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A Regularization

We perform a regularization of our graphs (see section 3) which allows for an efficient characterization of local
neighborhood growth rates and in turn, the local geometry. In this appendix, we provide more details on the
implementation and the theoretical guarantees of the regularization.

Fig. 1 shows the regularization schematically. For each vertex v in the graph, we enforce a uniform node degree
of 3 within its 1-hop neighborhood N1(v). Hereby auxiliary vertices a are inserted and modified edges reweighed.
The regularization algorithm is given in Alg. 1. The regularization allows for a quasi-isometric embedding of any

Algorithm 1 Regularization

1: Input: G = {V (G), E(G)}
2: ǫ← maxe∈E ω(e)
3: for v ∈ V do

4: N (v)← {u ∈ V : v ∼ u} ⊲ Neighborhood of v.
5: if deg(v) == 1 then ⊲ Leaf: N (v) = {u}
6: Create(a0, a1, a2, a3) ⊲ auxiliary nodes
7: ω(u, v)← ω(u, v)/2
8: ω(v, a0), ω(v, a1)← ǫ/4
9: ω(ai, ai+k)← ǫ/4 for i = 0, 1; k = 1, 2

10: else if deg(v) == 2 then ⊲ Chain: N (v) = {u1, u2}
11: Create(a0, a1, a2) ⊲ auxiliary nodes
12: ω(u1, v)← ω(u1, v)/2
13: ω(v, ai)← ω(u2, v)/2 for i = 0, 1
14: ω(u2, a

2)← ω(u2, v)/2
15: ω(a0, a1), ω(a0, a2), ω(a1, a2)← ǫ/4
16: else if deg(v) == 3 then ⊲ 3-regular: N (v) = {u1, u2, u3}
17: Continue

18: else ⊲ Star: N (v) = {ui}deg(v)i=1

19: Create(a1, . . . , adeg(v)) ⊲ auxiliary nodes
20: for i = 1, . . . , deg(v) do

21: ω(ai, ui)← ω(ui, v)/2
22: ω(ai, ai+1)← ǫ/4
23: end for

24: end if

25: end for

graph into a 3-regular graph. We provide the theoretical reasoning below:

Theorem A.1 (Bermudo et al. (2013)). G →֒φ G3 is a (ǫ+ 1, ǫ)-quasi-isometric embedding, i.e.

dG3
(φ(x), φ(y)) ≤ (ǫ+ 1)dG(x, y) + ǫ . (3)

From this we can derive the following additive distortion:

|dG3
− dG| ≤ |(ǫ+ 1)dG + ǫ− dG| = |ǫ( dG

︸︷︷︸

≤diam(G)

+1)| ≤ O(ǫ) ,

For the multiplicative distortion we have

dG ≤ dG3
≤ (1 + ǫ)dG + ǫ⇒ 1

1 + ǫ
dG ≤ dG3

≤ ( dG
︸︷︷︸

≤diam(G)

+1)(1 + ǫ) ≤ O(1 + ǫ) .

This gives cA = O(ǫ) and cM = O(1 + ǫ) as given in the main text.

B Neighborhood growth rates in canonical graphs

We restate the result from the main text:
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Theorem B.1 (Neighborhood growth of canonical graphs). For 3 ≤ R≪ diam(G), every R-neighborhood in

1. a b-regular tree is exponentially expanding;

2. an (
√
N ×

√
N)-lattice is linearly expanding;

3. an N -cycle is sublinearly expanding.

Figure 3: Regularization of N -cycle.

Proof. The regularization introduces edge weights (see Alg. 1), however, due to the periodic structure of the
canonical graphs, those weights are uniform (for lattices and trees) or up to an additive error of ǫ

4 uniform (for
cycles). Therefore, we can renormalize the edge weights and analyze the regularized graphs as unweighted graphs.
For cycles, the residual additive error does not affect the neighbor count and can therefore be neglected.

Consider first (c) an N -cycle. Due to the periodic structure of the chains in the regularized graph (see Fig. 3),
there are always either two or three vertices at a distance r from the root, in particular, we have

|NR(v)| = 1 +

R∑

r=1

α(r) ,

α(r) =

{

2, mod(r, 3) = 0

3, else
.

It is clear that
∑R

r=1 α(r) < 3R, i.e. the growth is sublinear.

Figure 4: Regularization of (
√
N ×

√
N)-cycle.

Next, consider (b) a (
√
N ×

√
N)-lattice. From the periodicity of the regularized graph (see Fig. 4), we see that

the number of nodes at distance r from the root grows linearly in r. In particular, we have

|NR(v)| = |v|+
R∑

r=1

deg(v)α(r) ,

α(r) =

{

r − 1, mod(r, 3) = 1

r, else
.

