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A Proof of Theorem 1

Proof of Theorem 1. Based on standard arguments in high dimensional statistics, the Template LASSO on A
wk ,

when choosing � � 2�
0

(�), satisfies

P (kb�(A
wk ,�)� �

wkk1  4�
|S

wk |
�2

) � P [F(�
0

(�))]� P (

b
⌃(A

wk) /2 C(S
wk ,�))) (20)

where F(�
0

(�)) ⌘
�
max

1jp

2

T

��⌘>X(j)

��  �
0

(�)
 
, which is a high-probability event by carefully choosing the

threshold �
0

(�) stated in the following lemma:

Lemma 2. Given a sample set A
wk and choose �

0

(�) ⌘ 2�x
max

q
(

�

2

+2 log p)

|Awk
| , then

P (F(�
0

(�))) � 1� 2 exp[��2

2

] (21)

Proof. See Section B.1.

Besides, the sample covariance matrix of the template sample set A
wk satisfies the compatibility condition with

high probability, as stated in the following lemma:
Lemma 3. Given a sample set A

wk that satisfies rate r optimal allocation condition. Then

P (

b
⌃(A

wk) /2 C(�
Swk

,
�p
2

s
|A]

wk |
|A

wk |
))  exp(�C

2

(�
1

)

2|A]

wk
|). (22)

Proof. See Section B.2.

Now, lemma 2 and lemma 3 together turn the equation (20) into

P (kb�(A
wk ,�)� �

wkk1  4�
|S

wk |
�2

) � 1� 2 exp[��2

2

]� exp(�C
2

(�
1

)

2|A]

wk
|).

Then Theorem 1 follows by solving � from the condition � � 2�
0

(�).

B Proof of key Lemmas

B.1 Proof of Lemma 2

Lemma 2 The event
F(�

0

(�)) = {max

j2[p]

2

T
|⌘>X(j)|  �

0

(�)}. (23)

holds with probability at least 1� exp(��

2

2

) by choosing

�
0

(�) = 2x
max

�

s
�2

+ 2 log d
P

T

s=1

n
s,wk

. (24)

Proof. Let n
s,wk denote the number of users allocated to treatment w

k

at the sth decision epoch. The sample
collected at epoch s is denoted by A

s,k

= {((X
(i,s)

, Y
(i,s)

) : i 2 [n
t,wk ], s 2 [t])}. Recall X(j) is the jth column of

covariate matrix X and the good event

F(�
0

(�)) = {max

j2[p]

2

T
|⌘>X(j)|  �

0

(�)}. (25)
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With the help of union bound, we have

P (J (�
0

(�))) � 1�
pX

j=1

P

✓���⌘>X(j)

��� >
T

2

�
0

(�)

◆
.

The quantity ⌘>X(j) actually has sub-Gaussian tail. To see this, define the filtration

F
t

⌘ {(Y
(i,j)

, X
(i,j)

)}
i2[t�1],j2[n

(t�1),wk]

and G
t

= F
t

[ {X
(s,i)

}
i2[nt,!k

]

(26)

From the tower property of expectation, independence between {⌘
(s,i)

}
i2[ns,wk

]

given G
s

, sub-Gaussian assumption
on ⌘

(s,i)

, bounded assumption on covariates
��X

(i,t)

��
1  x

max

,we have

E[exp(u

ns,!kX

s=1

⌘
(s,i)

X
(s,i),j

)|F
s

] (27)

= E[E[exp(u

ns,!kX

s=1

⌘
(s,i)

X
(s,i),j

)|G
s

]|F
s

] (28)

= E[

ns,!kY

s=1

E[exp(u⌘
(s,i)

X
(s,i),j

)|G
s

]|F
s

] (29)

 E[

ns,!kY

s=1

exp(u2

(�X
(s,i),j

)

2

2

)|F
s

] 
ns,!kY

s=1

exp(u2

(�x
max

)

2

2

) (30)

= exp(u2

(

p
n
s,!k�xmax

)

2

2

). (31)

The above result gives us a bound on the moment generating function of ⌘>X(j) that

E[exp(u(⌘>X(j)

))] = E[exp(u

TX

t=1

nt,!kX

i=1

⌘
(s,i)

X
(s,i),j

)] (32)

 exp(u2

(

p
n
T,!kxmax

�)2

2

)E[exp(u

T�1X

t=1

nt,!kX

i=1

⌘
(s,i)

X
(s,i),j

)] (33)

 · · ·  exp(u2

(

qP
T

s=1

n
s,!kxmax

�)2

2

). (34)

We find ⌘>X(j) is (

qP
T

s=1

n
s,!kxmax

�)2-sub-Gaussian. The tail probability bound of sub-Gaussian distribution
gives

P
⇣���⌘>X(j)

��� > t
⌘
 2 exp

 
� t2

2

P
T

s=1

n
s,wkx

2

max

�2

!
.

