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Abstract

Latent force models are systems whereby
there is a mechanistic model describing the
dynamics of the system state, with some
unknown forcing term that is approximated
with a Gaussian process. If such dynamics
are non-linear, it can be difficult to estimate
the posterior state and forcing term jointly,
particularly when there are system paramet-
ers that also need estimating. This paper
uses black-box variational inference to jointly
estimate the posterior, designing a multivari-
ate extension to local inverse autoregress-
ive flows as a flexible approximator of the
system. We compare estimates on systems
where the posterior is known, demonstrating
the effectiveness of the approximation, and
apply to problems with non-linear dynamics,
multi-output systems and models with non-
Gaussian likelihoods.

1 INTRODUCTION

Latent force models are a class of models that can be
used to combine known mechanistic systems with non-
parametric representations of unknown forces. Con-
sider the example system, defined as a differential
equation,

d d?
t —x(t —x(t) = u(t 1
ooz (t) + on o (t) + palt) =u(), (1)
which describes a forced mass-spring-damper system.
In practice, the unknown forcing term, u(t), may need
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to be estimated given only observations of the sys-
tem state, x(t). It may be that parameters ag and
ay are also unknown, and need to be simultaneously
estimated. Parametric forms for «(t) may be used
to estimate the state; however, placing a Gaussian
process prior over u(t) gives rise to the latent force
model (Alvarez et all [2013). The resulting model
can be transformed into a regression problem, and
a probabilistic solution to z(¢) and u(t) can be in-
ferred. An alternaive inference scheme using Kalman
filtering and Rauch-Tung-Streibel smoothing was in-
troduced by Hartikainen and Sarkké|(2010]), which in-
fers the state sequentially. Latent force models have
been shown as effective ways to approximate latent for-
cing terms, constraining the solution with the defined
mechanistic dynamics of the system.

Solutions can only be inferred exactly in the case that
the underlying differential equaton is linear. |Alvarez
et al.| (2013) use linearisation of terms in non-linear
models, which greatly simplifies the mechanistic aspect
of the model, while |[Hartikainen et al.| (2012)) use non-
linear filtering approaches for approximate inference.
In the latter case, the results are effective for known
parameters, but the sequential nature of the inference
scheme leads to challenges in joint parameter estima-
tion; such challenges are the inspiration for the work
by|Durrande et al.| (2019). Problems where the dynam-
ics are partially known, but where one or more terms
are non-linear, for example if o in were dependent
on x or u, occur in many areas, including biomechan-
ics (Barenco et al.l 2006)); population modelling (Liul,
2010)), structural health monitoring (Worden et al.,
2018)) and control systems (Conte et al., [1999). In
the case where parameters are also unknown, sequen-
tial methods can struggle to perform joint inference
effectively.

In this work, we seek to build a method that can
jointly infer a system with particularly known dynam-
ics and some unknown forcing term; and model para-
meters, given noisy observations of only part of the
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model. We build a flexible approach using variational
Bayesian inference to optimise a surrogate estimation
of our posterior state. AsinRyder et al.| (2018]), we use
black-box variational inference and construct a neural
network-based representation of the joint solution. To
give our solution flexibility, we construct the vari-
ational distribution using normalising flows; design-
ing a new architecture to model multivariate systems
where high proportions of the state is unobserved.

The main contributions of this paper include build-
ing a simulation-based variational estimation for non-
linear latent force models, using a sigma point method
to propagate uncertainty in the loss term. We integ-
rate Bayesian parameter estimation into the inference
method, which includes marginal approximations of
Gaussian process hyperparameters. The multivariate
extension of the normalising flow is a novel contribu-
tion, designed to encode dependencies between latent
dimensions based on the Markov properties of the un-
derlying model. The approach is applied to a Gaus-
sian process regression to demonstrate the ability of
the normalising flow to approximate samples and ap-
ply model criticism, comparing the estimate with the
known posterior to quantify the effectiveness of the
approximation. We then apply the approach to simu-
lated and real non-linear forced models to demonstrate
the proposed approach for jointly estimating state, for-
cing term and parameters, and show how this can be
extended to multivariate outputs. Further, we demon-
strate that the method can be easily extended to prob-
lems with non-Gaussian likelihoods.

