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Abstract

The paper addresses various Multiplayer
Multi-Armed Bandit (MMAB) problems,
where M decision-makers, or players, collabo-
rate to maximize their cumulative reward. We
first investigate the MMAB problem where
players selecting the same arms experience a
collision (and are aware of it) and do not
collect any reward. For this problem, we
present DPE1 (Decentralized Parsimonious
Exploration), a decentralized algorithm that
achieves the same asymptotic regret as that
obtained by an optimal centralized algorithm.
DPE1 is simpler than the state-of-the-art al-
gorithm SIC-MMAB Boursier and Perchet
(2019), and yet offers better performance guar-
antees. We then study the MMAB problem
without collision, where players may select
the same arm. Players sit on vertices of a
graph, and in each round, they are able to
send a message to their neighbours in the
graph. We present DPE2, a simple and
asymptotically optimal algorithm that out-
performs the state-of-the-art algorithm DD-
UCB Mart́ınez-Rubio et al. (2019). Besides,
under DPE2, the expected number of bits
transmitted by the players in the graph is
finite.

1 Introduction

In Multiplayer MAB, there are M independent decision-
makers, or players. At every round: (i) each decision-
maker selects an arm in the set K = {1, . . . ,K}, (ii)
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receives some feedback about this arm, and (iii) pos-
sibly communicates with neighbouring players. To
simplify the presentation, we assume that in round t,
when arm k is selected, the potential collected reward
is a random variable (independent of the rewards of
the other arms) Xk(t) with Bernoulli distribution with
mean µk. We further assume that the average rewards
µ = (µ1, . . . , µK) are such that µ1 > µ2 > . . . > µK .
MMAB problems have received a lot of attention re-
cently. In this paper, we investigate the two most
studied MMAB problems: MMAB with collisions, mo-
tivated by radio channel assignment problems in cog-
nitive radios Jouini et al. (2009), and MMAB without
collisions, motivated by sequential decisions in social
networks Landgren et al. (2016).

1.1 Multiplayer MAB with collisions

In this model, when a player selects an arm, she col-
lects the corresponding reward only if no other player
has selected this same arm. More precisely, when in
round t, the player selects k, she observes (1) whether
her decision collides with those of other players, and
(2) Xk(t) in the absence of collision. This feedback
scenario is referred to as collision sensing in Boursier
and Perchet (2019). The different players are not com-
municating, and they only sense the presence of other
players through experienced collisions. A policy π de-
termines in each round which arm every decision-maker
will select. We are interested in distributed policies
where each decision-maker decides which arm to select
independently. This choice depends on the available
information to the decision-maker: the past observed
collisions and rewards. We denote by kπi (t) the arm
selected by the decision-maker i in round t under the
policy π.

Regret lower bound. The optimal expected reward
that can be collected in each round is

∑M
k=1 µk (when

the M best arms are played). Hence the regret up to
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round T of a policy π is defined as:

Rπ(T ) = T
M∑
k=1

µk−
T∑
t=1

M∑
i=1

E[µkπ
i
(t)1{kπ

i
(t)6=kπ

j
(t),∀j 6=i}].

As in the classical bandit literature Lai and Robbins
(1985), we say that a policy π is uniformly good if it
regret satisfies Rπ(T ) = o(Tα) for all α > 0 for any
possible µ. We know from Anantharam et al. (1987)
that any uniformly good policy π, centralized or not,
satisfies:

lim inf
T→∞

Rπ(T )

log(T )
≥ C(µ) :=

∑
k>M

µM − µk
kl(µk, µM )

, (1)

where kl(a, b) denotes the KL divergence between two
Bernoulli distributions of respective means a and b.
This result is a simple extension of the classical result
derived by Lai and Robbins (1985). Anantharam et al.
(1987) also presents a centralized policy achieving the
above asymptotic regret lower bound.

State-of-the-art algorithm. In a recent paper Bour-
sier and Perchet (2019), the authors develop SIC-
MMAB, an algorithm that uses collisions as a commu-
nication tool, and whose regret satisfies:

RSIC(T ) ≤c1
∑
k>M

min

ß
log T

µM − µk
,
√
T log T

™
+c2KM log T

+c3KM
3 log2

Ç
min

®
log T

(µM − µM+1)
2 , T

´å
,

for some constants c1, c2, c3 > 0. The regret of SIC-
MMAB is logarithmically increasing with the time
horizon, but does not match the regret lower bound (1).
In addition, SIC-MMAB needs to know the time hori-
zon in advance. More importantly, it requires involved
communication phases (players need to exchange their
estimates of the arms’ mean rewards), and in turn, the
number of collisions used to communicate grows large
with T .

Our contributions. We present DPE1 (Decentral-
ized Parsimonious Exploration), a simple policy that
achieves the asymptotic fundamental regret limit (1).
The policy relies on the observation that in a MAB
problem where the decision-maker selects M arms in
each round (a model referred to as MAB with multiple
plays Anantharam et al. (1987)), an optimal algorithm
consists in playing the (M − 1) best empirical arms
and exploring using the remaining arm according to an
optimal index policy, such as KL-UCB Garivier and
Cappé (2011). This observation that such parsimonious
exploration suffices was already made and exploited in
Combes et al. (2015) for the design of learning-to-rank

algorithms. It is powerful in the design of a decen-
tralized MMAB algorithm: indeed, it implies that the
exploration can be only performed by a single player,
the so-called leader. The leader maintains the set of
the M best empirical arms based on the rewards she
received so far for the various arms. The other players,
referred to as the followers, just need to play these best
empirical arms greedily. To this aim, the leader just
needs to inform the followers when the set of the M
best empirical arms changes – and it can be done using
collisions as proposed in Boursier and Perchet (2019).

Our finite-time analysis of the regret of DPE1 re-
veals that: for all T ≥ 3 and any 0 < δ < δ0 =
min1≤k≤K−1

µk−µk+1

2 :

RDPE1(T ) ≤
∑
k>M

µM − µk
kl(µk + δ, µM − δ)

f(T )

+K2M2

ï
1

K −M
+ 284K1/2M(7 + δ−2)

ò
,

where f(T ) = log(T ) + 4 log log(T ). In particular, by
letting first T tend to ∞ and then δ tend to 0, the
above result implies that DPE1 is asymptotically op-
timal: its regret matches the regret lower bound (1).
DPE1 achieves the regret of the best possible central-
ized algorithm. In addition, DPE1 is simpler than
SIC-MMAB, since the leader just needs to commu-
nicate the indexes of the best empirical arms, when
the latter change. In fact, the expected number of
collisions used for communication – equivalently the
number of communication bits (one may see a collision
as communicating one bit) is finite (it is upper bounded

by K2M2
î

1
(K−M) + 242K1/2(7 + δ−2)

ó
).

1.2 Multiplayer MAB without collision

In the absence of collisions, different players can se-
lect the same arm. When a player selects arm k in
round t, she collects the reward Xk(t)1. In this model,
the players are the vertices of a communication graph
G = (V,E). At the end of each round, a player can
communicate to her neighbors in G. In recent papers
Landgren et al. (2016, 2018); Mart́ınez-Rubio et al.
(2019), players are assumed to be able to communicate
real numbers to their neighbors in each round. We
study a more realistic setting where players can only
send a finite number of bits per round. As for the
model with collision, we are interested in distributed
arm selection policies. Under such a policy π, a player i
selects in round t arm kπi (t) and design messages to be

1When two arms select the same arm, we assume that
they receive the same random rewards for simplicity. How-
ever, they could well collect stochastically independent
rewards; the analysis of the average regret would not be
affected.
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sent to neighbors depending on her past observations
(the collected rewards and the messages received from
her neighbors).

Regret lower bound. The maximum expected re-
ward that can be collected in one round is Mµ1. Hence
the regret up to round T of a policy π is defined as:

Rπ(T ) = MTµ1 −
T∑
t=1

M∑
i=1

E[µkπ
i
(t)].

The regret of any uniformly good policy (centralized
or not) should satisfy:

lim inf
T→∞

Rπ(T )

log(T )
≥ C1(µ) :=

∑
k>1

µ1 − µk
kl(µk, µ1)

. (2)

Indeed, the asymptotic regret above corresponds to the
best possible regret of a single player.

