikant and Ying, 2019], they have shown that
it suffices to choose T = 1, that is W ′(Θk) = W (Θk) to
validate (11)–(12). For general Markov chains start-
ing from any initial distribution however, functions like
W ′(Θk) = W (Θk) may fail to yield finite-time bounds
that hold for the entire sequence {Θk}k≥1. In a nut-
shell, our novel way of constructing this multistep Lya-
punov function is indeed motivated by and well-suited
for taking care of this kind of ‘mixing’ behavior. It goes
beyond the Markov chain to be useful for finite-time
analysis of general SA algorithms driven by a broad
family of (discrete-time) stochastic processes.

We are now ready to study the drift of W ′(k,Θk),
which follows from Thm. 1, and whose proof is pro-
vided in Appendix C of the supplementary material.

Lemma 1. Under As. 1—3, the following holds true
for all ε ∈ (0, εδ) and k ∈ N

E
[
W ′(k + 1,Θk+1)

]
≤
(

1− c′3ε

c′2

)
E
[
W ′(k,Θk)

]
+ c′′4ε

2

+ c′5σ(T ∗; k)ε (14)

where c′′4 > 0 is an appropriate constant independent
of ε, and T ∗ ∈ N+ is fixed in Thm. 1.

Theorem 2. Let kε := min{k ∈ N+|σ(T ∗; k) ≤ ε}.
Under As. 1–3, and choosing stepsize ε ∈ (0, εδ), the
following finite-time error bounds hold for all k ∈ N

E
[
‖Θk‖2

]
≤ c′2
c′1

(
1− c′3ε

c′2

)k
‖Θ0‖2 +

c′′2L
2

c′1
ε2 +

c6
c′1
ε

+
c6
c′1

(
1− c′3ε

c′2

)max{k−kε,0}

δ (15)

where c6 > 0 is a constant, and δ is given in Thm. 1.

When a random initial estimate Θ0 is considered, one
just needs to replace the term ‖Θ0‖2 with its expecta-
tion E[‖Θ0‖2] in (15), and the resulting bound holds.
Proof of Thm. 2 is postponed to Appendix D of the
supplemental document. At this point, some observa-
tions are worth making.

Remark 3. Existing non-asymptotic results have fo-
cused on linear SA including e.g., [Dalal et al., 2018],
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[Srikant and Ying, 2019], [Bhandari et al., 2019],
or nonlinear SA under i.i.d. noise e.g.,
[Nemirovski et al., 2009], [Bach and Moulines, 2011].
In contrast, our finite-time bound in Thm. 2 is
applicable to a class of nonlinear SA procedures under
a broad family of stochastic noise sequences.

Remark 4. When the general recursion (1) is special-
ized to linear SA driven by Markovian noise {Xk}k∈N,
i.e., f(Θk, Xk) = A(Xk)Θk + b(Xk), our established
bound in (15) improves upon the state-of-the-art in
[Srikant and Ying, 2019, Theorem 7]. In fact, the
bound in [Srikant and Ying, 2019, Theorem 7] be-
comes applicable only after a mixing time of updates
(i.e., for k ≥ τ with τ � 1 being the mixing time
of the Markov chain {Xk}) till the Markov chain gets
sufficiently ‘close’ to its stationary distribution; yet,
in contrast, our bound (15) is effective from the first
iteration for Markov chains starting with any initial
distribution. Moreover, our stead-state value (the last
term of (15)) scales only with the stepsize ε > 0 (which
has removed the independence on τ from the bound in
[Srikant and Ying, 2019]), and it vanishes as ε→ 0.

Evidently, with the bound in (15), one can easily es-
timate the number of samples (e.g., the length of a
Markov chain trajectory) required for the mean-square
error to be of the same order as its steady-state value.

4 APPLICATIONS TO
APPROXIMATE Q-LEARNING

We now turn to the consequences of our general re-
sults for the problem of Q-learning with linear func-
tion approximation. Toward this objective, we begin
by providing a brief introduction to discounted MDPs
and basic RL algorithms; interested readers can re-
fer to standard sources (e.g., [Sutton and Barto, 2018],
[Bertsekas and Tsitsiklis, 1996]) for more background.