2 BACKGROUND

This section briefly reviews the related background of
this work: discretising moments for Gaussian filter-
ing of non-linear stochastic differential equations; and
normalising flows in the context of this work.

2.1 Continuous-Time Filtering

Given a (non-linear) stochastic differential equation,
describing some state variable, z(¢) driven by dynam-
ics with coefficients «;(x,t) and white noise, w(t),

ol alt) + Dl ) S (0) = wlt), @)

we desire to regress the state on some observations,
often noisily observed, e.g. y |z ~ N (z,02). One such
method is to use Bayesian filtering to calculate the pos-
terior p(x|y) by forward propagating state-estimates
and updating the approximation with observations.

Kalman-Bucy Filter The Kalman filter is a widely
recognised approach to solving state-space models con-

ditioned on a set of observations (Sarkka), [2013). The
Kalman filter relies on a discrete-time update, so the
SDE must be discretised. If the system is linear
and time-invariant, this can be performed exactly and
the underlying state-space model is defined xp; =
exp((tx4+1 — tx) D)y + Q'/?ey,, where D is the com-
panion matrix representing the n-order system as a
first-order SDE, Q is derived from the steady-state
covariance of the system, and e, ~ AN(0,I). Infer-
ence can be performed using standard Kalman filtering
techniques (Sarkka) 2013)).

State-Space Gaussian Processes The state-space
model interpretation of a Gaussian process (GP) with
finitely-differentiable covariance treats the regression
as a continuous-time SDE that can be described in
the form of . The coefficients of the SDE, «;, are
scalar and derived from the covariance function of a
GP prior.

Given that the SDE representation of the Gaussian
process is linear and time-invariant, due to the con-
stant coefficients, it can be solved in the forward-
direction exactly using the Kalman-Bucy filter. To
calculate the full posterior given the data, a backwards
pass using, e.g. the Rauch-Tung-Streibel smoother can
be performed (Hartikainen and Sarkkal 2010]).

The state-space representation of Gaussian processes
also allows latent force models to be expressed as
a joint companion system, combining the underlying
system dynamics with the dynamics of the Gaussian
process placed over the prior (Hartikainen et al., 2012;
Sarkka et al., [2018)).

Unscented Kalman-Bucy Filter Where the state
to be inferred is subject to non-linear dynamics, such
that a; in are dependent on x, the posterior can-
not be calculated exactly. There are, however, several
approaches to state-space modelling of non-linear sys-
tems, including the extended Kalman filter, and se-
quential Monte Carlo filters (Sarkka, 2013). The un-
scented Kalman filter (UKF) is another such approach,
using a set of so-called sigma points to characterise the
moments of the state estimate. Sigma points are in-
dividually propagated through the dynamics and can
be combined by means of weighted sums to obtain ap-
proximations of the mean and covariance (Julier and

Uhlmann), (1997)).

A continuous-time extension of the UKF was intro-
duced in Sarkka (2007), defining continuous-time dy-
namics for predicting the moments, m(t) and P(¢).
For a given system, with dynamics D(x,t), diffusion
term, X(t), and sigma points x, the moments such
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t) ~ N(m(t), P(t)) are defined

gm(t) = D(x, t)w™

—P(t) = x(t)WD(x,t)" + D(x, ) Wx(t) " + ().

(3)

dt

Weights w™ and W derive from the unscented trans-
form and are defined in the construction of x. The
moments can be forward-solved using an ODE solver,
such as a Runge-Kutta scheme (Sarkkay, 2007). At ob-
servation times, the update-step of the discrete-time
UKF can be used to update the estimate of @, which
can be used as an initial value for further prediction.

2.2 Autoregressive Flows

Normalising flows can be used to represent a probab-
ility distribution ¢(x) as a differential transformation
of some base density, e.g. g : z — x, 2 ~ N(0,1I)
(Rezende and Mohamed, 2015). The mapping, g must
be invertible and differentiable, such that

q(x) = plg™' (x))|G-1()],

where G_; is the Jacobian of g~ !.

The tractability of |G_1] is a restriction on the choice
of mapping; enforcing an autoregressive expression,
x; = g(z1,...,2;) results in a Jacobian that is trian-
gular and therefore the determinant is the product of
its diagonal elements. This form of g gives rise to the
concept of autoregressive flows (Kingma et al.; [2016)).