State-of-the-art algorithm. In Mart́ınez-Rubio
et al. (2019), the authors present Distributed Delayed
UCB (DD-UCB), an algorithm that combines UCB
and a consensus algorithm. The latter is meant so
that all players share similar estimates of the mean
rewards of the arms, and requires that each player
sends a few real numbers to her neighbours in each
round. DD-UCB enjoys the following finite-time regret
guarantee2:

RDDUCB(T ) ≤ c1
∑
k>1

log(MT )

µ1 − µk

+ c2M log(M)
∑
k>1

(µ1 − µk),

for some constants c1, c2 > 0. DD-UCB suffers from
the same issues as SIC-MMAB for the MMAB with
collisions: its regret does not match the regret lower
bound (2), and it requires players to communicate a
lot.

Our contributions. We present DPE2, an algorithm
based on the same parsimonious exploration principle
as for DPE1. The algorithm starts by electing a leader
among the players. After this election, the leader is
the only player exploring arms, again using KL-UCB
indexes. The other players, the followers, just play the
best empirical arm announced by the leader. We show
that the regret of DPE2 satisfies: for all T ≥ 3 and
any 0 < δ < δ0:

RDPE2(T ) ≤
∑
k>1

µ1 − µk
kl(µk + δ, µ1 − δ)

f(T )

+ 9DKM(29 +Kδ−2),

2This upper bound is derived for subgaussian rewards,
so it is valid for Bernoulli rewards as well.

where D is the diameter of the graph G. Hence, DPE2
achieves the regret of the best possible centralized algo-
rithm. In addition, under DPE2, the expected number
of bits used for communication is finite (it is upper
bounded by 4DM2 log2(M) + 8KM2D log2(K)(29 +
Kδ−2)).

2 Multiplayer MAB with collisions

This section is devoted to problems where players expe-
rience a collision when they select the same arm. We
present the DPE1 algorithm, and analyze its perfor-
mance.

2.1 The DPE1 algorithm

We provide a detailed description of DPE1 and ex-
plain its advantages over SIC-MMAB. DPE1 starts
with an initialization phase whose objective is to assign
different ranks in {1, . . . ,M} to players. This rank
assignment will be used to avoid collisions. After the
initialization phase, DPE1 alternates between exploita-
tion and exploration as usual. However, exploration is
conducted by one player only (the leader).

2.1.1 Initialization phase

The first phase consists of coordinating the players.
After this phase, a single player becomes the leader;
this player is ranked first and is aware of this rank.
The other players are followers and get to know their
respective ranks 2, . . . ,M . All players learn, in passing,
the number of players M . After this phase, they can
coordinate and avoid collisions except if they need
collisions to communicate. SIC-MMAB also starts
with such an initialization phase; this phase has by
design a fixed duration T0 = dK log(T )e, which implies
in particular that its cost in terms of expected regret
is KM log(T ). In contrast, the initialization phase
in DPE1 has a random duration: it lasts until all
its objectives are achieved. The expected duration of
the DPE1 initialization phase is finite, and hence just
generates a constant expected regret.

DPE1 initialization phase consists of two sub-phases:

A. Orthogonalization. This first sub-phase aims at
assigning in a distributed manner M different arms
within {1, . . . ,K − 1} to the various players. In this
sub-phase, the players maintain an internal state with
values in {0, 1 . . . ,K − 1}: when the state is ’0’, it
means that the player is not satisfied, and still needs
to find a free arm. When the state is ’k’ with k 6= 0, it
means that the player manages to select arm k without
collision, and she will keep this state until the end of
the sub-phase. The sub-phase consists of a sequence of
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blocks of K + 1 rounds: in the first round of a block,
players with state different than ’0’ select the arm
corresponding to their state, and players with ’0’ state
randomly select an arm in {0, 1 . . . ,K − 1}. The K
remaining rounds of the block are used to communicate
the outcomes of the first round. This communication
is done by selecting arm K and by observing collisions.
More precisely, if a player is in state k 6= 0, then she
selects arm k except in the k-th round where she selects
K. If a player is in state ’0’, she selects arm K in the
K rounds. Note that as long as there is a player in
state ’0’, collisions are experienced by all players in
the K last rounds of the block. Hence, all the players
know that all players are satisfied when no collision is
experienced in a block. When such a block occurs for
the first time, the sub-phase terminates, and all players
are aware of this termination. We prove (see Appendix)
that the expected duration of the orthogonalization

phase does not exceed M(K−1)(K+1)
K−M rounds.

B. Rank assignment. After the orthogonalization
sub-phase, all the players have different states in
{1, . . . ,K − 1}. The rank assignment sub-phase
consists of 2K − 2 consecutive rounds, denoted by
t1, . . . , t2K−2. Should a player be in state ’k’, she se-
lects arms in the following manner: (i) in a round
ts ∈ {t1, . . . , t2k} ∪ {tK+k, . . . , t2K−2}, she selects arm
k; (ii) otherwise, when ts ∈ {t2k+1, . . . , tK+k−1} she
selects arm s − k, which corresponds to selecting se-
quentially the arms k + 1, . . . ,K − 1.

It is easy to observe that with the above procedure, two
players only collide once (see Appendix). Furthermore,
to determine her rank, a player initially in state k just
needs to count the number ik of collisions experienced
in the first 2k rounds. ik + 1 becomes her rank. The
rank-1 player is the leader.

It should be noted that the leader-follower structure
is also adopted in Tibrewal et al. (2019). There, how-
ever, the orthogonalization phase could well stop before
players have distinct ranks.

2.1.2 Exploration-exploitation phase

In DPE1, the leader is responsible for exploring and
maintaining the set of the M best empirical arms. Ex-
ploration is conducted using the following KL-UCB
indexes. The index of arm k in round t is

bk(t) = sup{q ≥ 0 : Nk(t)kl(µ̂k(t), q) ≤ f(t)},

where f(t) = log(t) + 4 log log(t), Nk(t) denotes the
number of times the leader has played arm k up to
round t, and µ̂k(t) is the empirical average of arm k
based on the rewards obtained before round t. The
leader is also responsible for communicating to the

followers when the set M(t) of the M best empirical
arms changes. To this aim, she leverages collisions
in the same manner as in SIC-MMAB. Each time
M(t) changes, a communication phase is initiated by
the leader, and this phase lasts a finite number of
rounds. The algorithm is designed so that the expected
number of times M(t) changes is finite. The followers
just play different arms from M(t). Note that the
followers do not need to communicate anything to the
leader; in particular, the rewards they collect are not
taken into account by the leader. Each communication
phase has a fixed and finite duration and is known
to all players – see Subsection 2.1.3 for detail. Hence
without loss of generality, we ignore these periods of
communication and we can assume that the leader
communicates the newM(t) instantaneously whenever
required. Communication phases will be, however,
accounted for when deriving the regret of the algorithm.

The set of rounds is divided into blocks of MJ rounds
where J = dK1/2e. In rounds belonging to the same
block, the empirical means of the arms, the KL-UCB
indexes, and the set of best empirical arms are kept
constant. More precisely, the decisions made in one
block are based on: For each k ∈ {1, . . . ,K},

ν̂k(t) = µ̂k

(⌊ t

MJ

⌋
MJ

)
, dk(t) = bk

(⌊ t

MJ

⌋
MJ

)
,

and N (t) =M
(⌊ t

MJ

⌋
MJ

)
.

At the beginning of a block, the leader updates the
above variables. The block structure is designed so that
(i) the leader gathers J samples of each of the (M − 1)
best empirical arms, and in expectation J/2 samples
from the M -th best empirical arm; (ii) each follower
selects each arm in N (t) J times, and (iii) the leader
explores only when the followers play the (M − 1) best
empirical arms. In particular, a block can be split into
J sub-block: each sub-block consists of M consecutive
rounds and the follower plays each of the M empirical
best arms once in a sub-block. Now K is decomposed
into J subsets Kj = {k ∈ K : (j − 1)J < k ≤ jJ}. In
the j-th sub-block, we impose that the leader may
explore an arm from Kj only. We introduce in DPE1
the J sub-blocks so as to optimize the constant term
(w.r.t. T ) of our regret upper bound. We could well
run DPE1 without sub-blocks (J = 1), it would be still
asymptotically optimal, but the constant term in the
regret upper bound would be multiplied by

√
K.