4.1 Background and Problem Setup

Consider a discounted MDP, defined by the quintuple
(S,U ,P, R, γ), where S is a finite set of possible states
(a.k.a. state space), U is a finite set of possible actions
(a.k.a. action space), P := {Pu ∈ R|S|×|S||u ∈ U} is
a collection of probability transition matrices, indexed
by actions u, R(s, u) : S ×U → R is a reward received
upon executing action u while in state s, and γ ∈ [0, 1)
is the discount factor. The results along with theoreti-
cal analysis developed in this paper may be generalized
to deal with infinite and compact state and/or action
spaces, but we restrict ourselves to finite spaces here
for an ease of exposition.

An agent selects actions to interact with the MDP (the
environment) by operating a policy. Specifically, at

each time step k ∈ N, the agent first observes the
state Sk = s ∈ S of the environment, and takes an
action Uk = u ∈ U by following a deterministic pol-
icy π : S → U , or a stochastic one Uk ∼ π(·|Sk),
where π(·|s) is a probability distribution function sup-
ported on U . The environment then moves to the
next state Sk+1 = s′ ∈ S with probability Puss′ =
Pr(Sk+1 = s′|Sk = s, Uk = u), associated with which
an instantaneous reward Rk := R(Sk, Uk) is revealed
to the agent. Repeating this procedure generates a sin-
gle trajectory of states, actions, and rewards, namely,
S0, U0, R0, S1, . . . , ST , UT , RT , ST+1, . . . over S×U×R.

We can define for control purpose the so-called action-
value function (a.k.a., Q-function), which measures the
quality of a given policy by the expected sum of dis-
counted instantaneous rewards, conditioned on start-
ing in a given state-action pair, and following the pol-
icy π to take subsequent actions; i.e.,

Q(s, u) = E
[ ∞∑
k=0

γkR(Sk, Uk)
∣∣S0 = s, U0 = u

]
,

where Uk ∼ π(·|Sk) for all k ∈ N+. (16)

Naturally, one would like to choose the policy π such
that the values of the Q-function are optimized. In
fact, it has been established that the Q-function as-
sociated with the optimal policy π∗, yielding the op-
timal Q-function denoted by Q∗, satisfies the follow-
ing Bellman equation [Bertsekas and Tsitsiklis, 1996,
Tsitsiklis, 1994]

Q∗(s, u) = E[R(s, u)] + γE
[

max
u′∈U

Q∗(s′, u′)
∣∣s, u] (17)

for all state-action pairs (s, u) ∈ S × U . After
assuming a canonical ordering on the elements of
S × U , the table Q can be treated as a matrix in
R|S|×|U|. Once {Q∗(s, u)}s,u becomes available, an op-
timal policy π∗ can be recovered by setting π∗(s) ∈
arg maxu∈U Q

∗(s, u) for all s ∈ S, without any knowl-
edge about the transition probabilities.

In the learning context of interest, the transition prob-
abilities {Puss′}s,u,s′ are typically unknown and the di-
mensions |S| and/or |U| can be huge or even infinity
in practice, so it is almost impossible to exactly eval-
uate the Bellman equation (17). As one of the most
popular solutions for finding the optimal policy, Q-
learning [Watkins, 1989] iteratively updates the esti-
mate Qk of Q∗ using a single trajectory of samples
{(Sk, Uk, Sk+1)} generated by following the policy π,
according to the recursion

Qk+1(Sk, Uk) = Qk(Sk, Uk) + εk

[
R(Sk, Uk)

+ γmax
u′∈U

Qk(Sk+1, u
′)−Qk(Sk, Uk)

]
(18)
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where {0 < εk < 1} is a sequence of stepsizes to be
chosen by the user. Under standard conditions on
the stepsizes, the sequence {Qk} converges to Q∗ al-
most surely as long as every state-action pair (s, u) ∈
S × U is visited infinitely often; see, for instance,
[Tsitsiklis, 1994, Bertsekas and Tsitsiklis, 1996].

