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1 Additional Experimental
Information

Here we include additional details on the experimental
results presented in the main text.

1.1 Annulus Example

The expressions used for generating the true data is:

ot=1, 1
te€l0,...,100], 2
xo ~ N(0,1), 3
yoNN(O,l), 4

r=fad+ 38,

s0 ~ N(0,0.1v/2),
ap < arctan <yt> , (7)

Yt
T ~ —Sp X sin(ag), (8)
Yo ~ So X cos(ag), (9)
Ty & Ty_1 + 0t X Ty_q, (10)
Yt < Ye—1 + 0t X Y1, (11)
St =/ &7+ Ui (12)
at < arctan (yt> , (13)
Yt
Ty < —S; X sinayg, (14)
Ui < 8¢ X COS ay, (15)
yi < [N(24,0.1), NM(y,0.1)], (16)

where we index time by t.

The model used at inference is:

5t =1, (17)
t€10,...,100], (18)
zo ~ N(0,1), (19)
yo ~ N (0, 1), (20)
zo ~ N(0,0.1), (21)
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Yo ~ N(0,0.1), (22)
Ty 4 Ty 1 + Ot X By 1 + Za,, 22, ~ N(0,0.1), (23)
Y < Ye—1 + 0t X Y1 + 2y, 22, ~ N(0,0.1), (24)
Tt & Te—1 + 24, 26, ~ N(0,0.1), (25)
Yt < Ye—1 + 2y, 2, ~ N(O, 0.1). (26)

Simulator failure is then defined as when the change in
radius is greater than 0.03 in a single iteration. This
effectively constrains the state to orbit in a roughly
circular orbit around the origin, with large perturba-
tions to velocity tangentially allowed, but only rela-
tively small perturbations to the velocity in the radial
direction.

To compute the variances of the SMC sweep we gen-
erate 100 random traces, on traces of length 100. We
then perform 100 SMC sweeps per trace, using 100
particles, and compute a pseudo-marginal estimate of
the evidence as the product of the expected likelihoods
at each observation.

1.2 Bouncing Balls

We simulate the elastic collisions between bouncing
balls using the standard Newtonian equations of mo-
tion. We use two balls with radius 5 and equal mass, in
a square enclosure with size 40. We perturb the posi-
tion and velocity with Gaussian distributed noise with
zero mean and standard deviation 0.5 and 0.1 respec-
tively. The prior over the initial position is uniform
in the allowed region, and a zero mean Gaussian over
velocity in the x and y directions, with standard devi-
ation 1.0/v/2. When performing state-space inference
we observe only the centre of mass of the ball per-
turbed by Gaussian noise with a standard deviation of
2.0.

In Figure [Ta] we include the curve of the failure rate
as a function of epoch during training, and box plot of
the variance of the pseudo-marginal evidence estimate.

To compute the variances of the SMC sweep we gen-
erate 100 random traces. We then perform 20 SMC
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Figure 1: Additional results plots for the bouncing
balls example. shows the reduction from approx-
imately 14% rejection under p to 3% rejection under
Q- shows the reduction in the standard deviation
of the evidence approximation. The reduction is lower
in this example as the system is reasonably “stable”
with a low rejection rate. The reduction is still statis-
tically significant, scoring < 0.0001 on a paired t-test.
shows the trajectories under p and g4. Columns are
normalized heatmaps plotted at times 1, 5, 10, and 20.
The top two rows are the positions of the two balls us-
ing p, and the bottom two rows are the positions of the
two balls using g4. For a single starting point, it can
be seen that there are many more samples surviving
to t = 20 under gg.

sweeps per trace, using 100 particles, and compute the
evidence. We also include a figure demonstrating the
increased sample diversity under g4 compared with p

1.3 Tosser

We use the configuration “tosser” included in Mu-
JoCo [Todorov et al.| [2012], only modifying it by re-
moving the second unused bucket. We use completely
standard simulation configuration. We introduce the
limit on overlap leveraging MuJoCos in-built colli-
sion detection, rejecting overlaps above 0.005. Typ-
ical overlaps in the standard execution of MuJoCo are
below this limit. An integration time of 0.002 is used.

We observe only the z-y position of the capsule with
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Figure 2: Additional investigation of the computa-
tional burden of the tosser example. shows that we
need approximately half the number of particles when
using g, to achieve the same variance in the pseudo-
marginal evidence approximation when 100 particles
are used in conjunction with p. shows the relative
computational cost of iteration of the simulator and
sampling from the flow. We can see that the compu-
tational cost of the flow is less than the cost of the sim-
ulator for roughly ten particles or more, as the flow can
be sampled in parallel on a GPU, whereas the simula-
tor must be iterated sequentially. For larger batches,
the cost of the flow is negligible compared to the cost
of the simulator. These results would be further ex-
aggerated for more expensive simulators, such as the
WormSim simulator.

Gaussian distributed noise, with standard deviation
0.1. We perturb the z-y position and velocity of the
capsule with Gaussian distributed noise, with standard
deviation 0.005 and 0.1 respectively. We perturb the
angle and angular velocity of the capsule with Gaus-
sian distributed noise, with standard deviation 0.05
and 0.05 respectively. These values were chosen to be
in line with typical simulated values in the tosser ex-
ample.

We place a prior over the initial position and velocity
with standard deviation 0.01 for positions and 0.1 for
velocities, and mean equal to their true position.

In this, the state input to the normalizing flow is the
position and angle, and derivatives, of the capsule, as
well as the state of the actuator. The actuators state
is unobserved and is not perturbed under the model.
We also input time into the normalizing flow as the
control dynamics are not constant with time.

To compute the variances of the SMC sweep we gen-
erate 50 random traces. We then perform 20 SMC
sweeps per trace, using 100 particles, and compute the
evidence.

We also compare the runtime savings using the trained
flow in place of the originally specified distribution for
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a fixed variance of the pseudo-marginal evidence ap-
proximation. The results of this are shown in Figure
[2a] We compute the variance of the pseudo-marginal
evidence approximation using p for an SMC sweep us-
ing 100 particles, shown as a constant line in blue. We
then compute the variance of the SMC sweep using 10,
20, 50, 75, and 100 particles when using q4. We see
that the variance under g4 is approximately the same
when using 50 particles, corresponding to a halving of
the computational effort expended on the simulator.
Of course, we then must compare the computational
cost of iteration of the simulator to the cost of sam-
pling from the flow, the results of which are shown in
Figure 2Bl We see that for 50 particles the cost of
sampling from the flow is approximately an order of
magnitude lower than iteration of the simulator, and
as such represents a small computational overhead. As
the number of particles grows, this cost drops further
due to GPU efficiencies, whereas the cost of the simu-
lator remains constant.

1.4 WormSim

We modify the compiled C++ WormSim |Boyle et al.
[2012] code only such that it can be interacted with
via a Python interface. We apply zero mean Gaussian
noise to only the z-y coordinates of the control points
of the worm, defining a 98 dimensional flow, where
the standard deviation of this noise is 0.000005. The
flow is conditioned on the full 510 dimensional state
representation of the worm. We normalize the position
of the worm such that its head is at the origin before
application of the flow.
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