Next, we describe in detail the decisions taken by the
leader and the followers under DPE1.

Leader. At the beginning of round t, if t =
0(mod MJ), the leader updates the vectors ν̂(t),
d(t), and N (t). The set N (t) is ordered: N (t) =
{`1(t), . . . , `M (t)}. This order is arbitrary, but indepen-
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dent of the empirical means of the arms. In particular,
the order is kept fixed even if the relative empirical
means of the arms in N (t) evolve, so that the leader
only needs to communicate to the followers when N (t)
changes. Ordering N (t) is important to avoid collisions.
In the following, we denote by M̂(t) the arm in N (t)
with the smallest empirical mean.

If N (t) 6= N (t − 1), the leader communicates to the
followers the identity of the arm leaving the set and
that of the new arm that replaces it in N (t) (the rank
of the new arm inherits that of the arm that left).

The sequential arm selections made by the leader are
as follows. In round t, define m = [(t− 1)(mod M)] + 1
and j = bt/Mc(mod J) + 1. If `m(t) 6= M̂(t), then
the leader selects ρ(t) = `m(t). If `m(t) = M̂(t), then
with probability 1/2, the leader selects arm M̂(t), and
with probability 1/2, the leader plays an arm k /∈ N (t)
such that dk(t) > ν̂M̂(t), should such an arm exists in

Kj\N (t), and plays M̂(t) otherwise.

Followers. The followers just exploit the knowledge
of the leader: they play greedily different arms of N (t).
More precisely, the follower with rank i ∈ {1, . . . ,M −
1} plays in round t the arm `mi(t) where mi = [(t −
1 + i)(mod M)] + 1.

The pseudo-code of the exploration-exploitation phase
of the DPE1 algorithm is presented in Algorithm 1.

2.1.3 Communication phases

When N (t) 6= N (t − 1), the leader starts a commu-
nication of the new ordered set M(t) as follows. She
uses 3 blocks: (i) a block of M − 1 rounds to initiate a
communication with the M − 1 followers, (ii) a block
of M rounds to inform the followers of the arm a−

to be removed from the list, and finally (iii) a block
of K rounds to inform the followers of the arm a+ to
be added to the list. Hence a communication phase
requires K + 2M − 1 rounds.

Initial block. In the first block of (M − 1) rounds,
the leader sequentially selects the arms selected by the
followers ranked 2, . . . ,M−1. The rank-i follower expe-
riences a collision indicating the communication phase,
and she knows the round when the communication
phase started (she is aware of her rank).

Second block: Removing a− from N (t − 1). In the
next M rounds, the leader selects arm a−. Follow-
ers continue the arm selection as in the exploration-
exploitation phase: thus, at some round in this block,
they select a− and collide with the leader, which indi-
cates the arm to be removed.

Third block: Adding a+ to N (t− 1). During the final

Algorithm 1: The DPE1 algorithm: Exploration-
exploitation phase

Leader.
Initialization: Set ν̂k(1) = dk(1) = 0 for all k
Initialize the set of best empirical arms N (1) and
M̂(1) arbitrarily

Communicate N (1) = {`1(1), `2(1), . . . , `M (1)} to
the followers

For round t ≥ 1:
1. m← [(t− 1)(mod M)] + 1,
j ← bt/Mc(mod J) + 1

2. If t > 1 and j = m = 1, update ν̂k(t), dk(t) for
each arm

k, M̂(t), and update the ordered set
N (t)← {`1(t), `2(t), . . . , `M (t)}
(the set of the M best empirical arms)

3. If t > 1 and N (t) 6= N (t− 1), communicate
N (t) to the followers

4. For each s = 1, 2, . . . , J ,

Ds(t)←
¶
k /∈ N (t) : dk(t) ≥ ν̂M̂(t)(t), d

k
J e = s

©
,

If Dj(t) = ∅ or `m(t) 6= M̂(t), ρ(t)← `m(t)
Else

w.p. 1/2, ρ(t)← M̂(t)
w.p. 1/2, ρ(t)← k where k ∼ Dj(t) uniformly

Select arm ρ(t)
Follower with rank i ∈ {1, 2, . . . ,M − 1}.
In round t ≥ 1: mi ← [(t− 1 + i)(mod M)] + 1,
select arm `mi(t)

K rounds, the leader selects arm a+. Followers change
their arm selection, and select all arms during this
block without colliding with each other (except with
the leader). More precisely, in the m-th round of this
block, the follower with rank i selects the arm [(m +
i)(mod K)]+1. Each follower will experience a collision
when selecting a+, and they can add it to N (t− 1).

2.2 Regret and communication complexity
analysis

The next theorem provides a finite-time analysis of the
regret of DPE1. It also gives an upper bound on the
expected number of collisions involved in the algorithm,
including those of the initialization and communication
phases.

Theorem 1. For any µ, T ≥ 3, and 0 < δ <
min1≤k≤K−1(µk − µk+1)/2, the regret of DPE1 satis-
fies:

RDPE1(T ) ≤ K2M2

ï
1

(K −M)
+ 284K1/2M(7 + δ−2)

ò
+
∑
k>M

(µM − µk)f(T )

kl (µk + δ, µM − δ)
.
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Irrespective of the time horizon T , the expected number
of collisions under DPE1 is upper bounded by:

K2M2

ï
1

(K −M)
+ 242K1/2(7 + δ−2)

ò
.

By letting T tend to ∞, and then δ tend to 0 in
the above regret upper bound, we simply deduce that
DPE1 is asymptotically optimal:

lim sup
T→∞

RDPE1(T )

log T
≤
∑
k>M

µM − µk
kl (µk, µM )

.

To establish Theorem 1, we prove that the expected
number of rounds where M(t) does not correspond
to the actual M best arms is finite. This is the key
ingredient whose proof actually exploits the arguments
used in Combes et al. (2015) to establish a regret upper
bound of a centralized algorithm for some MAB prob-
lems with multiple plays. From this result, we know
that the number of communication phases is finite in ex-
pectation, as well as the average regret experienced by
the followers. The last term of the regret upper bound
just corresponds to the regret paid by the leader.

3 Multiplayer MAB without collisions

This section is devoted to MMAB problems without
collisions: players can select the same arm and collect
the corresponding rewards. Players sit on the vertices
of a graph G, and are assumed to be able to send
messages to their neighbors in G in each round. We
present DPE2, an algorithm similar to DPE1 and
adapted to this new setting.

3.1 The DPE2 algorithm

DPE2 starts with a leader election phase. After the
election, DPE2 alternates between exploration and ex-
ploitation. As in DPE1, under DPE2, the exploration
is conducted by the leader only. The followers just play
the best empirical arm seen by the leader. The latter
needs to communicate to the followers only when her
best empirical arm changes.

3.1.1 Leader election

The leader election problem is a well studied problem
in the field of distributed computing Fokkink (2013);
Tel (1994); Casteigts et al. (2019). To simplify, we
assume here that each player has initially a unique id
in {1, . . . , P}, where P could be potentially very large3.
For the analysis of the communication complexity of

3This assumption is mild compared to those made in
recent papers, e.g. Mart́ınez-Rubio et al. (2019), addressing
the MMAB problem without collision. There, players can

the algorithm, we will take P = M for simplicity. With
this assumption, leader election can be performed in
O(D + logM) rounds using O(1) bits per messages
Casteigts et al. (2019), where D denotes the diameter
of the graph. We propose a simpler alternative election
process whose duration is enough for our purposes.

Every player initializes her state to her id. For (D + 1)
consecutive rounds, every player sends her state to all
her neighbours. When a player receives states from
other players, she updates her state to the minimal
value of the states received and her state. After (D+1)
rounds, the player whose state corresponds to her initial
id is the leader. Note that the total number of bits sent
during this procedure is at most 2|E|(D + 1)dlog2Me
(where |E| is the number of edges in G).