Now, to reformat this into a desired tail probability form, we note

1� 2 exp(��2

2

) = 1�
dX

j=1

P (|⌘>X(j)| >
P

T

s=1

n
s,wk

2

�
0

(�)) (35)

� 1� 2 exp(�
P

T

s=1

n
s,wk�

2

0

(�)

8x2

max

�2

+ log d). (36)

The above suggests us to choose

�
0

(�) = 2x
max

�

s
�2

+ 2 log d
P

T

s=1

n
s,wk

.



Online Batch Decision-Making with High-Dimensional Covariates

B.2 Proof of Lemma 3

Lemma 3 Given a sample set A
wk satisfying template condition with rate r. Then

P (

b
⌃(A

wk) /2 C(�
Swk

,
�p
2

s
|A]

wk |
|A

wk |
))  exp(�C

2

(�
1

)

2|A]

wk
|). (37)

Proof. From our population assumption, the population covariance matrix ⌃

wk satisfies the compatability condition
⌃

wk 2 C(�
Swk

,�). By carefully controlling |A
wk | and |A]

wk
|/|A

wk |, one could first show k⌃
wk � b⌃(A]

wk
)k1 

�

2

32|Swk
| , which implies b⌃(A]

wk
) 2 C(�

Swk
, �p

2

) with high probability (by using Corollary 6.8 in page 152 of
Bühlmann and Van De Geer (2011)). Next, by estimating an upper bound of the quadratic form induced by the
covariance matrix of sample set A

wk , we can show, with high probability, that

b
⌃(A

wk) 2 C(�
Swk

,
�p
2

s
|A]

wk |
|A

wk |
).

C Theory of LASSO

C.1 Basic Inequality

Lemma 4. (Basic Ineuality from Optimality Condition) In LASSO,

1

n
kX(

ˆ� � �0

)k2
2

+ �kˆ�k
1

 2

n
✏>X(

ˆ� � �0

) + �k�0k
1

. (38)

Proof. To perform optimality analysis, we play with true beta �0 and empirical minimizer ˆ�(Short hand of
b�
wk(Ak

,�)). From the argument min, we start with

1

n
kY �X ˆ�k2

2

+ �kˆ�k
1

 1

n
kY �X�0k2

2

+ �k�0k
1

(39)

Direct calculation gives us

1

n
kY �X ˆ�k2

2

� 1

n
kY �X�0k2

2

(40)

=

1

n
[Y >Y � 2Y >X ˆ� +

ˆ�>X>X ˆ�]� 1

n
[Y >Y � 2Y >X�0

+ (�0

)

>X>X�0

] (41)

=

1

n
[2Y >X(�0 � ˆ�) + ˆ�>X>X ˆ� � (�0

)

>X>X�0

] (42)

=

1

n
[2(X�0

+ ✏)>X(�0 � ˆ�) + ˆ�>X>X ˆ� � (�0

)

>X>X�0

] (43)

=

1

n
[2(�0

)

>X>X(�0 � ˆ�) + 2✏>X(�0 � ˆ�) + ˆ�>X>X ˆ� � (�0

)

>X>X�0

] (44)

=

1

n
[2✏>X(�0 � ˆ�) + (�0

)

>X>X(�0

)� 2(�0

)

>X>X ˆ� +

ˆ�>X>X ˆ�] (45)

=

1

n
[2✏>X(�0 � ˆ�) + (�0 � ˆ�)X>X(�0 � ˆ�)] (46)

=

2

n
✏>X(�0 � ˆ�) +

1

n
kX(

ˆ� � �0

)k2
2

(47)

Lemma 5. (Basic Inequality on Good Event) On good event F and with � � 2�
0

, the basic inequality can be
further reduced to

2

n
kX(

ˆ� � �0

)k2
2

+ �kˆ�
S

c
0

k
1

 3�kˆ�
S

0

� �0

S

0

k
1

(48)
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Proof. Recall the basic inequality

