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Supplementary Material

A Derivation of (13)-(15)

Denote & := x + /ez.

Lasm = ||z + Vez — eVE(x + Vez) — z||? (20)
= €|z]* + EIVE@)|* — 26*/2(2, VE(&)) (21)
= e|lz[* + EIVE@)|]* — 26%/2(z, VE(x) + (VZE(w))(Vez) + O(e)) (22)
= (|IVE@)|? - QZT(VZg(QJ))Z) +e||z||? = 26322 TVE(z) +o(e?), (23)

A B

Notice

E.(z"V2E(z)z) = AE(x)
which is known as the Hutchinson’s trick (Hutchinson, 1990), so lim, o e *E(A) is two times the Fisher divergence
Dr(p|lq). But Var(B) = O(e?), so as ¢ — 0, the rescaled estimator ¢ 2Lgs, becomes unbiased with infinite
variance; and subtracting (B) from (A) results in a finite-variance estimator.

B On SPOS and MVL

Notations In this section, let the parameter space be d-dimensional, and define Lo(pX — R?) as the space of
d-dimensional functions {f : E, )| f(z)||* < co}.

While in the main text, we identified the tangent space of P(X) as a subspace of Ly(pX — R?) for clarity, here
we use the equivalent definition 7,(P(X)) := {s € La(pX — R) : E,s = 0} following (Otto, 2001). The two
definition are connected by the transform s = —V - (pp) for p € La(pX — RY). Using the new definition, the

differential of the KL divergence functional is then (dKLg),(s) := [ s(z)log & Eg dz.

B.1 SPOS as Gradient Flow

In this section, we give a formal derivation of SPOS as the gradient flow of the KL divergence functional, with
respect to a new metric.

Recall the SPOS sampler targeting distribution (with density) ¢ corresponds to the following density evolution:

Opr = =V - (pi(x) (9}, 4 (x) + aVog(d/p)))

v (x)

where a > 0 is a hyperparameter, and
Dp,.0(@) = Ep,(2)(Sp @ k) (2", 2) 1= By, (2)[(Var log $(a) (2, ) + Vork(a', )]
is the SVGD update direction (Liu and Wang, 2016; Liu, 2017). Fix p, define the integral operator
Ko[fl(x) = Epk(a’, 2) f (@),

and define the tensor product operator Kgod : L2(X — RY) — L?(X — R?) accordingly. Then the SVGD update
direction satisfies

b0 = K [Viog(e/p)], (24)

which we will derive at the end of this subsection for completeness. Following (24) we have

vi(z) = (ald + K2 [V log(¢/p)]. (25)
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The rest of our derivation follows (Otto, 2001; Liu, 2017): consider the function space H, o := {(add+K3?)[Vh]},
where h : X — R is any square integrable and differentiable function. It connects to the tangent space of P(X) if
we consider s = =V - (pp) for any p € H, o. Define on #H, o, the inner product

(f. 9,0 = (f. (ald + KF) " gl 1, (v ). (26)
It then determines a Riemannian metric on the function space. For p € H, o and s = —V - (pp), by (25) we have
), = By 0T 10500/ p0)(2),5(0)) = = [ log 2V - i) = ~(dKL) ()

i.e. with respect to the metric (26), SPOS is the gradient flow minimizing the KL divergence functional.

Derivation of (24) let (\;, ;)2 be its eigendecomposition (i.e. the Mercer representation). For j € [d] let

1/2

;.5 = P;e; where {ej} | is the coordinate basis in R?, so {\;/“4; ;} becomes an orthonormal basis in H®.

Now we calculate the coordlnate of QS; » in this basis.

<¢:;7¢a wi7j>L2(p) = Ep(a:)]Ep(a: <(V1/ 10g (]5(],‘/)) (.73/ .13) + Vx/k(x’, x)? ’(p’i,j (x
=Ep(a) [(Var log ¢(2"), (K[t 3])(2")) + V- (K [¥i,5]) ()]
=t Ep(a) (S (Kp[thi4]) (2')]. (27)
Sy is known to satisfy the Stein’s identity
E,S,(g) =0

for all g € H. Thus, we can subtract E,S,(K,[¢; ;]) from the right hand side of (27) without changing its value,
and it becomes

B[S (K [V ) (2')] = Bpar) [Sp (Ko [thi,5]) ()]

By (oo AT (01,0 )|

— ME ) [< o log ﬁg:))ﬂ/)i,j(:v’)ﬂ .

As the equality holds for all 4, k, we completed the derivation of (24).