3.1.2 Exploration-exploitation phase

In round t, the leader maintains the set D(t), which
consists of those arms with a larger KL-UCB index
than that of the best empirical arm `1(t). When this
set is empty, she plays `1(t) and updates the empirical
means ν̂k(t) of the arms and KL-UCB dk(t) indexes
of the arms as well as D(t+ 1). She also communicates
to her neighbours if `1(t) has changed.
If the set D(t) is not empty, a block of rounds starts.
In the first round of this block, the leader play `1(t);
in the subsequent rounds, she plays the arms in D(t)
until this set is exhausted, which then ends the block.

Algorithm 2: The DPE2 algorithm: Exploration-
exploitation phase

Initialization: Set ν̂k(1) = dk(1) = 0 for all k,
D(1) = ∅, and s = 0. Initialize best empirical arm
`1(1) arbitrarily.

For round t ≥ 1:
Leader.
If D(t) = ∅,

If t > 1, update ν̂k(t), dk(t) for all k, and `1(t)
D(t)←

{
k 6= `1(t) : dk(t) ≥ ν̂`1(t)(t)

}
,

s← 1{|D(t)|>0}
If `1(t) 6= `1(t− 1), communicate `1(t) to

the followers
ρ(t)← `1(t), select arm ρ(t)

Else
If s = 1, ρ(t)← `1(t), s← 0, select arm ρ(t)
Else, ρ(t)← arg maxk∈D(t) dk(t), select arm ρ(t)

D(t+ 1)← D(t)\ {ρ(t)}
Follower.

Select arm `1(t)

pass real numbers to their neighbours, in which case the
leader election becomes trivial. Note also that anonymous
leader election can be also performed in finite expected time
Fokkink (2013).
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3.1.3 Communication phases

When `1(t− 1) 6= `1(t), the leader sends the new best
empirical arm to all her neighbours. In every round,
each time a follower receives the id of an arm that does
not correspond to the arm she is playing: (i) she starts
playing the new arm from the next round, and (ii)
forward the id of the new arm to her neighbours except
to the player from whom she received the information.

Each communication phase takes at most D rounds,
and the total number of bits transmitted during such
a phase does not exceed 2|E|dlog2(K)e.

3.2 Regret and communication complexity
analysis

The next theorem provides a finite-time analysis of the
regret of DPE2, and an upper bound on the expected
amount of communication involved in the algorithm.

Theorem 2. For any µ, T ≥ 3, and 0 < δ <
min1≤k≤K−1(µk − µk+1)/2, the regret of DPE2 sat-
isfies:

RDPE2(T ) ≤ 9MDK(29 +Kδ−2)

+
∑
k>1

µ1 − µk
kl(µk + δ, µ1 − δ)

f(T ).

The total expected number of bits sent under DPE2 is
lower than:

4DM2 log2(M) + 8KM2D log2(K)(29 +Kδ−2).

The above theorem implies that DPE2 is asymptoti-
cally optimal. Its proof relies on similar arguments as
those used to establish Theorem 1.

4 Numerical experiments

In this section, we provide initial experiments to illus-
trate the performance of DPE1 and DPE2. Further
experiments are presented in the appendix.

4.1 DPE1

The experiments we run follow the same setting as
in Boursier and Perchet (2019). We consider K = 9
arms with Bernoulli rewards, and a fixed number of
players M = 6. We compare the regret of DPE1 with
those of SIC-MMAB Boursier and Perchet (2019)
and MCTopM Besson and Kaufmann (2018). All
the regret and communication complexity values are
averaged over 208 runs.

Figure 1 compares DPE1, MCTopM, and SIC-
MMAB, over a time horizon of T = 5 ·105 rounds. The
means of the arms are linearly distributed between 0.9

and 0.89, so the gap is approximately ∆ = 1.1 · 10−3.
DPE1 significantly outperforms both SIC-MMAB
and MCTopM.
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Figure 1: Regret evolution over a horizon of 5 · 105

rounds. The continuous curves represent the empiri-
cal average value, and the shadowed area 3 times the
standard deviation.

In Figure 2, we plot the communication complexity
vs. time, i.e., the average number of communication
phases under DPE1 over time. Figure 2 confirms our
theoretical insights: the expected number of times
the set M(t) gets updated is finite. We show the
communication complexity for several values of the gap
∆ between two consecutive arms, keeping the average
reward of the best arm equal to 0.9. Note that the
communication complexity increases as ∆ approaches
0. In the appendix we also show the average number
of communication phases as a function of the gap ∆.
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Figure 2: Communication complexity, i.e, the expected
number of communication phases. For smaller value of
∆, it is harder for the leader to identify the best arm,
and the number of communication phases increases.
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4.2 DPE2

To evaluate DPE2, we used the same communicating
graph as in Landgren et al. (2016). The graph has 4
players – 3 players are connected to each other, and a
fourth player is only connected to one player only. We
consider 10 arms with Bernoulli rewards. The range of
the rewards is [0.1, 0.9], with a gap of ∆ = 8/9 between
two consecutive arms. In our experiments, we noticed
that the identity of the leader (for this scenario) does
not impact regret significantly, so we choose one player
arbitrarily as the leader. We use a time horizon of
T = 5 · 104 rounds, and average regrets over 1024 runs.
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Figure 3: Regret evolution of a time horizon of 5 · 104

rounds. In blue is shown DPE2, whilst in orange is
shown the regret of a single agent running KL-UCB.

In Figure 3, we compare the regret obtained under
DPE2 to the regret that would be obtained by a single
player implementing KL-UCB. The regret of DPE2 is
not really worse than the regret experienced by a single
player. The communication complexity of DPE2 is nu-
merically illustrated in the appendix, and as predicted
by our analysis, it is rather small.

5 Related Work

MMAB problems with collisions have attracted a lot
of attention over the last decade due to their applica-
bility to the design of decentralized channel selection
schemes in cognitive radio systems. Early works include
Liu and Zhao (2010) and Anandkumar et al. (2011),
proposing various algorithms with regret guarantees far
from the best possible regret achieved by DPE1. Even
in more recent papers such as Rosenski et al. (2016)
and Besson and Kaufmann (2018), the regret upper
bounds were actually bigger than expressions of the

form: M
∑
k>M

log(T )
µM−µk . The multiplicative factor M

was considered unavoidable, until Boursier and Perchet
Boursier and Perchet (2019) proposed to actually use

collisions as a way to communicate. In turn, SIC-
MMAB exploits collisions to share the estimated mean
rewards of arms. The idea of exploiting collisions had
also been suggested in Lugosi and Mehrabian (2018).
As already mentioned in the introduction, SIC-MMAB
was, until now, the algorithm with the best regret guar-
antees. Our algorithm, DPE1, is simpler, has better
regret guarantees, and as our numerical experiments
suggest, outperforms other algorithms. Note that the
leader-follower framework used by DPE1 had been
also proposed in the algorithms presented in Hanawal
and Darak (2018), but the latter exhibit worse regret
guarantees than DPE1.

The literature on MMAB problems without collisions is
not as abundant. For the case of subgaussian rewards
with the same and known variance, Landgren et al.
(2016) propose coop-UCB, an algorithm where each
player maintains an estimate of the mean reward of
each arm using information obtained by their neigh-
bours via a running consensus scheme Braca et al.
(2008). Mart́ınez-Rubio et al. (2019) recently managed
to develop a similar algorithm, DD-UCB, with bet-
ter regret guarantees than that of coop-UCB. Under
both coop-UCB and DD-UCB, the players need to
communicate real numbers to their neighbours (to run
a consensus scheme). DPE2, our algorithm, has better
regret guarantees, and keeps the total expected number
of bits communicated finite.