Inverse Autoregressive Flows |Kingma et al.
(2016) describe the mapping by reparametrising its
inverse, transforming variables sampled from the base
density by functions that represent the dependencies
between dimensions. An inverse autoregressive flow
(IAF) can be defined in terms of two transformations,
p and o

i =0(z1,...,2) zi + w(z1,. .., 2i) (4)

The log probability is therefore

log g(z) = logp(z) — » logay, (5)

where 0; = o (21,. .., 2i).

The shift and scale functions, g and o are often
defined as outputs of a neural network encoding the
autoregressive requirements of the system. For ex-
ample, in Kingma et al.[(2016) the authors make use of
convolutional layers, such as ResNet (He et al., 2016).

Local TAFs An issue with IAFs as described is that
they can become computationally expensive to com-
pute for high dimensional x due to the large num-
ber of inputs to the shift and scale functions. [Ry-
der et al.|(2019) introduce a local version of the IAF
for approximating state-space models, in which the
shift and scale depend only on the immediately pre-
ceding r entries of the vector, termed the receptive
field: x; = f(zi—r,...,2;). This approach is similar to
that used in PixelCNN and WaveNet (van den Oord
et al. [2016bla)), using causal convolutions with restric-
ted kernel width.

3 VARIATIONAL INFERENCE FOR
NON-LINEAR LATENT FORCE
MODELS

We consider the approximate inference of the joint
state posterior, p(x(t), u(t), 0 | y) of a non-linear latent
force model of the form

n i

—|—Za1 T, u,t; 0)(;; (t) = u(t),

i=1
(6)
where u(t) ~ GP(0,k(t,t')) is the prior placed over
unknown force, and y are observations at times 7;, j =
1,...,t, such that y; ~ w(h(x(7;);0)), some likelihood
conditional on an emission model h(x).

ao(x,u, t;0)x

Given its intractability, we use variational
Bayes to approximate the conditional pos-
terior.  We define a joint state vector f(t) =

[(t),dx/dt, ... u(ty),du/dt,...]T and construct a
first-order companion SDE for @ such that it can be
written

S50 =D(fL0) +Lau(), (D
where D is the companion form dynamic, L is a
column vector of zeros in all but the final row, which
equals 1; and w(t) is a unit white noise process, and
2 is the variance as derived from the state-space form
of the GP prior.

For some finite-time mesh, tg, ..., tr, and observation
times 7y ...,7n, which for simplicity are contained
within the mesh, the joint posterior

p(xo.r, o, 0 |Y)
N

PO)p(fo|0) [T p(Fier | £1.0) [[ ws | £(7).0).
k=0 j=1
(®)

where subscripts denote discrete-time evaulations, e.g.

i 2 ft).
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3.1 Variational Bounds

Given the intractibility of , we construct a vari-
ational approximation of the posterior to jointly es-
timate the system state and parameters, in the form
of ¢(f,0) = q(0)q(f16). To obtain the optimal ap-
proximation, we seek to find ¢* € Q to minimise the
KL-divergence between our estimate and the posterior:

KL[g" || p] = Eg 6~q[logq(f,0) —logp(x,u,0]y)].
(9)
Noting that p(x,u,0|y) = p(x,u,0,y)/p(y) and that
the evidence p(y) does not depend on ¢, this is equi-
valent to maximising

E(q) = Ef,gwq[logp(:c,u,B,y) - 1Og q(.fae)] . (10)

To allow straightforward unbiased estimation of ,
we follow the example of |[Kingma and Ba (2014),
Rezende and Mohamed (2015), and [Titsias and
Lazaro-Gredilla) (2014)) by reparameterising g and tak-
ing f =my(es,0;¢¢) and 0 = my(eg; Pg). The func-
tions my; and my should be defined such that they
are invertible mappings of random variables, €7,&9 ~
N(0,I), and be parameterised by ¢ and ¢y respect-
ively. Thus, the family of functions, @ representing
g, are the functions mj; and myg, parameterised by
variational parameters ¢ = {¢y, po}.

An unbiased estimate of L£(g) can be obtained using
M Monte Carlo samples,

L(q) =
1 & N oo
ot > log (p<g(z)p(f(z) 16D)p(y | £, 9(1)))
i=1

—log ((6©)q(£96)).,
()

where fO = my(e}),00;¢;) and 00 =
@

’ITLQ(Eéi);d)g) for independent samples €, séi) from

N(0,1).