1

n
kX(

ˆ� � �0

)k2
2

+ �kˆ�k
1

 2

n
✏>X(

ˆ� � �0

) + �k�0k
1

Multiply it by 2 to get

2

n
kX(

ˆ� � �0

)k2
2

+ 2�kˆ�k
1

 2 · 2
n
✏>X(

ˆ� � �0

) + 2�k�0k
1

(49)

Plug in the upper bound to get

2

n
kX(

ˆ� � �0

)k2
2

+ 2�kˆ�k
1

 2 · (max

j2[p]

2

n
|✏>X(j)|)kˆ� � �0k

1

+ 2�k�0k
1

(50)

Then on good event F , it becomes

2

n
kX(

ˆ� � �0

)k2
2

+ 2�kˆ�k
1

 2 · �
0

kˆ� � �0k
1

+ 2�k�0k
1

(51)

Apply � � 2�
0

to get
2

n
kX(

ˆ� � �0

)k2
2

+ 2�kˆ�k
1

 �kˆ� � �0k
1

+ 2�k�0k
1

(52)

To further reduce equation (52), we play with sparsity component. Let S
0

denote the sparsity location of truth
�0.

One the RHS, since �0

S

c
0

= 0, we have an identity

kˆ� � �0k
1

= kˆ�
S

0

� �0

S

0

k
1

+ kˆ�
S

c
0

k
1

(53)

On the LHS, we have identity
k�0k

1

= k�0

S

0

k
1

+ k�0

Sc
k
1

= k�0

S

0

k
1

(54)

On the other hand, the empirical minimizer ˆ� only has identity

kˆ�k
1

= kˆ�
S

0

k
1

+ kˆ�
Sck1 (55)

To link ˆ�
S

0

with �0

S

0

in L
1

norm, the inverse triangle inequality gives

kˆ�
S

0

k
1

� k�0

S

0

k
1

� kˆ�
S

0

� �0

S

0

k
1

(56)

Then we have an inequality
kˆ�k

1

� k�0

S

0

k
1

� kˆ�
S

0

� �0

S

0

k
1

+ kˆ�
S

c
0

k
1

(57)

Combine these two observations into equation (52), we have inequality

2

n
kX(

ˆ� � �0

)k2
2

+ 2�(k�0

S

0

k
1

� kˆ�
S

0

� �0

S

0

k
1

+ kˆ�
S

c
0

k
1

)  �(kˆ�
S

0

� �0

S

0

k
1

+ kˆ�
S

c
0

k
1

) + 2�k�0

S

0

k
1

(58)

Reorganize them into the inequality

2

n
kX(

ˆ� � �0

)k2
2

+ 2�kˆ�
S

c
0

k
1

 3�kˆ�
S

0

� �0

S

0

k
1

+ �kˆ�
S

c
0

k
1

(59)

Lemma 6. (Compatibility passes L
1

norm to square root of L
2

norm)

On good event F , � � 2�
0

, and compatability condition associate with gram matrix ˆ

⌃ holds,

kˆ�
S

0

� �0

S

0

k
1


p
s
0

�
0

1p
n
kX(

ˆ� � �0

)k
2

(60)
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Proof. To further reduce the basic inequality on good event (48), we impose condition on sparsity component S
0

.
In lemma 5, two quantities we play with are kˆ�

S

c
0

k
1

and kˆ�
S

0

� �0

S

0

k
1

.

An implication of equation (48) is, on good event F , it is true that

kˆ�
S

c
0

� �0

S

c
0

k
1

= kˆ�
S

c
0

k
1

 3kˆ�
S

0

� �0

S

0

k
1

, (61)

that is, on good event F , the discrepancy between empirical minimizor and truth ˆ� � �0 always belongs to the
class

{�|k�
S

c
0

k
1

 3k�
S

0

k
1

}. (62)

On such class, the compatability condition with Gram matrix ˆ

⌃ ⌘ 1

n

X>X is

k�
S

0

k
1


p
s
0

�
0

q
�>

ˆ

⌃� (63)

Thus, we have

kˆ�
S

0

� �0

S

0

k
1


p
s
0

�
0

q
(

ˆ� � �0

)

>
ˆ

⌃(

ˆ� � �0

) =

p
s
0

�
0

1p
n
kX(

ˆ� � �0

)k
2

(64)

C.2 Static Oracle Inequality

Theorem 3. (Oracle Inequality of LASSO minimizor)

On good event F , � � 2�
0

, and compatability condition associate with gram matrix ˆ

⌃ holds,

1

n
kX(

ˆ� � �0

)k2
2

+ �kˆ� � �0k
1

 4s
0

�2

0

�2 (65)