6 Conclusion

In this paper, we have studied two Multiplayer MAB
problems, where we were able to devise decentralized
algorithms that achieve the same regret as the one we
would obtain by using an optimal centralized algorithm.
The design of these algorithms leveraged the critical
observation that minimal regret can be achieved by
letting only one player exploring arms, and by allowing
other players to select the best empirical arms greedily.
This observation also implies that the player exploring
arms just needs to inform other players regarding the
change of the best empirical arms. Moreover, our
algorithms do require very little communication: the
expected number of bits used for communication does
not depend on the time horizon. Further research
includes the case of heterogeneous rewards, i.e., the
case where the average reward of an arm depends on the
player selecting that arm. On the other hand, it would
be interesting to further investigate scenarios where
players sit on the vertices of a graph. For instance,
we could consider that players who are neighbors in
the graph collide (collision graphs are instrumental in
modelling radio communication systems). In this case,
several players would need to explore.
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A Initialization of DPE1

The initialization phase of DPE1 consists of two sub-phases, the orthogonalization sub-phase and the rank assign-
ment sub-phase. In this section, we provide Lemma 1 stating that the expected duration of the orthogonalization
phase is smaller than M(K − 1)(K + 1)/(K −M), and Lemma 2 proving the correctness of the rank assignment
sub-phase. We also present numerical experiments illustrating the durations of the two sub-phases.

A.1 Orthogonalization

Lemma 1 (Complexity of the orthogonalization sub-phase). Let τ denotes the number of rounds required to end
the orthogonalization sub-phase. Then

E[τ ] ≤ M(K − 1)(K + 1)

K −M
.

Proof. Let Et denote the event that in the end of the t-th block of rounds, some players are still unsatisfied (i.e.
still in state 0). Let Akt denote the event that player k experiences a collision in the first round of the t-th block.
Note that Et = ∪Mk=1 ∩s≤t Aks . The probability that at some block s ≤ t, player k is satisfied satisfies:

P
(
Āks
)
≥ K −M

K − 1
.

Indeed, there are K − 1 arms to choose from; there are M − 1 other players and each of them is either satisfied in
block s or unsatisfied in which case, she samples an arm uniformly at random in [K − 1]. In all the cases, at least
K −M arms are not selected by the other players. We deduce that:

P
(
Aks
)
≤ 1− K −M

K − 1
=
M − 1

K − 1
.

Hence, by the union bound, we get:

P(Et) ≤
M∑
k=1

P(∩s≤tAks) ≤M
(M − 1

K − 1

)t
.

Denote by τb the number of blocks required to end the orthogonalization sub-phase. We have:

E[τb] =
∞∑
t=1

P(τb ≥ t),

≤
∞∑
t=1

P(Et−1),

≤M
∞∑
t=1

(M − 1

K − 1

)t−1
,

= M
K − 1

K −M
.

Note that τ = (K + 1)τb, and thus

E[τ ] ≤ M(K − 1)(K + 1)

K −M
.

A.2 Rank assignment

The following lemma guarantees the correcteness of the rank assignment sub-phase. Indeed, a direct consequence
of the lemma is that a player in state k will collide once during the 2k first rounds with each player with state
smaller than k. The player in state k will not collide with players with state higher than k. Thus, if ik denotes
the number of collisions seen by this player in the 2k first rounds, then her rank is simply ik + 1.
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Lemma 2 (Pairwise collisions). The arm selection scheme of the rank assignment sub-phase guarantees that any
two players with distinct states k and j such that k < j, only collide once during the rank assignment sub-phase.
More precisely, they collide at the round tk+j over the selection of arm j.

Proof of lemma 2. In the following we say player ’k’ to refer to the player with state ’k’. Let Ik1 , I
k
2 , I

k
3 be the

partition of {t1, . . . , t2K−2} parametrized by the state ’k’, where

Ik1 , {t1, . . . , t2k},
Ik2 , {t2k+1, . . . , tK+k−1},
Ik3 , {tK+k, . . . , t2K−2}.

We list all the possible cases:

(i) If ts ∈
(
Ik1 ∪ Ik3

)
∩
(
Ij1 ∪ I

j
3

)
, then player ’k’ selects arm k, and player ’j’ selects j, thus the two players do

not collide.

(ii) If ts ∈
(
Ik1 ∪ Ik3

)
∩ Ij2 , then player ’k’ selects arm k, and player ’j’ selects a ∈ {j + 1, . . . ,K − 1}, thus the

two players do not collide.

(iii) If ts ∈ Ik2 ∩ I
j
1 , then player k selects s−k, and player j selects j. Note that the two players collide iff s = k+ j

and k + j ∈ Ik2 ∩ I
j
1 .

(iv) If ts ∈ Ik2 ∩ I
j
2 , then player k selects s− k, and player j selects arm s− j thus they do not collide.

(v) Finally, note that Ik2 ∩ I
j
3 = ∅ because K + k − 1 < K + j.

As a conclusion the players ’k’ and ’j’ only collide once throughout the rank assignment sub-phase, and this
occurs at round tk+j over the selection of arm j. This concludes the proof.

A.3 Numerical experiments

We compare in Figure 4 the upper bound derived in Lemma 1 with empirical data. In Figure 4, the black dashed
line shows the average duration of the initialization phase, whilst blue dashed line shows the upper-bound derived
in Lemma 1. Notice that all the values are normalized by K + 1, and the curves were computed using data from
2000 runs.
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Figure 4: Average duration of the initialization phase with K = 100. All results are normalized by K + 1.

It is apparent that the upper bound derived in Lemma 1 is loose. Furthermore, the average duration of the
initialization phase seems to be linear in M until M becomes too large (here 60).
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Figure 5 and 6 present the histograms of the number of rounds of the initialization phase for M = 20 and M = 90,
respectively, with K = 100. As M increases, the bell shape is less distinguishable, but still apparent. The
smoothed curve is a Gaussian kernel density estimate, computed using the default parameters of the distplot
function in the seaborn library.
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Figure 5: Histogram of the number of rounds of the
initialization phase with M = 20 and K = 100.
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initialization phase with M = 90 and K = 100.
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B Performance analysis of DPE1

B.1 Preliminaries

In the proof of Theorem 1, we repeatedly use the following lemma. The latter is a simplified version of Lemma 5
in Combes et al. (2015)). In what follows, Fn denotes the σ-algebra generated by (Xk(t), k ∈ [K], t ≤ n).

Lemma 3. Let k ∈ [K], and c > 0. Let H be a random set of rounds such that for all n, {n ∈ H} ∈ Fn−1.
Assume that there exists (Cn)n≥0, a sequence of independent binary random variables such that for any n ≥ 1, Cn
is Fn-measurable and P[Cn = 1] ≥ c. Further assume for any n ∈ H, k is selected (ρ(n) = k) if Cn = 1. Then:∑

n≥1
P[n ∈ H, |µ̂k(n)− µk| ≥ δ}] ≤ 2c−1

(
2c−1 + δ−2

)
.

In addition, we need some known results about the KL-UCB indexes. The following lemma is a direct consequence
of Theorem 10 in Garivier and Cappé (2011).

Lemma 4. Under the DPE1 algorithm, for any k ∈ K, we have:∑
n≥1

P [dk(n) < µk] ≤ 114K1/2M

Proof. By the design of DPE1, we update dk(n) only if n is the first round of the block. Furthermore, since the
size of each block is always MJ , we have∑

n≥1
P [dk(n) < µk] ≤

∑
s≥0

(MJ)P [dk(sMJ + 1) < µk] .

Additionally, as a consequence of Theorem 10 in Garivier and Cappé (2011), we have for each s ≥ 2,
P [dk(sMJ + 1) < µk] ≤ edf(sMJ + 1) log(sMJ + 1)ee−f(sMJ+1). Hence, we can conclude∑

n≥1
P [dk(n) < µk] ≤MJ(2 +

∑
s≥2

edf(sMJ + 1) log(sMJ + 1)ee−f(sMJ+1))

≤MJ(2 +
∑
s≥3

edf(s) log(s)ee−f(s))

= MJ(2 +
∑
s≥3

edlog(s)2 + 4 log(s) log(log(s))e
s log(s)4

)

≤MJ

ï
2 + e

Å∫ ∞
e

1

s(log s)2
+

∫ ∞
e

4 log(log s)

s(log s)3
+

∫ ∞
e

1

s(log s)4

ãò
≤ 114K1/2M.

The second inequality follows from the fact that {sMJ + 1}s≥1 ⊂ {s ∈ N : s ≥ 3} and J = dK1/2e ≤ 2K1/2.