Since deg(v) = 4, we have deg(v)α(r) ≥ 3r, i.e. the lattice expands linearly. Finally, consider (a) a b-ary tree.
We first consider the case b = 3, i.e., a ternary tree. Note that this structure is invariant under our regularization.
Since every node has exactly two children, we get the following growth rate:

|NR(v)| = 1 +

R∑

r=1

3 · 2r−1 = γEE ,
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Figure 5: Regularization of b-ary tree (here b = 4).

i.e., the ternary tree expands exponentially. Now consider general b-ary trees with b > 3. The building blocks of
the periodic structure unfolding are b-rings (see Fig. 5). On each level, the nodes have either two children or two
nodes have a combined three children, if the b-rings close. This results in the following growth rate:

|NR(v)| = |v|+
R∑

r=1

b · α(r) ,

α(r) =

{
3
2 · 2r−1, mod(⌈ r2⌉, b) = b− 1

2r, else
.

Since 3 < b and 2r−1 < α(r), all b-regular trees expand exponentially.

C Comparison with other discrete curvatures

We restate the result from the main text (Thm. 3.3):

Theorem C.1. At any node v, we have

1. RicO(v) < 0 and RicF(v) < 0 in a b-regular tree,

2. RicO ≤ 0 and RicF(v) < 0 in an (
√
N ×

√
N)-lattice, and

3. RicO = 0 and RicF = 0 in an N -cycle.

Before proving the theorem, recall the node-based curvature notions for v ∈ V (G):

RicO(v) =
1

deg(v)

∑

(u,v)

RicO(u, v) =
1

deg(v)

∑

(u,v)

1−W1(mu,mv)

RicF(v) =
1

deg(v)

∑

(u,v)

RicF(u, v) = 4− deg(v)−
∑

(u,v)

deg(u)

deg(v)
.

Furthermore recall the following curvature inequalities for RicO:

Lemma C.2. (Jost and Liu, 2014) RicO fulfills the following inequalities:

1. If (u, v) is an edge in a tree, then RicO(u, v) ≤ 0.

2. For any edge u, v in a graph, we have

−2
(

1− 1

deg(u)
− 1

deg(v)

)

+

≤ RicO(u, v) ≤
#(u, v)

max{deg(u), deg(v)} ,

where #(u, v) denotes the number of common neighbors (or joint triangles) of u and v.

Proof. (Thm. 3.3) Consider first (3) an N -cycle. By Lem. C.2(2) we have for any (u, v) on the right hand
side RicO(u, v) ≤ 0, since a cycle has no triangles. Furthermore, the left hand side gives RicO(u, v) ≥ 0, since
deg(v) = deg(u) = 2. This implies RicO(v) = 0. We also have

RicF(v) = 4− deg(v)−
(
deg(u1)

2
+

deg(u2)

2

)

= 0 ,
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since deg(v) = deg(ui) = 2.

Next, consider (1) a b-ary tree. By Lem. C.2(1), we have RicO(u, v) ≤ 0 and therefore RicO(v) ≤ 0. Moreover,
we have

RicF (v) = 4− (b+ 1)− (b+ 1)(b+ 1)

b+ 1
≤ 0 ,

since by construction b ≥ 2.

Finally, consider (2) an (
√
N ×

√
N)-lattice. Since the lattice has no triangles, Lem. C.2(2) gives RicO(u, v) ≤ 0

for any edge (u, v) and therefore RicO(v) ≤ 0. In addition,

RicF (v) = 4− deg(v)−
(
deg(u1)

4
+

deg(u2)

4
+

deg(u3)

4
+

deg(u4)

4

)

≤ 0 ,

since deg(v) = deg(ui) = 4 for all i.

D Embeddability measures

We evaluate the quality of embeddings using two computational distortion measures, following the workflow in
(Gu et al., 2019; Nickel and Kiela, 2017). First, we report the average distortion

Davg =
∑

1≤i≤j≤n

∣
∣
∣
∣
∣

(
dM(xi, xj)

dG(xi, xj)

)2

− 1

∣
∣
∣
∣
∣
. (4)

Secondly, we report MAP scores that measure the preservation of nearest-neighbor structures:

MAP =
1

|V |
∑

u∈V

1

deg(u)

|N1(u)|∑

i=1

|N1(u) ∩Ru,i|
|Ru,i|

. (5)

Here, Ru,i denotes the smallest set of nearest neighbors required to retrieve the ith neighbor of u in the embedding
space M . One can show that for isometric embeddings, Davg = 0 and MAP = 1.
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