B.2 MVL Objective Derived from SPOS

By (25) and (26), the MVL objective derived from SPOS is

||gradeL¢||%-tp,a = (Vlog(¢/pt), (ald + K®d)v 10g(¢/pt)>L2(pX—>Rd)'

In the right hand side above, the first term in the summation is the Fisher divergence, and the second is the
kernelized Stein discrepancy (Liu et al., 2016b, Definition 3.2).

We note that a similar result for SVGD has been derived in (Liu and Wang, 2017), and our derivations connect
to the observation that Langevin dynamics can be viewed as SVGD with a Dirac function kernel (thus SPOS also
corresponds to SVGD with generalized-function-valued kernels).

C Justification of the Use of Local Coordinates in (17)

In this section, we prove in Proposition C.1 that the local coordinate representation lead to valid approximation
to the MVL objective in the compact case. We also argue in Remark C.2 that the use of local coordinate does
not lead to numerical instability.

Remark C.1. While a result more general than Proposition C.1 is likely attainable (e.g. by replacing compactness
of X with quadratic growth of the energy), this is out of the scope of our work; for our purpose, it is sufficient
to mote that the proposition covers manifolds like S™, and the local coordinate issue will not exist in manifolds
possessing a global chart, such as H™.
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Lemma C.1. (Theorem 3.6.1 in (Hsu, 2002)) For any manifold M, x € M, and a normal neighborhood
B of x, there exists constant C' > 0 such that the first exit time T from B, of the Riemannian Brownian motion

starting from x, satisfies
C
Plr<Z) <e L/
(r=2)=
for any L > 1.

Proposition C.1. Assume the data manifold X is compact, and for all 9, £(-;0) is in C*. Let imvlirld be
defined as in (17), X; following the true Riemannian Langevin dynamics targeting ¢*/2. Then

1, d
- 25% IE(Lrnvlirld) = &E(S(Xt))

b

t=0

i.e. (17) recovers true WMVL objective.

Proof. By the tower property of conditional expectation, it suffices to prove the result when P(Xy = x) =1 for
some z. Choose a normal neighborhood B centered at x such that B is contained by our current chart, and has
distance from the boundary of the chart bounded by some § > 0. Let C, 7T be defined as in Lemma C.1. Recall
the Riemannian LD is the sum of a drift and the Riemannian BM. Since X is compact and & is in C?, the drift
term in the SDE will have norm bounded by some finite C. Thus the first exit time of the Riemannian LD is
greater than min(7,/C) =: 7.

Let X; follow the true Riemannian LD, X; = X, when ¢t < 7, and be such that E(Xt) = 0 afterwards.” By Hsu
(2008), until 7, X; follows the local coordinate representation of Riemannian LD (3), thus on the event {¢ < 7},
X, would correspond to y~ in (18). As X is compact, the continuous energy function £ is bounded by |£(-)] < A
for some finite A. Then for sufficiently small €,

L7 _ E(E(Xo) —E(Xp)) _ E(E(X) - E(Xo)) | E(E(Xo) — (X))
§E(Lmv17r1d) = = +
€ € €
— E(“:(XE) — S(XO)) + E(_S(Xe)l{fge})
€ € :
In the above the first term converges to %E(E(Xt))‘tzo as € — 0, and E(*S(Xl)l{rss}) < A]P’(:Se) _ AP(Z‘SG) <
A67€C/2€ — 0 when ¢ — 0. Hence the proof is complete. 0

Remark C.2. It is arqued that simulating diffusion-based MCMC' in local coordinates leads to numeric instabilities
(Byrne and Girolami, 2013; Liu et al., 2016a). We stress that in our setting of approximating MVL objectives,
this is not the case. The reason is that we only need to do a single step of MCMC, with arbitrarily small step-size.
Therefore, we could use different step-size for each sample, based on the magnitude of g and log q in their locations.
We can also choose different local charts for each sample, which is justified by the proposition above.

D Derivation of (19) in the Manifold Case

In this section we derive (19), when the latent-space distribution g4 (2) is defined on a p-dimensional manifold
embedded in some Euclidean space, and H|gg(2)] is the relative entropy w.r.t. the Hausdorff measure. The
derivation is largely similar to the Euclidean case, and we only include it here for completeness.