Proof. Plus both side of basic inequality on good event (48) an addition term �kˆ�
S

0

� �0

S

0

k to get

2

n
kX(

ˆ� � �0

)k2
2

+ �kˆ� � �0k
1

 4�kˆ�
S

0

� �0

S

0

k
1

(66)

Input lemma 6 to get
2

n
kX(

ˆ� � �0

)k2
2

+ �kˆ� � �0k
1

 4�

p
s
0

�
0

· 1p
n
kX(

ˆ� � �0

)k
2

(67)

Set u =

1p
n

kX(

ˆ� � �0

)k
2

and v = �
p
s

0

�

0

. Note (u� 2v)2 � 0 implies 4uv  u2

+ 4v2 to get

2

n
kX(

ˆ� � �0

)k2
2

+ �kˆ� � �0k
1

 kX(

ˆ� � �0

)k2
2

n
+ 4�2

s
0

�2

0

(68)

Reorganize the terms to get
1

n
kX(

ˆ� � �0

)k2
2

+ �kˆ� � �0k
1

 4s
0

�2

0

�2. (69)

D Checking Optimal Allocation Condition

Now we show two types of sample set–teamwork sample set and all sample set-produced from our proposed data
collection protocol both satisfies the template condition.

The following lemmas are used to prove template condition of teamwork sample set and all sample set(lemma 7
and lemma 10).
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D.1 Teamwork Sample Set

Lemma 7. For any decision epoch t � (Kq)2, the teamwork sample set for treatment w
k

up to time t, D
[t],wk

, is
a template sample set of rate p⇤, with probability at least 1� 2

t

4

.

Proof of Lemma 7. To check (i): Lemma 8, q
0

� 6 log d

Np⇤C2

2

(�

0

)

2

and t > (Kq)2 > 3 imply

|D
[t],k

| � 1

2

Nq log t � 2Nq
0

>
6 log d

p⇤C2

2

(�
0

)

2

. (70)

To check (ii): Lemma 9 shows that, for t � (Kq)2, we have

P (

|D]

[t],k

|
|D

[t],k

| �
p⇤
2

) � 1� 2

t4
(71)

Lemma 8. (Size of Teamwork Sample Set) If t � (Kq)2, then

1

2

Nq log t  |D
[t],k

|  6Nq log t.

Proof. First we note
T
[t],k

= T·,k \ [t] = [
n�0

(T
n,k

\ [t]).

At t 2 T
n,k

, we have finished round 0, 1, 2, · · · , n� 1 teamwork stage for arm k, each of size Nq, therefore

nNq  |D
[t],k

|  (n+ 1)Nq.

With this, our task becomes to derive the lower bound and upper bound for n and n + 1 in terms of log t by
using the condition t � (Kq)2

For t 2 T
k,n

,we have
(2

n � 1)Kq + 1  t  (2

n

)Kq,

which means
log

2

(

t

Kq
)  n  log

2

(

t

Kq
+ 1) + 1.

Use condition t � (Kq)2, one have log

2

(Kq)  1

2

log

2

(t) and hence

n � 1

2

log

2

t.

On the other hand, we have

n+ 1  log

2

(

t

Kq
+ 1) + 1  log(2(t+

p
t))

log 2

 6 log t.

Lemma 9. If t � (Kq)2, then P (

|D\
[t],k

|
|D

[t],k| �
p⇤
2

) � 1� 2

t

4

.

Proof. Apply P (|y � µ| > µ

2

) < 2 exp[�0.1µ] in Alon and Spencer (2004) to the indicator random variable
I((i, s) 2 D\

[t],k

) for all (i, s) 2 D
[t],k

and using µ = E[

P
(i,s)2D

[t],k
I[(i, s) 2 D\

[t],k

]] � p⇤|D
[t],k

, | we get P (|D\

[t],k

| <
p⇤
2

|D
[t],k

|) < 2e�
p⇤
10

|D
[t],k| Therefore, by our control of the size of |D

[t],k

| and the choice of q
0

, we have P (|D\

[t],k

| <
p⇤
2

|D
[t],k

|) < 2e�
p⇤
5

q

0

log t  2

t

4

.
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D.2 All Sample Set

We set S = T [ E in this subsection.
Lemma 10. For any decision epoch t � C

5

, the all sample set for treatment w
k

up to t, S
[t],wk

, is a template

sample set of rate p⇤
2

, with probability at least 1� exp[� tp

2

⇤
128

].