B.2 Proof of Theorem 1

Let M∗ = {1, . . . ,M} be the set of the M best arms. Define δ0 = min1≤k≤K−1
µk−µk+1

2 as half of the minimum
gap between the expected rewards of the arms. In what follows we choose 0 < δ < δ0. We define for any t ≥ 1,
m(t) = [(t− 1)(mod M)] + 1 and j(t) = bt/Mc(mod J) + 1.

We define the following sets of rounds:

A = {n ≥ 1 : N (n) 6=M∗} ,
B = {n ≥ 1 : ∃k ∈ N (n) s.t. |ν̂k(n)− µk| ≥ δ} ,
C = {n ≥ 1 : ∃k ∈M∗, dk(n) < µk} ,
E = {n ≥ 1 : n ∈ A\(B ∪ C),∃k ∈M∗\N (n) s.t. |ν̂k(n)− µk| ≥ δ} .
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Lemma 5. A ∪ B ⊆ B ∪ C ∪ E . As a consequence, we have

E [|A ∪ B|] ≤ E [|B|] + E [|C|] + E [|E|] .

Proof. Let n ∈ A\(B ∪ C). We show that n ∈ E . Since n /∈ B, ∀k ∈ N (n), we have

|ν̂k(n)− µk| < δ. (3)

Moreover, n ∈ A. Hence there exists i ∈M∗\N (n) such that

ν̂i(n) < ν̂k(n) for some k ∈ N (n)\M∗. (4)

Combining (3) and (4) leads to ν̂i(n) < ν̂k(n) ≤ µk + δ ≤ µM − δ ≤ µi − δ. The last two inequalities are
due to our assumption that i ≤ M < k and δ < δ0. It implies |ν̂i(n)− µi| ≥ δ and thus, n ∈ E . Therefore,
A ∪ B ⊆ B ∪ C ∪ E .

Lemma 6. We have: E [|B|] + E [|C|] + E [|E|] ≤ 40K3/2M2(7 + δ−2).

Proof. We upper bound each term.
(a) We show that E [|B|] < 8MK3/2(4 + δ−2).
For each k ∈ {1, 2, . . . ,K}, define Bk = {n ≥ 1 : k ∈ N (n), |ν̂k(n)− µk| ≥ δ}. We have B = ∪1≤k≤KBk. Let us
fix k ∈ {1, 2, . . . ,K} and split Bk into two sets,

Bk,1 =
{
n ∈ Bk : `m(n)(n) = k, j(n) = 1

}
,

Bk,2 = Bk\Bk,1.

Let us upper bound the expected cardinality of Bk,1. Let n ∈ Bk,1. Observe that arm k is not selected in the
sub-block where round n lies until round n. Hence we have ν̂k(n) = µ̂k(n) (because n is in the first sub-block
of a block of rounds, i.e., j(n) = 1). We may now apply Lemma 3 with H = {n ≥ 1 : `m(n)(n) = k, j(n) = 1}
and Cn = 1 {ρ(n) = k}. Note that {n ∈ H} ∈ Fn−1. By design of the algorithm, for n ∈ H, k is selected with
probability at least c = 1/2. Thus: E [|Bk,1|] ≤ 4(4 + δ−2).

To upper bound the expected cardinality of Bk,2, it is observed that since the DPE1 algorithm operates by blocks
of MJ rounds (i.e., ν̂(t), d(t), and N (t) do not change over MJ consecutive rounds), when n ∈ Bk,2, there
exists a round p such that |n − p| < MJ (p belongs to the same block as n) and such that p ∈ Bk,1. Hence
|Bk,2| ≤ (MJ − 1)|Bk,1|.

We have established that E [|Bk|] ≤ 4MJ(4 + δ−2), and thus E [|B|] < 4MJK(4 + δ−2) = 8MK3/2(4 + δ−2)
(because J = dK1/2e ≤ 2K1/2).

(b) We show that E [|C|] < 114K1/2M .
We apply Lemma 4 for each arm k ∈ {1, 2, . . . ,M}, so

∑
n≥1 P [dk(n) < µk] ≤ 114K1/2M . We simply deduce

that:
E [|C|] ≤ 114K1/2M.

(c) We show that E [|E|] < 32K3/2M2(4 + δ−2).
Define

Ek = {n ≥ 1 : n ∈ A\(B ∪ C), k /∈ N (n) and |ν̂k(n)− µk| ≥ δ} ,

for all k ∈M∗. Then E ⊆
⋃
k≤M Ek.

Fix k ∈ M∗, and let n ∈ Ek. Since n /∈ B, we have for all i ∈ N (n), |ν̂i(n)− µi| < δ. Now let i∗ = max{i : i ∈
N (n)}. We have i∗ > M (since n ∈ A), which implies that:

ν̂i∗(n) < µi∗ + δ ≤ µM+1 + δ <
µM+1 + µM

2
. (5)
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The last inequality follows from the definition of δ < µM+1−µM
2 . Furthermore, since n /∈ C,

dk(n) ≥ µk. (6)

Combining (5) and (6), we get

dk(n) ≥ µk ≥ (µM+1 + µM )/2 > ν̂i∗(n) ≥ ν̂M̂(n)(n),

where the last inequality stems from the fact that i∗ ∈ N (n). Observe then that such a round n, by the design of
algorithm, arm k will be selected with probability at least 1/(2J) when `m(n)(n) = M̂(n) (exploration rounds).
Next we split Ek into the following two sets:

Ek,1 =
¶
n ∈ Ek : `m(n)(n) = M̂(n), k ∈ Kj(n)

©
,

Ek,2 =Ek\Ek,1.

For the set Ek,1, since k /∈ M(n) and k ∈ Kj(n), the real empirical mean µ̂k(t) remains as ν̂k(t) for all t ≤ n in
the block n belongs to. We apply Lemma 3 with H = Ek,1, Cn = 1{ρ(n) = k} and c = 1/(2J), and conclude that
E [|Ek,1|] ≤ 4J(4J + δ−2) ≤ 16K(4 + δ−2).

For the set Ek,2, again since the algorithm works in blocks, when n ∈ Ek,2, there exists a round p such that
|n− p| < MJ (p belongs to same block as n) and such that p ∈ Ek,1. Hence, E [|Ek,2|] ≤ (MJ − 1)E [|Ek,1|], and

E [|E|] ≤
M∑
k=1

(E [|Ek,1|] + E [|Ek,2|]) ≤ 16KM2J(4 + δ−2),

≤ 32K3/2M2(4 + δ−2).

Lemma 7. Given T ≥ 3, we define Gk = {n ≤ T, n /∈ A ∪ B, ρ(n) = k} for some k /∈M∗. We show that

E [|Gk|] ≤
log T + 4 log(log T )

kl (µk + δ, µM − δ)
+ 4 + 2δ−2.

Proof. Define the counter c(n) =
∑n
t=1 1{t∈Gk}, which is the number of rounds in Gk up to round n and define

t0 = (log T + 4 log(log T )) /kl (µk + δ, µM − δ).
Define two subsets of Gk as

Gk,1 = {n ∈ Gk : |ν̂k(n)− µk| ≥ δ} ,
Gk,2 = {n ∈ Gk : c(n) < t0} .

We first show that Gk ⊆ Gk,1 ∪ Gk,2. Let n ∈ Gk\(Gk,1 ∪ Gk,2). By definition of A, since n /∈ A, N (n) =M∗. We
deduce that k /∈ N (n).

The arm selection scheme of DPE1 is such that, during the block to which round n belongs, arm k is only selected at
round n (indeed note that the algorithm explores at most once per sub-block). Hence, Nk(n) = Nk(bn/(MJ)cMJ).
Since n /∈ Gk,2,

Nk(n) ≥ c(n) ≥ t0. (7)

Observe that ρ(n) = k can only happen when

dk(n) ≥ ν̂M̂(n)(n) = ν̂M (n), (8)

where the last equality stems from the fact that n /∈ B (indeed, all arms in N (n) =M∗ are well estimated, so
that M = M̂(n)). Moreover, n /∈ B implies that

ν̂M (n) > µM − δ. (9)
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Finally n /∈ Gk,1 and δ < min1≤k≤K−1
µk−µk+1

2 imply that

ν̂k(n) < µk + δ < µM − δ. (10)

Combining the above arguments, we get:

t0kl (ν̂k(n), µM − δ) ≤ Nk(n)kl (ν̂k(n), µM − δ) , (11)

< Nk(n)kl (ν̂k(n), dk(n)) ,

≤ log T + 4 log(log T ).