To maximise L£(q) with respect to ¢, we use a
stochastic gradient optimisation algorithm, approxim-
ating V4L with an unbiased estimate of sample gradi-
ents, calculated using automatic differentiation of
(Ranganath et al.,2014; Ryder et al., [2018).

3.2 Discretisation

In calculating £, we must approximate the marginal
of our joint system state p(f|0) = [[p(fr+1| fx,0).
To do so, we assume that transition is (approximately)
normal, and build moments using the prediction dy-
namics of the continuous-time unscented Kalman fil-
ter, described by ,

Jrv1 | fe, 0 ~ N(myy1, Prya). (12)

We construct the discrete-time predictions using
Euler’s method, with step size Ay = tj11—t; (Griffiths
and Highaml [2010). The update steps for the mean
and covariance of the transition density are defined

Mpy1 = fr + AyD(xk, t; 0)w™ (13)
Py =3+ AU (xk, t;0), (14)

where

U(x,t;0) = xWD(x,;0)" + D(x,t;)Wx' + X,

o (15)
and ¥ = LQ.L". Q. represents the m x m steady-
state covariance of the state-space GP prior of u, and
L is a d x m masking term to map Q. to d x d, where
d is the dimension of the joint state.

Unscented transform sigma points x and correspond-
ing weight terms w(™ and W are defined in matrix-
form and built from base density N (fx,>) (Sarkkal
2007). Sigma points are defined

X = [fx fil+ o Vid+ns —/d+nE,
(16)
with weight terms defined
w™ =n(d+n)~"
wle =n(d+n+1—a+ 8" (17)
o =9 = a4 20y
w1 =1I— [w™ w(m)

where 7 = ai (d + ky) — Ky is the unscented scaling
term and o, By, and K, are hyperparameters of the
transform (Julier and Uhlmann, 1997)).

3.3 Multivariate Masking of Local TAF

As in both Kingma et al.| (2016) and [Ryder et al.
(2019), we build ¢(f|6) as a hierarchy of inverse
autoregressive flows to create a flexible approxima-
tion density. Because we are dealing with multivariate
states, we design a novel variant for vector-valued tem-
poral states.

First, the system state is flattened such that each entry
corresponds to a single dimension, and the hierarch-
ical flow transformation is constructed such that each
layer acts only on a single dimension in the state. Suc-
cessive layers alternate updates for each dimension, as
motivated in|Dinh et al.| (2016]). A receptive field mask
is used to enforce locally temporal dependencies, and
each flow layer takes in the output of the previous
layer, the model parameters, 8, and a local feature
vector, D.
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Figure 1: Example architecture of multivariate mask-
ing of local inverse autoregressive flows, with state di-
mension d = 2 and receptive field width r = 2

A demonstration of the flow dependencies is shown in
Figure [l Formally, the flow hierarchy can be defined
for each element of the flattened joint state vector
rolled out over time as such:

A= (19)
2 = (@los + (1= 0D)={7" + ol

where € ~ N(0,1), 6! = 1 if (s mod I = 0) else 0 and

[1s, 01] = AUTOREGRESSIVENN (rl? © 20—, 6, D).

(20)
The autoregressive neural network here encodes the
conditional depencencies of the system. The recept-
ive mask, rgl) is a binary vector that masks the local
receptive field. In practise, the receptive mask is en-
forced using causal 1-D convolutions with kernel width
equal to r - d, where d is the state dimension and r is
the receptive field’s width. The autoregressive neural
network is constructed from multiple layers of convolu-
tions with batch normalisation between layers. Details
of the architecture are provided in Algorithm

The final flow, 2 is used to generate an estimate
for f, with f = flatten™!(h(z))), where flatten™" :
R4T>1 5 R4¥T ig the inverse transformation to map
the flattened vector back to its multivariate form. We
also define h to be some optional bijector to enforce
constraints on f, for example h(-) £ log(exp(-) + 1),
the softplus operator, can be used to enforce positivity

of f.

The log probability of the multivariate extension to
local TAF is thus

T N
T
log q(f) = 5(6% +log2m) + 3 Y bloi + (1-6))

=1 =1

+log |H 1 (f)],
(21)

where H_ is the Jacobian of the inverse of h.