Proof of Lemma 10 To check (i): Lemma 8, q
0

� 6 log d

Np⇤C2

2

(�

0

)

2

and t > C
5

> 3 imply

|S
[t],k

| � |D
[t],k

| � 12 log d

p⇤C2

2

(�
0

)

2

=

6 log d
p⇤
2

C2

2

(�
0

)

2

. (72)

To check (ii): Lemma 11 shows that, for t � C
5

, we have

P (

|S]

[t],k

|
|S

[t],k

| �
1

2

p⇤
2

) � 1� exp(� p2⇤
128

· t) (73)

Lemma 11. For t > C
5

,

P (

|S]

[t],k

|
|S

[t],k

| �
1

2

p⇤
2

) � 1� exp(� p2⇤
128

· t) (74)

Proof. We start from noting the fact that the all sample set for treatment w
k

, S
[t],k

, can have at most t elements
up to time t (|S

[t],k

|  t) implies

P (

|S]

[t],k

|
|S

[t],k

| <
1

2

p⇤
2

) � P (

|S]

[t],k

|
t

<
p⇤
4

) = P (|S]

[t],k

| < p⇤
4

· t) (75)

To handle RHS, we note that the size of S]

[t],k

admits a representation

|S]

[t],k

| =
tX

s=1

X

i2N(s)

I((X
(i,s)

, Y
(i,s)

) 2 S]

[t],k

). (76)

The strategy to utilize such representation is first to construct a martingale difference sequence and then apply
Azuma’s inequality to attain desired result.

First, all samples been collected in S]

[t],k

are optimal allocation in selfish stage given good event happens. Thus,
whether a sample (X

i,s

, Y
i,s

) belongs to S]

[t],k

has a representation

I((X
i,s

, Y
i,s

) 2 S]

[t],k

) = I(E
s�1

)I(X
(i,s)

2 U
wk)I(s /2 T

[t],·). (77)

Recall that samples in S]

[s],k

also satisfies model assumption and hence can be written as Y = X>�+ ✏. Let G
s

be
the sigma algebra generated by the first N(s) ⌘ |S]

[s],k

| rows of the design matrix X and the first N(s) entries of
the noise vector ✏, and let G

0

= �. With this, I(E
s�1

) is G
s�1

measurable; I(X
(i,s)

2 U
wk) is G

s

measurable and
independent of G

s�1

; I(s /2 T
[t],·) is deterministic by planning of teamwork stage. Follow the Doob’s martingale

construction, define
M

s

= E[|S\

[t],k

||G
s

] (78)

for all s 2 [t] [ {0}. The resulting sequence M
0

,M
1

, · · · ,M
t

is a martingale adapted to the filtration G
0

⇢ G
1

⇢
· · · G

t

with M
0

= E[|S\

[t],k

|] and M
t

= |S\

[t],k

|. The desired martingale differences is thus M
s

�M
s�1

.

Now since the martingale differences M
s

�M
s�1

are bounded by N(s)�N(s� 1), the Azuma’s inequality, (see.
Theorem 7.2.1 from Alon and Spencer 1992), to obtain for all ⌘ > 0,

P (|S\

[t],k

| < E(|S\

[t],k

|)� ⌘)  exp(� ⌘2

2N(t)
). (79)
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Now a lower bound for expected size of S\

[t],k

follows from adopted policy that

E[|S]

[t],k

|] =
tX

s=1

X

i2N(s)

P ((X
(i,s)

, Y
(i,s)

) 2 S]

[t],k

) � [t� |T
[t],·|� (Kq)2]

p⇤
2

� [t� 6KNq log t� (Kq)2]
p⇤
2

� 3p⇤
8

t,

where the last inequality from the definition of constant C
5

. Thus, taking ⌘ =

p⇤
8

t, we have

P (|S]

[t],k

| < p⇤
4

t)  exp(� p2⇤
128

t). (80)

E Deviation Inequalities of Teamwork LASSO and ALL LASSO

E.1 Teamwork LASSO-Proof in Corollary 1

Proof. Note C
1

(

�

1

p
r

2

) =

r

2

16

C
1

(�
1

). Apply Theorem 8 for � =

h

4x

max

and r = p⇤. First, q
0

� 512x

2

max

NC

1

(�

1

)p

2

⇤h
2

and
lemma 8 imply

�C
1

(

�
1

p
p⇤

2

)|D
[t],wk

|�2

+ log d  NC
1

(�
1

)p2⇤h
2

128x2

max

log t · q
0

 �4 log t. (81)