(19) holds because

VM [05(2)] € —V4E, (o) llog g (f(e, 6))]
= _Ep(e) [V¢ log qd¢ (f(ev ¢))]

= _]Ep(e) v¢ IOg q¢(z)|z:f(57¢) + vf IOg q (f(ﬁ, d))) v¢f(€a ¢)

(#2)
= _Ep(e) [Vz IOg Q¢(z)v¢f(€a ¢)] 3

" This is conceptually similar to the standard augmentation used in stochastic process texts; from a algorithmic
perspective it can be implemented by modifying the algorithm so that in the very unlikely event when y~ escapes the
chart, we return 0 as the corresponding energy. We note that this is unnecessary for manifolds like S", since the charts
can be extended to R? and hence T = .
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where (i) follows from Theorem 2.10.10 in Federer (2014), and (ii) follows from the same theorem as well as the
fact that Eg,.)[Vgloggs(2)] = Vy [ q4(2)dz = 0.

E Experiment Details and Additional Results

Code will be available at https://github.com/thu-ml/wmvl.

E.1 Synthetic Experiments

E.1.1 Experiment Details

Experiment Details in Section 6.1.1 The (squared) bias is estimated as follows: denote the SSM estimator
and ours as Ep, ) nrejo,1) [LFE™ (25 €)] and Ep ) nar(ejo,1) [L1v!(z; €)], respectively. One could verify that both methods

. N2
estimate (7). Our estimate for the squared bias is now & S5 (ﬁ Zjlvil(Lsﬁm(x(k); ey — DR, e(]))))

where z(k) ~ p(z),e¥) ~ N(0,1) are i.i.d. draws. The expectation of this estimate upper bounds the true
squared bias by Cauchy’s inequality, and the bias — 0 as K, M — 0. We choose K = 100, M = 50000 and plot
the confidence interval. We also use these samples to estimate the variance of our estimator.

For the model distribution g, we choose an EBM as stated in the main text. The energy of the model is
parameterized as follows: we parameterize a d-dimensional vector ¢ (z;6) using a feed-forward network, then
return 2 "1)(x; 6) as the energy function. This is inspired by the “score network” parameterization in (Song et al.,
2019); we note that this choice has little influence on the synthetic experiments (and is merely chosen here for
consistency), but leads to improved performance in the AE experiments. Finally, ¢)(x;#) is parameterized with
2 hidden layers and Swish activation (Ramachandran et al., 2017), and each layer has 100 units. We apply
spectral normalization (Miyato et al., 2018) to the intermediate layers. We train the EBM for 400 iterations with
our approximation to the score matching objective, using a batch size of 200 and a learning rate of 4 x 1073.
The choice of training objective is arbitrary; changing it to sliced score matching does not lead to any notable
difference, as is expected from this experiment.

The same procedure is applied to the denoising score matching estimator.

Experiment Details in Section 6.1.2 For this experiment, the data distribution is chosen as
p(z) = 0.7pyar (2](0,1),2) + 0.3pyar(2](0.5,—0.5), 3),

where p, s is the von Mises density
<

Pont (], 0) o €7 <00,

For the model distribution, the energy function is parameterized with a feed-forward network, using the same
score-network-inspired parameterization as in the last experiment. The network uses tanh activation and has 2
hidden layers, each layer with 100 units.

We generate 50,000 samples from p(x) for training. We use full batch training and train for 6,000 iterations, using
a learning rate of 5 x 10~4. The step-size hyperparameter in the MVL approximation is set to 107°.

E.1.2 On the Variance Problem in CD-1

To verify our control variate also solves the variance issue in CD-1, we train EBMs using CD-1 with varying
step-size, with and without our control variate, and compare the score matching loss to EBMs trained with our
method as well as sliced score matching. We use a separate experiment for CD-1 since it only estimates the
gradient of the score matching loss.

The score matching loss is calculated using SSM on training set, and averaged over 3 separate runs. We use the
cosine dataset in (Wenliang et al., 2018); the energy parameterization is the same as in Section 6.1.1. The results
are shown in Figure 3. We can see that with the introduction of the control variate, CD-1 performs as well as
other score matching methods.
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Figure 4: Mollweide projections of the ground truth (left) and learnt (right) energy functions on S2.

E.1.3 Learning EBMs on S?

As a slightly more involved test case for our Riemannian score matching approximation, we consider learning
EBMs on S2. The target distribution is a mixture of 4 von-Mises-Fisher distributions. The ground truth and
learnt energy functions are plotted in Figure 4; we can see that our method leads to a good fit.

E.2 Auto-Encoder Experiments

In all auto-encoder experiments, setup follows from (Song et al., 2019) whenever possible. The only difference is
that for score estimation, we parameterize the energy function, and use its gradient as the score estimate, as
opposed to directly parameterizing the score function as done in (Song et al., 2019). This modification makes
our method applicable; essentially, it corrects the score estimation in (Song et al., 2019) so that it constitute a
conservative field, which is a desirable property since score functions should be conservative.