Local Features The features for the inverse autore-
gressive flow represent the additional input data to
the model, including parameters and observation data.
The flattening of the latent dimension is mirrored in
the flattening of the observation data, with latent di-
mensions receiving 0 as input.

For each element of a given flow, zi(l), the feature vec-

tor, D consists of: the current discrete-time point, tg;
the time until the next observation, 7; — t, such that
Tj—1 <ty < 7j; the next observation, y;; and a binary
mask indicating with value 1 that there is an obser-
vation at 7; and that the current corresponding state
dimension is not latent.

The feature vector is concatenated with the base
sample of the flow before passing to the autoregressive
network used to generate shift and scale terms, p(
and . A sample from the parameter distribution
is encoded with a densely-connected multilayer per-
ceptron and the output is added to the first layer of
the autoregressive network.

3.4 Joint Parameter Estimation

For the estimation of model parameters, we use a sep-
arate variational distribution ¢(@), to be optimised as
part of the maximisation of . A simple family of
distributions for ¢ is the family of mean-field Gaussian
approximations. Here, we sample each parameter from
an independent multivariate Gaussian, parameterised
by ¢9 = {pe, s¢}. In this case, mg(s((;); ¢g) is defined
such that 8() = diag[se]é‘((;) + pg. Constraints on ele-
ments of @ can also be applied, for example by placing
the variational distribution of log 6; if it is constrained
to be positive.

For the models presented in this paper, empical res-
ults demonstrated that the mean-field approach is suf-
ficient for parameter estimation, particularly when
there is known independence, such as between para-
meters of the input GP and of the system dynam-
ics. However, such an approach can often be a poor
choice for more complex dependencies (Blei et al.|

Algorithm 1 I*" AUTOREGRESSIVENN(z("1) 9, D)

€00 « convip(z(=1, D)
£00) « DENSE(O)
5(1) — ELU(f(Oa) + é‘(Ob))
fori=2...n,do
€@ < BATCHNORM(CONVID(ELU(£(—D)))
end for
[, 8] < CONVID(£(™))
O < SOFTPLUS(S)
return [p, o]
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2017), so alternative approaches may be used, e.g.
masked autoregressive density estimation (Germain

2015)
4 RELATED WORK

Physically-inspired inference of unknown systems with
Gaussian processes can be considered in the pro-
cess convolution interpretation of multi-output GPs
(Alvarez and Lawrence, [2011), which consider the sys-
tem as an integral problem with a shared latent GP
describing the dependencies. This approach has been
used for latent force models (Alvarez et al.,[2013), and
introduced to non-linear dynamics in |[Lawrence et al.
(2007) and Titsias and Lawrence| (2009), more recently
being generalised to non-linear systems using a series
approximation (]Alvarez et al.L |2019|). The interpreta-
tion of latent force models as state-space models has
been applied to non-linear problems in
land Sarkké| (2010) using the unscented Kalman filter,
but does not apply joint parameter estimation. Incor-
porating non-Gaussian likelihoods in the state-space
approach to GP regression has been discussed in

fch et al] @01).

Approximation methods for ODEs and SDEs with
fully unknown dynamics that use GPs to approximate
some part of the system include gradient-matching GP
regression fits, as in [Wenk et al.| (2018)), or approxim-
ating the phase and diffusion matrix of non-linear os-
cillators with GPs given only observations
et al., 2018;|Yildiz et al., 2018). Recent works investig-
ating parameter estimation in stochastic systems with
known dynamics includes approaches using variationa;
inference (Ryder et al. [2018; Birtkowski et all [2017)),
and MCMC (Abbati et al. [2019).

This paper addresses the combined problem of
partially known dynamics with unknown paramet-
ers using autoregressive neural networks. Similar
simulation-based inference methods for sequential data

include the sequential neural likelihood (Papamakarios

2019), which presents a likelihood-free infer-
ence model with masked autoregressive flows (Papa-

makarios et al., |2017). A related approach for low-
dimensional state-space models was introduced in

der et al (2019).