Second, |A]

wk
| � r

2

|A
wk | �

p⇤
2

Nq
0

and q
0

� 8

NC

2

(�

1

)

2

p⇤
and it implies

� |D]

[t],wk
|C

2

(�
1

)

2  �NC
2

(�
1

)

2p⇤
2

· q
0

 �4 log t (82)

Last, we find

P (kˆ�
wk(D[t],k

,�
1

)� �
wkk1 >

h

4x
max

) (83)

 P (kˆ�
wk(D[t],k

,�
1

)� �
wkk1 >

h

4x
max

,
|D]

[t],k

|
|D

[t],k

| �
p⇤
2

) + P (

|D]

[t],k

|
|D

[t],k

| <
p⇤
2

) (84)

 2 · 1

t4
+

1

t4
+

2

t4
=

5

t4
(85)

E.2 All LASSO–Proof in Corollary 2

Proof. Note C
1

(

�

1

p
r

2

) =

r

2

16

C
1

(�
1

). Apply Theorem 1 for � =

16p
p

3

⇤C1

(�

0

)

q
log t+log d

t

and r =

p⇤
2

. First,

|S
[t],wk

| � p⇤t
4

and lemma 8 imply

� C
1

(

�
1

p
p⇤/2

2

)|S
[t],wk

|�2

+ log d  �p2⇤
64

C
1

· p⇤t
4

· 256 log t+ log d

tp3⇤C1

+ log d = � log t. (86)

Second, |S]

[t],wk
| � p⇤

4

|S
[t],wk

| � p

2

⇤t
16

and C2

2

� 1

2

imply

� |S]

[t],wk
|C

2

(�
1

)

2  �p2⇤
32

· t (87)

Last, we find

P (kˆ�
wk(D[t],k

,�
1

)� �
wkk1 >

16p
p3⇤C1

(�
0

)

r
log t+ log d

t
) (88)

 P (kˆ�
wk(D[t],k

,�
1

)� �
wkk1 >

16

q
log t+log d

tp
p3⇤C1

(�
0

)

,
|S]

[t],k

|
|S

[t],k

| �
p⇤
2

) + P (

|S]

[t],k

|
|S

[t],k

| <
p⇤
2

) (89)

 2 · 1
t
+ exp(�p2⇤

32

· t) + exp(� p2⇤
128

· t)  2(

1

t
+ exp(�p2⇤

32

· t)) (90)
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F Regret Analysis

We show the properties of ˆK(x) for x 2 X and for x 2 U
w

of a available treatment w. In words, for any given
observed covariate x 2 X , Teamwork LASSO excludes those sub-optimal treatment of x up to tolerance level h. If
x 2 U

w

, then Teamwork excludes all treatment other than the optimal treatment of x. Therefore, the probability
of random covariate X belongs to U

w

matters.

F.1 Proof of lemma 12

Lemma 12. (For x 2 X ) Suppose the (t� 1)th decision epoch is in selfish stage and event E
t�1

holds. Then
for each available treatment w

i

2 W and any possible observed covariate x 2 X , the estimated optimal treatment
candidate set contains the optimal treatment of x: w⇤

(x) ⌘ argmax

w2Whx,�
w

i and no any sub-optimal treatment
w 2 W

sub

. That is,
w⇤

(x) 2 bK(x) and w /2 bK(x) for all w 2 W
sub

(91)

Proof. First, we show w⇤
(x) 2 bK(x). Note at the tth decision epoch, the optimal treatment suggested by Teamwork

LASSO is wteam

(x) ⌘ argmax

w2W x>b�
w

(D
[t�1],w

,�
1

). Since E
t�1

holds, it implies x>b�
w

(D
[t�1],w

,�
1

)�x>�
w

<

x
max

· h

4x

max

=

h

4

for all available treatment w, which includes w⇤ and wteam.

x>b�(D
[t�1],w

team
)� x>b�(D

[t�1],w

⇤
) (92)

= (x>b�(D
[t�1],w

team
)� x>�

w

team
) + (x>�

w

team � x>�
w

⇤
) + (x>�

w

⇤ � x>b�(D
[t�1],w

⇤
) (93)

 h

4

+ 0 +

h

4

=

h

2

, (94)

where the last inequality is from the definition of w⇤
(x) that x>�

w

⇤ � x>�
w

team < 0.