It is known that for many important problems of in-
terest, the computational requirements of exact func-
tion estimation are overwhelming, because of a large
number of states and actions (i.e., Bellman’s ‘curse of
dimensionality’) [Bertsekas and Tsitsiklis, 1996]. In-
stead, a popular approach has been to leverage low-
dimensional parametric approximants of the value
function, or the Q-function. Although nonlin-
ear approximators such as deep neural networks
[Mnih et al., 2015], [Wang et al., 2019] could lead to
more powerful approximation, the simplicity of RL
with linear approximation [Sutton and Barto, 2018]
allows us to analyze them in detail.

4.2 Q-learning with Linear Approximation

In this section, we provide a non-asymptotic analysis
for the original Q-learning with linear function approx-
imation. Specifically, we assume that the Q-function
is parameterized by a linear function as follows

Q(s, u) ≈ Qθ(s, u) = ψ>(s, a)θ (19)

where θ ∈ Rd is a parameter vector to be learned,
typically of size d � |S| × |U|, the number of state-
action pairs; and the feature vector ψ(s, a) ∈ Rd stacks
up d features produced by pre-selected basis functions
{ψ`(s, u) : S × U → R}d`=1. For future reference, we
introduce the so-called feature matrix, given by

Ψ :=


ψ>(s1, u1)
ψ>(s1, u2)

...
ψ>(s|S|, u|U|)

 ∈ R|S||U|×d

which is assumed to have full column rank (that is,
linearly independent columns) and satisfy ‖ψ(s, u)‖ ≤
1 for all state-action pairs (s, u) ∈ S × U .

The well-known Q-learning algorithm updates the pa-
rameter vector Θ, according to (e.g., [Watkins, 1989])

Θk+1 = Θk + εψ(Sk, Uk)
[
R(Sk, Uk)

+ γmax
u∈U

ψ>(Sk+1, u)Θk − ψ>(Sk, Uk)Θk

]
(20)

for some constant stepsize ε ∈ (0, 1). The goal here
is to obtain finite-time error bounds for (20), when
the observed data samples {(Sk, Uk, R(Sk, Uk), Sk+1,
Uk+1)}k∈N are collected along a single path of the

Markov chain {Sk}k∈N by following a deterministic
policy π. With Xk := (Sk, Uk, Sk+1), considering

F (θ,Xk) = ψ(Sk, Uk)
[
R(Sk, Uk) + γmax

u∈U
ψ>(Sk+1, u)θ

− ψ>(Sk, Uk)θ
]

(21)

it becomes obvious that (20) has the form of the SA
update (1). For our non-asymptotic error guarantees
established for nonlinear SA procedures in Theorem
2 to be applicable to Q-learning with linear function
approximation, it suffices to show that As. 1–3 are
satisfied by the Q-learning updates (20).

In general, Q-learning with even linear function ap-
proximation can diverge [Gordon, 1995]. This is
mainly because Q-learning implements off-policy 1

sampling to collect data, which renders the expected
Q-learning update possibly an expansive mapping
[Gordon, 1995]. Under appropriate regularity condi-
tions on the sampling policy, asymptotic convergence
of Q-learning with linear function approximation was
established in [Melo et al., 2008], and finite-time anal-
ysis was recently studied in [Chen et al., 2019]. In the
following, we also impose a similar regularity condition
on the sampling policy π [Chen et al., 2019].

Assumption 4. Suppose that the Markov chain
{Sk}k∈N induced by policy π is irreducible and ape-
riodic, whose unique stationary distribution is denoted
by µ. Assume that the equation F̄ (θ) := Eµ[F (θ,X)] =
0 has a unique solution θ∗, and the next inequality
holds for all θ ∈ Rd

γ2Eµ
[

max
u′∈U

(
ψ>(s′, u′) θ

)2]− Eµ
[(
ψ>(s, u) θ

)2]≤−c‖θ‖2
where u ∼ π(·|s), for some constant 0 < c < 1.

Now, let us turn to verify As. 1–3. To this end, we
start by introducing θ̃ := θ − θ∗ and X := (S,U, S′).
It then follows that

f(θ̃) := F (θ̃ + θ∗, X)

= ψ(S,U)
[
R(S,U)+γmax

u∈U
ψ>(S′, u)θ−ψ>(S,U)θ

]
.