The first inequality follows from (16); the second inequality stems from (17)-(18)-(19) and the fact that y 7→ kl (x, y)
is an increasing function when 0 < x < y < 1; the last inequality is obtained by definition of dk(n). Replacing t0
by its value in the above inequality, we finally obtain:

kl (ν̂k(n), µM − δ) ≤ kl (µk + δ, µM − δ) .

Now observe that x 7→ kl (x, y) is a decreasing function when 0 < x < y < 1. We conclude that ν̂k(n) ≥ µk + δ
which contradicts the assumption that n /∈ Gk,1. Hence, Gk = Gk,1 ∪ Gk,2.

To complete the proof of the lemma, we upper bound E [|Gk,1|] and E [|Gk,2|].
For E [|Gk,1|]. Let n ∈ Gk,1. Since k /∈ N (n), k is selected for the first time in the block to which n belongs
precisely in round n. Hence, we have µ̂k(n) = ν̂k(n). We apply Lemma 3 with Cn = 1, c = 1 and H = Gk,1, and
get E [|Gk,1|] ≤ 4 + 2δ−2.

For E [|Gk,2|]. If n ∈ Gk,2, c(n) ≤ t0 and c(n) is incremented by +1. Therefore,

E [|Gk,2|] < t0 =
log T + 4 log(log T )

kl (µk + δ, µM − δ)
.

We have proved that:

E [|Gk|] <
log T + 4 log(log T )

kl (µk + δ, µM − δ)
+ 4 + 2δ−2.

Proof of Theorem 1. The regret can be bounded as follows:

Rπ(T ) ≤M
Å
K2M

K −M
+ 2K

ã
+ 6KME [|A|] +ME [|A ∪ B|] +

∑
k>M

(µM − µk)E [|Gk|] .

The first term and second term correspond to an upper bound of the regret induced by initialization and
communication rounds respectively. Indeed, the number of rounds per communication phase is K + 2M − 1 ≤ 3K.
In addition, note that the number of communication phases can be bounded as

|{t ≥ 2 : N (t) 6= N (t− 1)}| ≤ 2 |A| .

Applying Lemmas 5 and 6, we get:

6KME [|A|] +ME [|A ∪ B|] ≤ 40K3/2M3(6K + 1)(7 + δ−2). (12)

Hence, Lemma 7 yields:

Rπ(T ) ≤ K2M2

ï
1

K −M
+ 284K1/2M(7 + δ−2)

ò
+
∑
k>M

(µM − µk)(log T + 4 log log T )

kl (µk + δ, µM − δ)
.

The second statement stems from the fact that each communication phase lasts less than 3K rounds. Therefore,
the total number of collisions can be bounded by

M

Å
K2M

K −M
+ 2K

ã
+ 6KE [|A|] ≤ K2M2

Å
1

K −M
+ 242K1/2(7 + δ−2)

ã
.
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C Performance analysis of DPE2

C.1 Preliminary

In the proof of Theorem 2, we repeatedly use the following lemma from Combes and Proutiere (2014).

Lemma 8. Let k ∈ {1, . . . ,K}, and ζ > 0. Define Fn the σ-algebra generated by (Xk(t))1≤t≤n,1≤k≤K . Let
H ⊂ N be a (random) set of instants such that {n ∈ H} is Fn−1-measurable for all n ≥ 1. Furthermore, we
assume for each n ∈ H, we have Nk(n) ≥ ζ

∑n
t=1 1{t∈H}. Then for all δ > 0:

E[
∑
n≥1

1{n ∈ H, |µ̂k(n)− µk| > δ}] ≤ 1

ζδ2
. (13)

Moreover, as Lemma 4, the following lemma is a consequence of Theorem 10 in Garivier and Cappé (2011).

Lemma 9. Under the DPE2 algorithm, we have:∑
n≥1

P [d1(n) < µ1] ≤ 57K.

Proof. Suppose ns is the first round of s-th block for any s ≥ 1. By the design of DPE2, we only update
d1(n) when n = ns for some s ≥ 1. Therefore, for any s ≥ 1, we have P [d1(n) < µ1] = P [d1(ns+1) < µ1] for all
ns < n ≤ ns+1. Furthermore, the size of each block is always smaller than K, so ns+1 − ns ≤ K. We deduce that

∑
n≥1

P [d1(n) < µ1] ≤ E

∑
s≥1

(ns+1 − ns)1 {d1(ns) < µ1}

 ≤ K∑
s≥1

P [d1(ns) < µ1] .

Additionally, as a consequence of Theorem 10 in Garivier and Cappé (2011), we have for any n ≥ 3, P [b1(n) < µ1] ≤
edf(n) log(n)ee−f(n). Hence, from the fact that d1(ns) = b1(ns) for any s ≥ 1, we can conclude

∑
n≥1

P [d1(n) < µ1] ≤ K

Ñ
2 +

∑
s≥3

P [b1(ns) < µ1]

é
≤ K

Ñ
2 +

∑
s≥3

P [b1(s) < µ1]

é
≤ K(2 +

∑
s≥3

edf(s) log(s)ee−f(s))

= K(2 +
∑
s≥3

edlog(s)2 + 4 log(s) log(log(s))e
s log(s)4

)

≤ K
ï
2 + e

Å∫ ∞
e

1

s(log s)2
+

∫ ∞
e

4 log(log s)

s(log s)3
+

∫ ∞
e

1

s(log s)4

ãò
= 57K.

The second inequality is due to {ns}s≥3 ⊂ {s ∈ N : s ≥ 3}.

C.2 Regret Analysis

Recall that we denote δ0 = min1≤k≤K−1
µk−µk+1

2 as half of the minimum gap between the expected rewards of
the arms. In what follows we choose 0 < δ < δ0. Let us introduce the following sets of events:

A = {n ≥ 1 : `1(n) 6= 1} ,
B =

{
n ≥ 1 :

∣∣ν̂`1(n)(n)− µ`1(n)
∣∣ ≥ δ} ,

C = {n ≥ 1 : d1(n) < µ1} ,
E = {n ≥ 1 : n ∈ A\(B ∪ C), |ν̂1(n)− µ1| ≥ δ} .
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It follows from exactly the same arguments as those used to prove Lemma 5 that:

E [|A ∪ B|] ≤ E [|B|] + E [|C|] + E [|E|] .

Lemma 10. We have: E [|B|] + E [|C|] + E [|E|] ≤ 2K2δ−2 + 57K.

Proof. We upper bound each term:
(a) We show that E [|B|] < K2δ−2. We decompose B = ∪Kk=1Bk where Bk = B ∩ {n ≥ 1 : `1(n) = k} and
bound each E [|Bk|]. Note that |D(t)| ≤ K − 1, thus the length of each block is bounded by K. Now if n ∈ Bk,
`1(n) = k which implies that k is selected once in the block to which n belongs. We conclude that for n ∈ Bk,
Nk(n) ≥ 1

K

∑n
t=1 1{t∈Bk}. We can apply Lemma 8 with H = Bk, ζ = 1/K, and conclude that:

E [|Bk|] ≤ Kδ−2.

Summing over k yields the result.

(b) We show that E [|C|] ≤ 57K. In fact, this follows directly from Lemma 9.

(c) We show that E [|E|] < Kδ−2. Let n ∈ E . Note that n /∈ B, thus |ν̂`1(n)(n)− µ`1(n)| < δ. Additionally, n ∈ A,
thus `1(n) > 1. Therefore,

ν̂`1(n)(n) < µ`1(n) + δ ≤ µ2 + δ <
µ1 + µ2

2
. (14)

The last inequality follows from the definition of δ < µ1−µ2

2 . Furthermore, since n /∈ C,

d1(n) ≥ µ1. (15)

Combining (14) and (15), we get

d1(n) ≥ µ1 ≥ (µ1 + µ2)/2 > ν̂`1(n)(n).