Second, we show w
sub

/2 bK(x) for all w
sub

2 W
sub

. Since E
t�1

holds, it implies x>b�
w

(D
[t�1],w

,�
1

)� x>�
w

>

�x
max

· h

4x

max

= �h

4

for all available treatment w, which includes wteam and wsub.

x>b�(D
[t�1],w

team
)� x>b�(D

[t�1],w

sub) (95)

� x>b�(D
[t�1],w

⇤
)� x>b�(D

[t�1],w

sub) (96)

= (x>b�(D
[t�1],w

⇤
)� x>�

w

⇤
) + (x>�

w

⇤ � x>�
w

sub) + (x>�
w

sub � x>b�(D
[t�1],w

sub) (97)

� �h

4

+ h+�h

4

=

h

2

, (98)

where the last inequality is from the definition of W
sub

that x>�
w

⇤ � x>�
w

sub > h.

F.2 Proof of lemma 13

Lemma 13. (For x 2 U
wi) Suppose the (t�1)th decision epoch is in selfish stage and event E

t�1

holds. Then for
each available treatment w

i

2 W, if a observed covariate x belongs to U
wi , then the estimated optimal treatment

candidate set contains only treatment w
i

, that is

bK(x) = {w
i

}. (99)

Proof. For every treatment w
j

other than w
i

, since x 2 U
wi , definition of U

wi implies x>�
wi � x>�

wj > h; since
E

t�1

holds, it implies x>b�
w

(D
[t�1],w

,�
1

) � x>�
w

> �x
max

· h

4x

max

= �h

4

. Combine them to obtain, for every
treatment w

j

other than w
i

x>b�
wi(D[t�1],wi

,�
1

)� x>b�
wj (D[t�1],wj

,�
1

) (100)

= x>
[

b�
wi(D[t�1],wi

,�
1

)� �
wi ]� x>

[

b�
wj (D[t�1],wj

,�
1

)� �
wj ] + x>

[�
wi � �

wj ] (101)

� �h

4

� h

4

+ h =

h

2

. (102)
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That is, for every treatment w
j

other than w
i

,

x>b�
wi(D[t�1],wi

,�
1

) � x>b�
wj (D[t�1],wj

,�
1

) +

h

2

. (103)

Therefore, by construction of optimal treatment candidate set, we conclude bK(x) = {w
i

}.

F.3 Regret bound for case (4)

Lemma 14.

f(t) = [4Kbx
max

+ C
3

(�
0

, p⇤) · log d]
1

t
+ 8Kbx

max

exp[�p2⇤C2

(�
0

)

2

32

· t] + C
3

(�
0

, p⇤)
log t

t
(104)

Proof. Without loss of generality, for a observed covariate vector x
i,t

of the ith user at the tth decision epoch,
assume w

1

is the optimal treatment, that is x>
i,t

�
w

1

= max

w2W x>
i,t

�
w

. First, we note that the instantaneous regret
occurs if we allocate treatment other than w

1

to covariate x. This happens when x>b�(S
[t�1],w

) > x>b�(S
[t�1],w

1

)

for some treatments w. This observation suggests

r
i,t

= E[

X

wk2 ˆ

K(xi,t)

x>
i,t

(�
w

1

� �
wk)I(⇡(xi,t

= w
k

)] (105)

 E[

X

wk2 ˆ

K(xi,t)

x>
i,t

(�
w

1

� �
wk)I(x

>
i,t

b�(S
[t],wk

) > x>
i,t

b�(S
[t],w

1

)] (106)

Second, to handle RHS, define a function g(x) ⌘ x>
(�

w

1

� �
wk) consider the set

B
wk ⌘ {x|x>

(�
w

1

� �
wk) > 2�x

max

}. (107)

The boundness assumption on observed covariate x and efficacy parameter �
w

suggests g(x)  2bx
max

for all
x 2 B

wk ; the definition of set B
wk suggests g(x)  2�x

max

for all x 2 Bc

wk
. This observation suggests

r
i,t

 | ˆK(x
i,t

)| · 2bx
max

· E[I(x>
i,t

b�(S
[t],wk

) > x>
i,t

b�(S
[t],w

1

)I(x
i,t

2 B
wk)] (108)

+ | ˆK(x
i,t

)| · 2�x
max

· E[I(x>
i,t

b�(S
[t],wk

) > x>
i,t

b�(S
[t],w

1

)I(x
i,t

2 Bc

wk
)] (109)

 K2bx
max

E[I(x>
i,t

b�(S
[t],wk

) > x>
i,t

b�(S
[t],w

1

)I(x>
i,t

(�
w

1

� �
wk) > 2�x

max

)] (110)