(22)

It is evident that f̄(θ̃) := Eµ[F (θ̃ + θ∗, X)] = 0 has a

unique solution θ̃∗ = 0. Now, we can rewrite (20) as

Θ̃k+1 = Θ̃k + εf(Θ̃k, Xk). (23)

1On-policy methods estimate the value of a policy while
using it for control (namely, take actions); while in off-
policy methods, the policy used to generate behavior,
called the behavior/sampling policy, may be independent
of the policy that is evaluated and improved, called the
target/estimation policy [Sutton and Barto, 2018].
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Verifying As. 1. For any θ̃1, θ̃2, and x = (s, u, s′),
we have that

‖f(θ̃1, x)− f̄(θ̃2, x)‖

=
∥∥∥ψ(s, u)

[
R(s, u) + γ max

u1∈U
ψ>(s′, u1)

(
θ̃1 + θ∗

)
− ψ>(s, u)

(
θ̃1 + θ∗

)]
− ψ(s, u)

[
R(s, u)

+ γ max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
− ψ>(s, u)

(
θ̃2 + θ∗

)]∥∥∥
=
∥∥∥γψ(s, u)

[
max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)(θ̃2+ θ∗)
]
+ ψ(s, u)ψ>(s, u)(θ̃1− θ̃2)

∥∥∥
≤ γ

∣∣∣max
u1∈U

ψ>(s′, u1)(θ̃1+ θ∗)−max
u2∈U

ψ>(s′, u2)(θ̃2 + θ∗)
∣∣∣

+
∥∥θ̃1 − θ̃2

∥∥ (24)

where the last inequality follows from ‖ψ(s, u)‖ ≤ 1
for all (s, u) ∈ S × U .

Suppose that u∗1 ∈ maxu1∈U ψ
>(s′, u1)

(
θ̃1 + θ∗

)
, then

max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
= ψ>(s′, u∗1)

(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
≤ ψ>(s′, u∗1)

(
θ̃1 + θ∗

)
− ψ>(s′, u∗1)

(
θ̃2 + θ∗

)
= ψ>(s′, u∗1)

(
θ̃1 − θ̃2

)
≤
∥∥θ̃1 − θ̃2

∥∥ (25)

due again to ‖ψ(s′, u∗1)‖ ≤ 1. On the other hand, if
we let u∗2 ∈ maxu2∈U ψ

>(s′, u2)
(
θ̃2 + θ∗

)
, it follows

similarly that

max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)
= max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− ψ>(s′, u∗2)

(
θ̃2 + θ∗

)
≥ ψ>(s′, u∗2)

(
θ̃1 + θ∗

)
− ψ>(s′, u∗2)

(
θ̃2 + θ∗

)
= ψ>(s′, u∗2)

(
θ̃1 − θ̃2

)
≥ −

∥∥θ̃1 − θ̃2

∥∥. (26)

Combining (25) and (26) yields∣∣∣max
u1∈U

ψ>(s′, u1)
(
θ̃1 + θ∗

)
− max
u2∈U

ψ>(s′, u2)
(
θ̃2 + θ∗

)∣∣∣
≤
∥∥θ̃1 − θ̃2

∥∥ (27)

which, in conjunction with (24), proves that

‖f(θ̃1, x)− f(θ̃2, x)‖ ≤ (γ + 1)
∥∥θ̃1 − θ̃2

∥∥. (28)

In the meanwhile, it is easy to see that

‖f(θ̃, x)‖=
∥∥∥ψ(s, u)

[
R(s, u) + γ max

u1∈U
ψ>(s′, u1)

(
θ̃+ θ∗

)

− ψ>(s, u)
(
θ̃ + θ∗

)]∥∥∥
≤ |R(s, u)|+ [γ‖ψ(s′, u∗1)‖+ ‖ψ(s, u)‖]

∥∥θ̃ + θ∗
∥∥

≤ r̄ + (γ + 1)
(
‖θ̃‖+ ‖θ∗‖

)
= (γ + 1)‖θ̃‖+

[
r̄ + (γ + 1)‖θ∗‖

]
(29)

where we have used the fact that |R(s, u)| ≤ r̄ for all
(s, u) ∈ S × U . With (28) and (29), we have proved
that As. 1 is met with L := max{γ+1, r̄+(γ+1)‖θ∗‖}.