5 MODEL CRITICISM

A special case of the model defined in @ is an SDE
with the deterministic dynamics of a Matérn GP, and
the forcing term has a GP prior with white-noise co-
variance. The resulting system would be equivalent
to a state-space GP. Thus, we can infer the posterior
exactly for evaluation of the proposed approximate in-

logA
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Figure 2: Maximum mean discrepancy (MMD?) scores
comparing samples from the variational approximation
of GP with Matérn-3/2 covariance with samples the
true posterior, plotted against training epoch [top left].
The black line indicates the threshold under which the
null hypothesis can be accepted with 95% confidence.
Two samples from the true posterior (red) and vari-
ational approximation (blue) conditioned on some ob-
servations (white) [bottom left]. Samples form a vari-
ational approximation of a latent GP conditioned on
count data [top right], with predictive density plotted
with 95% confidence intervals (shaded)

ference approach.

Matérn covariances The Matérn family of covari-
ances are finitely differentiable and, as such, can be
represented exactly as SDEs (Sarkké and Solin, [2019)).
For a GP with half-integer Matérn covariance, e.g.
Matérn-3/2, the dynamics can be easily represented as
a stochastic LFM:

Aa(t) + ; (?) /\"_i%x(t) = u(t), (22)

where u(t) ~ GP(0,v(20)*"~1(n!)?/(2n—2)18;1/), with
parameters v, the variance; and A = ¢~1y/2n — 2,
where £ is the so-called length-scale.

Maximum Mean Discrepancy We use a kernel-
based two-sample test (Gretton et all 2012) to com-
pare samples from the variational approximation with
samples from the true posterior. Mapping the corres-
ponding samples to a reproducing kernel Hilbert space
using a Gaussian kernel, we apply the two-sample test
using maximum mean discrepancy (MMD) as a similar-
ity metric between the approximate and true posterior.

The MMD? value for the approximation of Matérn-3/2
GP fit is shown against the number of training epochs
in Figure The figure shows that as training in-
creases, the quality of approximation increases. The
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black solid line along the lower part of the plot indic-
ates the threshold at which the null hypothesis, that
the two distributions are the same, can be rejected
with 95% confidence. The trend observed thus indic-
ates that with training the approximation is tending
to being statistically indistinguishable in such a test.
For visual reference, two samples from the true pos-
terior and approximation, further demonstrating their
similarity.

6 EXPERIMENTAL RESULTS

This section details experiments for problems with in-
tractible posteriors, demonstrating use-cases and the
flexibility of the proposed approach.

Non-Gaussian Likelihoods We apply the regres-
sion problem representing latent GP with Matérn-3/2
covariance as in the previous section, but condition
on a simulated set of count data to demonstrate that
the approach can be easily extended to problems with
non-Gaussian likelihoods. The regression problem is
defined such that f(t) is the joint state that has dy-
namics defined in with n =2

p(y; | £(75)) = Pois(y; | exp(f1(75))-

Samples from the variational distribution are shown
in Figure [2| along with the approximated predictive
density which shows that the approximation can cap-
ture the main features and uncertainty of the system.
The negative log predictive density (NLPD) for the
fit using the proposed approach is —0.12218, versus
—0.16576 for a GP fit with a Laplace approximation
(Rasmussen and Williams), {2006)).

Toy problem In this example, we demonstrate in-
ference of a latent input function on a non-linear ODE
using the proposed method. We consider a toy ex-
ample with sinusoidal dynamics of an observable state,
and place a Matérn-3/2 GP prior over the unknown in-

put:

d 2,
&x(t) =-3 sin(wz(t)) + u(t) (23)

Parameters from both the latent state dynamics and
input covariance, 8 = {w,v, A} are jointly inferred
with a mean-field variational distribution ¢(0). The
approximate posterior was conditioned on observa-
tions generated from a sample solution to , with
additive Gaussian noise.

Figure [3| shows the inferred posterior state and lat-
ent forcing term inferred using the variational ap-
proach. The marginals for the inferred parameters are
also shown. We observe that the underlying forcing
term has largest effect in the early parts of the model,

3852.3902.39!
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Figure 3: Latent state, 2(t), and forcing term, u(t), es-
timates using the proposed approach, conditioned on
noisy observations of z(t) indicated by black squares.
The shaded area indicates the central 95% sample
quantile about the mean (solid blue). Plots on the
right indicate the estimated marginals of the paramet-
ers and binned samples

Table 1: Approximation error for u in toy problem

linear LFM 0.8642 4+ 0.0147
NLPC (C=2) 0.8739 + 0.2531
NLPC (C=5) 0.8890 + 0.2321

UKF/URTS 1.0053 4+ 0.0478

BBVI (proposed) | 0.1007 £+ 0.0036

t < 5.0, which corresponds to deviation from the fixed
dynamics observed in y.