+ K2�x
max

E[I(x>
i,t

(�
w

1

� �
wk)  2�x

max

)] (111)

Third, we handle equation (110) and (111). We note the marginal condition implies

(111) = K2�x
max

P (X>
(�

w

1

� �
wk)  2�x

max

)  C
0

· 2�x
max

. (112)

Based on this observation, we have

(110)  K2bx
max

· (P (k�
w

1

� b�
w

1

(S
[t],w

1

)k
1

> �) + P (kb�
wk(S[t],wk

)� �
wkk1 > �)) (113)

 K2bx
max

· 2 · (1
t
+ 2 exp(�p2⇤C2

(�
0

)

2

32

· t)) (114)

Last, combine above results and take � = 16

q
log t+log d

p

3

⇤C1

t

, we have

r
i,t

(115)

 K2bx
max

· 2 · (1
t
+ 2 exp(�p2⇤C2

(�
0

)

2

32

· t)) + 2�x
max

· C
0

· 2�x
max

) (116)

= K4bx
max

(

1

t
+ 2 exp(�p2⇤C2

(�
0

)

2

32

· t)) + 4�2x2

max

· C
0

) (117)

= [4Kbx
max

+ C
3

(�
0

, p⇤) log d]
1

t
+ 8Kbx

max

exp[�p2⇤C2

(�
0

)

2

32

· t] + C
3

(�
0

, p⇤)
log t

t
, (118)

as desired.
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F.4 Full Regret Bound–Proof of Theorem 2

The regret can be bounded by:

R
T

=

X

t2[T ]

X

i2[N ]

r
i,t

(119)

=

X

t2[C

5

]

X

i2[N ]

r
i,t

+

X

t2[C

5

:T ]\T

X

i2[N ]

r
i,t

+

X

t2[C

5

:T ]\T c

X

i2[N ]

r
i,t

(120)

 N · C
5

· 2bx
max

+N · |T | · 2bx
max

+N ·
X

t2[C

5

:T ]\T c

[

K

t4
· 2bx

max

+ f(t)] (121)

 NC
5

2bx
max

+N(6q log TK)2bx
max

+NK2bx
max

Z
T

1

1

t4
dt+N ·

Z
T

1

f(t)dt (122)

 N · {2bx
max

· [C
5

+ 6qK log T +K] (123)
+ [4Kbx

max

+ C
3

(�
0

, p⇤) · log d] log T + 8Kbx
max

C
4

+ C
3

(�
0

, p⇤)(log T )
2} (124)

G Constants

Here we list the constants that appear in the proof.
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1

(�
0

) ⌘ �
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0
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2

0

�

2
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max
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0
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}
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3

⌘ 1024KC

0

x

2
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p

3

⇤C1

• C
4

⌘ 8Kbx

max

1�exp(� p2⇤
32

)

• C
5

⌘ {t 2 Z+|t � 24Kq log t+ 4(Kq)2}

• q
0

⌘ max{ 20

Np⇤
, 4

Np⇤C2

2

, 3 log d

Np⇤C2

2

,
1024x

2
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log d

Nh

2

p

2

⇤C1

}.

H Experiment

In Figure. 3, we compare our Teamwork LASSO Bandit with batch size N = 4 and N = 12 to the LASSO Bandit
in Bastani and Bayati (2020). In the attached plot, covariate dimension d = 200, 500 and 1000, number of
treatments (arms) K =3, the length of exploration phase q = 1,2,3,4,5,6 with a total number of decisions 5000. N
is the batch size, where N=1 corresponds to LASSO Bandit and N=4, 12 corresponds our Teamwork LASSO
Bandit. We run 100 replications for each setting.

Remark on cumulative regret and covariate vector dimension. In the experiment, we increase the
covariate vector dimension from 200, 500 to 1000. The performance of high update frequency algorithm is more
sensitive to the increase in covariate dimension than our low update frequency algorithm.

Remark on the length of exploration phase q. In real world practice, the length of exploration phase q is
pre-specified and then an explore-exploitation policy follows the choice of q. Given the same total number of
decisions, it is often the case that one prefers a smaller value of q, which means fewer regret from exploration and
is more time efficient in the sense that more rounds of explore-exploit can be done.
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Figure 3: Comparison of our Teamwork LASSO Bandit with batch size N = 4 and N = 12 to the LASSO Bandit
in Bastani and Bayati (2020). The error bars represent the maximum and minimum of the regret among 100
replications.
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