Verifying As. 2. The ODE associated with the
(centered) Q-learning update (23) is

˙̃
θ= f̄(θ̃)= Eµ

{
ψ(s, u)

[
R(s, u)+γmax

u′∈U
ψ>(s′, u′)(θ̃ + θ∗)

− ψ>(s, u)(θ̃ + θ∗)
]}

(30)

for which we consider the Lyapunov candidate function
W (θ̃) = ‖θ̃‖2/2. Evidently, it follows that W (θ̃) ≥
0 for all θ̃ 6= 0, so (6a) holds with c1 = c2 = 1/2.
Secondly, using f̄(θ̃∗) = 0, we have that

(∂W (θ̃)

∂θ̃

)>
f̄(θ̃)

=
(∂W (θ̃)

∂θ̃

)>[
f̄(θ̃)− f̄(θ̃∗)

]
= θ̃>Eµ

{
ψ(s, u)

[
R(s, u) + γ max

u1∈U
ψ>(s′, u1)(θ̃ + θ∗)

− ψ>(s, u)
(
θ̃ + θ∗

)]
− ψ(s, u)

[
R(s, u)

+ γ max
u2∈U

ψ>(s′, u2)θ∗ − ψ>(s, u)θ∗
]}

= γEµ
{
θ̃>ψ(s, u)

[
max
u1∈U

ψ>(s′, u1)(θ̃ + θ∗)

− max
u2∈U

ψ>(s′, u2)θ∗
]}
− Eµ

[
ψ>(s, u)θ̃

]2
≤ −Eµ

[
ψ>(s, u)θ̃

]2
+ γ

√
Eµ
[
ψ>(s, u)θ̃

]2
×
√
Eµ
[

max
u1∈U

ψ>(s′, u1)(θ̃ + θ∗)−max
u2∈U

ψ>(s′, u2)θ∗
]2

(31)

≤
√

Eµ[ψ>(s, u)θ̃]2
{
γ

√
Eµmax

u′∈U
[ψ>(s′, u′)θ̃]2

−
√
Eµ
[
ψ>(s, u)θ̃

]2}
(32)

=

√
Eµ
[
ψ>(s, u)θ̃

]2
×

γ2Eµ
[

maxu′∈U
(
ψ>(s′, u′)θ̃

)2]− Eµ
[
ψ>(s, u)θ̃

]2
γ

√
Eµ maxu′∈U

[
ψ>(s′, u′)θ̃

]2
+

√
Eµ
[
ψ>(s, u)θ̃

]2
(33)

≤ −c‖θ̃‖2√
γ2Eµ

[
maxu′∈U

(
ψ>(s′, u′)θ̃

)2]/Eµ[ψ>(s, u)θ̃
]2

+ 1

(34)
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≤ −c‖θ̃‖
2

2− c

which suggests that (6b) holds with c3 := c/[(2− c)L].

On the other hand, it follows for any θ̃, θ̃′ that∥∥∥∥∂W∂θ̃
∣∣∣
θ̃
− ∂W

∂θ̃

∣∣∣
θ̃′

∥∥∥∥ =
∥∥θ̃ − θ̃′∥∥

validating (6c) with c4 = 1.

Verifying As. 3. Let Puss′ be the transition proba-
bility of the Markov chain {Sk}k∈N from states s to s′

after taking action u; and let p
(n)
ss′ be the n-step tran-

sition probability from states s to s′ following policy
π. Define Xk := (Sk, Uk, Sk+1). It can be verified that
{Xk}k∈N is a Markov chain with state space X := {x =
(s, u, s′) : s ∈ S, π(u|s) > 0, Puss′ > 0} ⊆ S × U × S.
Next, we show that {Xk} is aperiodic and irreducible.

Consider two arbitrary states xi = (si, ui, s
′
i), xj =

(sj , uj , s
′
j) ∈ X . Since {Sk}k is irreducible, there exists

an integer n > 0 such that p
(n)
s′i,sj

> 0. Using the

definition of {Xk}k, it follows that

p(n+1)
xi,xj = p

(n)
s′isj

π(uj |sj)P
uj
sjs′j

> 0 (35)

which corroborates that the Markov chain {Xk}k is
irreducible; see e.g., [Levin and Peres, 2017, Ch. 1.3].