For this reason, we re-implement all experiments for Euclidean-prior auto-encoders to ensure a fair comparison.
The results are slightly worse than (Song et al., 2019) for the VAE experiment, but significantly better for WAE
experiments. It should be also noted that in the VAE experiment, our implicit hyperspherical VAE result is still
better than the implicit Euclidean VAE result reported in (Song et al., 2019).

VAE Experiment The (conditional) energy function in this experiment is parameterized using the score-net-
inspired method described in Appendix E.1.1, with a feed-forward network. The network has 2 hidden layers,
each with 256 hidden units. We use tanh activation for the network, and do not apply spectral normalization.
When training the energy network, we add a L2 regularization term for the energy scale, with coefficient 1074,
The coefficient is determined by grid search on {1073,107%,107°}, using AIS-estimated likelihood on a heldout
set created from the training set. The step-size of the MVL approximation is set to 10~2; we note that the
performance is relatively insensitive w.r.t. the step-size inside the range of [107%,1072], as suggested by the
synthetic experiment. Outside this range, using a smaller step-size makes the result worse, presumably due to
floating point errors.

For implicit models, the test likelihood is computed with annealed importance sampling, using 1,000 intermediate
distributions, following (Song et al., 2019). The transition operator in AIS is HMC for Euclidean-space latents,
and Riemannian LD for hyperspherical latents.
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The training setup follows from (Song et al., 2019): for all methods, we train for 100,000 iterations using RMSProp
use a batch size of 128, and a learning rate of 1073.

WAE Experiment on MNIST For our method, the energy network is parameterized in the same way as in
the VAE experiments. When training the energy network, we use a step-size of 1073, and apply L2 regularization
on the energy scale with coefficient 107°. For the WAE-GAN baseline, we parameterize the GAN discriminator
as a feed-forward network with 2 hidden layers, each with 256 units. We use tanh activation, and apply L2
regularization with coefficient 107°. All models are trained for 200,000 iterations using RMSProp, using a batch
size of 128, and a learning rate of 1073. The Lagrange multiplier hyperparameter X in the WAE objective is fixed
at 10. FID scores are calculated using the implementation in (Heusel et al., 2017).

Sampled Generations in the Auto-encoder Experiments See Figure 7 - 9.

E.2.1 WAE Experiments in Higher Dimensions

In this section, we present results of hyperspherical WAEs on CIFAR-10 and CelebA, with larger n,.

For CelebA we follow the setup in Song et al. (2019): n. = 32, RMSProp, learning rate 10~4, train for 100,000
iterations. In addition, we apply spectral normalization and L2 regularization with coefficient 10~%. The step-size
in the MVL approximation is set to 10~%. The FID scores, averaged over 5 runs, are 50.82 + 0.50 for our method
and 51.20 4+ 0.59 for WAE-GAN.

LN —— ours —+ ours
120 WAE-GAN 110 A WAE-GAN
-+- WAE-MMD -+- WAE-MMD

FID

16 32 64 16 32 64

Figure 5: FID on CIFAR-10, with varying n.. Left: after 10° iterations; right: after 2 x 10° iterations.

For CIFAR-10, we modify the auto-encoder architecture and remove one scaling block to account for its lower
resolution. We do not use spectral normalization which leads to slightly worse results. The FID scores for varying
n, are presented in Figure 5, where we can see our method compares favorably to all baselines.
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Figure 6: Sampled generations of implicit VAEs.
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Figure 7: Sampled generations of explicit VAEs.



Jun Zhu, Bo Zhang

Ziyu Wang, Shuyu Cheng, Yueru Li,

NWO~~20o03Fo0 bk

Sverdwnw Qs
SNHYONPNOQNY =
—") -~ W -2 Mo >
BT~ 0Q

NP IDOMUNS MmN
NONQT—~No L
TTENMMnQY WO XY
VeI IO
SR MN g WO o
WM TN~~~ —Qf

AV N0~ > — g
CVIIITNANN 0
—~—h~~nD~sDw "

WrOota~m O od

wewNCNT N B

mGéegpuﬂd!ﬁl?fﬁqv

(d) WAE-MVL, Hyperspherical Prior

MV >-00Ro0o RO —
~ONNIF TN
Jr-0oIF o ~NO LhHLF F
Hbo—MONY—Q ¢
Ho~tmranQ oo
Hea T3 oo 3§

- MNP
B~~~ 3=\t hoo-
W% Lo~~~ mQ h O

(c) WAE-MVL, Euclidean Prior

Figure 8: Sampled generations in the WAE experiment on MNIST.
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Figure 9: Sampled generations in the WAE experiment on CelebA.