From the above inequality, we know that arm 1 belongs to D(n) for n ∈ E . By design of DPE2, arm 1 will hence
be selected in the block containing round n ∈ E . Again since each block has a length less than K, we deduce
that: for n ∈ E , N1(n) ≥ 1

K

∑n
t=1 1{t∈E}. Now, applying Lemma 8 with H = E , ζ = 1/K gives

E [|E|] < Kδ−2.

Lemma 11. Given T ≥ 3, we define Gk = {n ≤ T, n /∈ A ∪ B, ρ(n) = k} for some k 6= 1. We show that

E [|Gk|] ≤
log T + 4 log(log T )

kl (µk + δ, µ1 − δ)
+ δ−2.

Proof. Define the counter c(n) =
∑n
t=1 1{t∈Gk}, which is the number of rounds in Gk up to round n and define

t0 = (log T + 4 log(log T )) /kl (µk + δ, µ1 − δ).
Define two subsets of Gk as

Gk,1 = {n ∈ Gk : |ν̂k(n)− µk| ≥ δ} ,
Gk,2 = {n ∈ Gk : c(n) < t0} .

We first show that Gk ⊆ Gk,1 ∪ Gk,2. Let n ∈ Gk\(Gk,1 ∪ Gk,2). By definition of A, since n /∈ A, `1(n) = 1.

The arm selection scheme of DPE2 is such that, during the block to which round n belongs, arm k is only selected
at round n (indeed note that the algorithm explores at most once per block). Since n /∈ Gk,2,

Nk(n) ≥ c(n) ≥ t0. (16)
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Observe that ρ(n) = k can only happen when

dk(n) ≥ ν̂`1(n)(n) = ν̂1(n). (17)

Moreover, n /∈ B implies that
ν̂1(n) > µ1 − δ. (18)

Finally n /∈ Gk,1 and δ < min1≤k≤K−1
µk−µk+1

2 imply that

ν̂k(n) < µk + δ < µ1 − δ. (19)

Combining the above arguments, we get:

t0kl (ν̂k(n), µ1 − δ) ≤ Nk(n)kl (ν̂k(n), µ1 − δ) , (20)

< Nk(n)kl (ν̂k(n), dk(n)) ,

≤ log T + 4 log(log T ).

The first inequality follows from (16); the second inequality stems from (17)-(18)-(19) and the fact that y 7→ kl (x, y)
is an increasing function when 0 < x < y < 1; the last inequality is obtained by definition of dk(n). Replacing t0
by its value in the above inequality, we finally obtain:

kl (ν̂k(n), µ1 − δ) ≤ kl (µk + δ, µ1 − δ) .

Now observe that x 7→ kl (x, y) is a decreasing function when 0 < x < y < 1. We conclude that ν̂k(n) ≥ µk + δ
which contradicts the assumption that n /∈ Gk,1. Hence, Gk = Gk,1 ∪ Gk,2.

To complete the proof of the lemma, we upper bound E [|Gk,1|] and E [|Gk,2|].
For E [|Gk,1|]. Let n ∈ Gk,1. Since we play each arm at most once per block, k is selected for the first time in the
block to which n belongs precisely in round n. Hence, we have µ̂k(n) = ν̂k(n). We apply Lemma 8 with ζ = 1
and H = Gk,1, and get E [|Gk,1|] ≤ δ−2.

For E [|Gk,2|]. If n ∈ Gk,2, c(n) ≤ t0 and c(n) is incremented by +1. Therefore,

E [|Gk,2|] < t0 =
log T + 4 log(log T )

kl (µk + δ, µ1 − δ)
.

We have proved that:

E [|Gk|] <
log T + 4 log(log T )

kl (µk + δ, µ1 − δ)
+ δ−2.

Proof of Theorem 2. First, we prove the regret upper bound. Recall that the initialization phase takes D + 1
rounds. In addition, observe that the number of communication phases can be bounded as follows

|{t ≥ 2 : N (t) 6= N (t− 1)}| ≤ 2 |A| .

Each communication takes at most D rounds. Thus, the regret bound can be bounded as follows:

Rπ(T ) ≤M(D + 1) + 2DME [|A|] +ME [|A ∪ B|] +
∑
k>1

(µ1 − µk)E [|Gk|] ,

where Gk = {n ≤ T, n /∈ A ∪ B, ρ(n) = k} for k 6= 1. Additionally, Lemma 10 gives E [|B|] + E [|C|] + E [|E|] ≤
K(2Kδ−2 + 57). Thus, in the view of Lemma 11, we have:

Rπ(T ) ≤M(D + 1) + 2MD(2K2δ−2 + 57K) +M(2K2δ−2 + 57K) +
∑
k>1

[
(µ1 − µk)(log T + 4 log log T )

kl(µk + δ, µ1 − δ)
+ (µ1 − µk)δ−2]

≤ 2MD + 6MD(K2δ−2 + 29K) +Kδ−2 +
∑
k>1

µ1 − µk
kl(µk + δ, µ1 − δ)

(log T + 4 log log T )

≤ 9MDK(29 +Kδ−2) +
∑
k>1

µ1 − µk
kl(µk + δ, µ1 − δ)

(log T + 4 log log T ).



Optimal Algorithms for Multiplayer Multi-Armed Bandits

The second inequality follows from
∑
k≥1 µ1 − µk ≤ K and M(D + 1) ≤ 2MD. This concludes the proof of the

regret upper bound.

Next, we prove the upper bound of the total expected number of bits sent under DPE2. The leader election phase
requires the transmission of 2|E|(D + 1) log2(M) bits. Note that:

2|E|(D + 1) log2(M) ≤ 4M2D log2(M).

Now, each communication phase requires at most 2|E|D log2(K) transmitted bits. Moreover, as the proof of
Theorem 2, the expected number of times `1(t) changes is bounded by 2E [|A|]. Thus, the expected number of
bits sent in communication phases is at most

4M2D log2(K)E [|A|] ≤ 8KM2D log2(K)(29 +Kδ−2).
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D Additional numerical experiments

D.1 DPE1

Figures 7 and 8 illustrate the regret in round T = 5 · 105 and the communication complexity of the various
algorithms as a function of ∆, the gap between two consecutive arms. We chose the usual parameters K = 9,M = 6.
We consider arms with Bernoulli rewards, with range [0.9−K ·∆, 0.9] and ∆ ∈ [10−4, 10−1]. All the values were
computed over 960 runs.

In Figure 7 we can confirm what already has been observed in Boursier and Perchet (2019), that MCTopM
seems to provide better results for larger values of ∆. On the other hand, both SIC-MMAB and DPE1 have
smaller dependency in 1/∆, with DPE1 having an even smaller dependency than SIC-MMAB.

Figure 8 shows the average number of communication phases of DPE1 as a function of the gap ∆, in logarithmic
scale. We can distinguish a linear behavior in 1/∆, that plateaus for very small values of ∆.
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Figure 7: Regret at time T = 5 · 105 as a function
of the gap ∆.

2 3 4 5 6 7 8 9

log(1/∆)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

A
v
g

n
u

m
.

of
co

m
m

.
p

h
as

es
(l

og
ar

it
h

m
ic

)

DPE1

Figure 8: Average number of communication phases
at time T = 5 · 105 as a function of the gap ∆.

D.2 DPE2

In Figure 9, we show the number of times the leader needs to communicate to the other players for DPE2. As
suggested by our analysis, this number is small. Values are averaged over 1024 runs, and we used the same settings
that are described in Subsection 4.2, i.e., 10 arms with Bernoulli rewards, gap ∆ = 8/9 and range [0.1, 0.9].
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Figure 9: Number of times the leader updates the best empirical arm.
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E Experimental setup

Hardware and software setup. All experiments were executed on a stationary desktop computer, featuring
an Intel Xeon Silver 4110 CPU, 48GB of RAM and a GeForce GTX 1080 graphical card. Ubuntu 18.04 was
installed on the computer.

Code and libraries. We set up our experiments using Python 3.7.1. The code from Boursier and Perchet (2019)
was used to run SIC-MMAB and MCTopM. We also made use of some Kullback-Leibler diverge functions from
the library SMPyBandits Besson (2018). The code is available at https://github.com/rssalessio/dpe.

https://github.com/rssalessio/dpe
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