To prove that {Xk}k is aperiodic, we assume, for the
sake of contradiction, that {Xk}k is periodic with pe-
riod d ≥ 2. As {Xk}k has been shown irreducible, it
follows readily that every state in X has the same pe-
riod of d. Hence, for each state x = (s, u, s′) ∈ X , it

holds that p
(n+1)
x,x = 0 for all integers n + 1 > 0 not

divisible by d. Further, we deduce for any positive
integer (n+ 1) not divisible by d that

p
(n+1)
s′s′ =

∑
s∈S

p
(n)
s′sp

(1)
ss′ =

∑
s∈S

p
(n)
s′s

∑
u∈U

π(u|s)Puss′

=
∑
s∈S

∑
u∈U

p(n+1)
xx = 0 (36)

where the last two equalities arise from (35) and the
periodicity assumption of {Xk}k, respectively. It be-
comes evident from (36) that {Sk}k is periodic too,
and its period is at least d. This clearly contradicts
with the assumption that {Sk}k is aperiodic. There-
fore, we conclude that the Markov chain {Xk}k is ir-
reducible and aperiodic provided that {Sk}k is irre-
ducible and aperiodic.

Consider now two arbitrary states xT0
= (sT0

, uT0
, s′T0

)
and x = (s, u, s′) ∈ X . It follows that∥∥∥ 1

T

T0+T∑
k=T0+1

E
[
f(θ̃, Xk)

∣∣XT0
= xT0

]
− f̄(θ̃)

∥∥∥

=
∥∥∥ 1

T

T0+T∑
k=T0+1

∑
x∈X

[
p(k)
xT0x

− µ(x)
]
f(θ̃, x)

∥∥∥ (37)

=
∥∥∥ 1

T

T∑
k=T0+1

∑
s,s′∈S

∑
u∈U

[
p

(k−1)
s′T0

s π(u|s)Puss′ − µ(x)
]

× ψ(s, u)
[
R(s, u) + γmax

u′∈U
ψ>(s′, u′)(θ̃ + θ∗)

− ψ>(s, u)(θ̃ + θ∗)
]∥∥∥ (38)

≤ max
(s,u,s′)∈X

∥∥∥ψ(s, u)
[
R(s, u) + γmax

u′∈U
ψ>(s′, u′)(θ̃ + θ∗)

− ψ>(s, u)(θ̃ + θ∗)
]∥∥∥

× 1

T

T∑
k=T0+1

∑
x∈X

∣∣p(k−1)
s′T0

s π(u|s)Puss′ − µ(x)
∣∣

≤ (‖θ̃‖+ 1)× 1

T

T∑
k=T0+1

2cηk−T0−1 (39)

≤ 2c/(1− η)

T
(‖θ̃‖+ 1)

where (37) is due to f̄(θ̃) = EX∼µ[f(θ̃, X)] =∑
x∈X µ(x)f(θ̃, x); equality (38) uses (22) and (35);

and, (39) arises from the geometric mixing prop-
erty of irreducible, aperiodic Markov chain {Xk}k
[Levin and Peres, 2017, Thm. 4.9] as well as (29).

We have proved that As. 1-3 are satisfied by Q-
learning with linear function approximation, provided
that certain conditions on the sampling policy and
function approximators hold. Hence, our finite-time
error bound in Thm. 2 also holds for Q-learning with
linear approximation.

5 CONCLUSIONS

In this paper, we provided a non-asymptotic analysis
for a class of biased SA algorithms driven by a broad
family of stochastic perturbations, which include as
special cases e.g., i.i.d. random sequences of vectors
and ergodic Markov chains. Taking a dynamical sys-
tem viewpoint, our novel approach has been to design a
multistep Lyapunov function that involves future iter-
ates to control the gradient bias. We proved a general
convergence result based on this Lyapunov function,
and developed non-asymptotic bounds on the mean-
square error of the iterate generated by the SA proce-
dure to the equilibrium point of the associated ODE.
Subsequently, we illustrated this general result by ap-
plying it to obtain a finite-time error bound for Q-
learning with linear function approximation from data
gathered along a single trajectory of a Markov chain.
Our bound holds for Markov chains with general mix-
ing rates and from any initial distribution.
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