Table |1| shows the average root mean square error
(RMSE) for 100 samples of u approximated by differ-
ent approaches. We compare the proposed approach
with a linearised latent force model using process
convolutions (Alvarez et al., 2013)); a non-linear pro-
cess convolution approach, aproximated with Volterra
series of order 2 and 5 (Alvarez et all [2019); and an
unscented filtering/smoothing approach (Hartikainen
et al} [2012). Parameters were calculated for the filter-
ing approach using maximum a posteriori estimation,
and hyperparameters in the process convolution ap-
proximated with maximum likelihood estimation. We
observe that the proposed methods can effectively infer
the latent term jointly with the parameters, whereas
the filtering approach struggles to resolve the latent
term, despite being similarly conditioned on the dy-
namics.

Gene Expression In the final experiment, we con-
sider a multi-output system using real-world data. We
consider the transcriptional regulation model in [Bar-
enco et al.|(2006): an ODE describing the dynamics of
target gene expression that are regulated by an unob-
served transcription factor, u(t). For each gene in the
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t t

Figure 4: Inferered transcription factor concentration (left) and predicted gene expression for DDB2 and p26
sesnl (right). Black squares indicate measured gene expression, and shaded region represented the 95" sample

quantile about the mean

dataset, x4(t), the dynamics can be described as

%l‘d(t) = aq — bd$d<t) + Sdm.
We assume the gene expressions are observed with
some additive noise, 012/ = 0.25 and place a GP prior
over log u(t), as in|Titsias and Lawrence| (2009). Model
parameters for each output include the basal transcrip-
tion rate, ag, decay rate, by, and sensitivity, sg, which
are all unknown. . is the Michaelis constant defined
for each specific gene. Additional shared parameters
are those of the GP covariance function, characterising

u(t).

We perform inference of the gene expression prob-
lem for 5 observed genes: DDB2, BIK, TNFRSF10b,
ClIpl/p21, and p26 sesnl. A Matérn-3/2 GP prior is
placed over the log transcription factor term, logu(t),
and a mean-field approach is used to estimate para-
meters for each gene {ag4, by, sq4|d=1,...,5}, and GP
paremters, A and v. A softplus bijector was placed on
the output paths representing x4 to enforce positivity.

(24)

Plots showing the inferred (unscaled) transcription
factor concentration, u(t), and two of the gene expres-
sion states: DDB2 and p26 sesn. We observe that the
estimates of observable states, x4, capture the obser-
vations and general form.

We observe that the proposed approach can easily ex-
tend to multidimensional states, and represent multi-
output problems. In practice, this is similar to process
convolution representation of such problems (Alvarez
et all [2013), however we are able to perform infer-
ence over non-linear models, while jointly estimating
system parameters.

7 CONCLUSIONS

We present an approach for jointly inferring the para-
meters and state of non-linear ODEs with unknown

forcing terms using a simulation-based autoregress-
ive variational approximation. The approach can ef-
fectively simulate Gaussian process samples and infer
both observed and latent states constrained to par-
tially known dynamics systems. The method could
be extended to non-linear SDEs with unknown input
terms using the same proposed approach. We fur-
ther demonstrate that the model can represent multi-
output systems and models with non-Gaussian likeli-
hoods.

There are some limitations to the approach, such as a
tendancy to over-confidence; this can be observed in
Figure [ where we observe narrow error bars in the
latent GP for lower values of ¢. This might be fixing
certain parameters of the GP, such as the variance,
or deriving some term to penalise deviation from the
prior more strictly.

We have proposed a new approach to approximating
non-linear latent force models as a filtering problem,
using a new multivariate masking architecture of local
inverse autoregressive flows to handle dependencies
between observable and latent state dimensions. The
joint model can effectively learn parameters in such
problems with batch gradient descent; a challenge for
sequential approaches such as Kalman filtering or se-
quential Monte Carlo due to the need to roll-out gradi-
ents through time. Further, the proposed inference
method is scalable to more complex variational dis-
tributions over the parameter space; and we can in
principle extend the state-dimension arbitrarily, with
any number of latent and observed terms.
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