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Abstract

The problem of identifying geometric struc-
ture in heterogeneous, high-dimensional data
is a cornerstone of representation learning.
While there exists a large body of literature on
the embeddability of canonical graphs, such
as lattices or trees, the heterogeneity of the re-
lational data typically encountered in practice
limits the applicability of these classical meth-
ods. In this paper, we propose a combinatorial
approach to evaluating embeddability, i.e., to
decide whether a data set is best represented
in Euclidean, Hyperbolic or Spherical space.
Our method analyzes nearest-neighbor struc-
tures and local neighborhood growth rates to
identify the geometric priors of suitable em-
bedding spaces. For canonical graphs, the al-
gorithm’s prediction provably matches classi-
cal results. As for large, heterogeneous graphs,
we introduce an efficiently computable statis-
tic that approximates the algorithm’s decision
rule. We validate our method over a range
of benchmark data sets and compare with
recently published optimization-based embed-
dability methods.

1 Introduction

A key challenge in data science is the identification of
geometric structure in high-dimensional data. Such
structural understanding is of great value for design-
ing efficient algorithms for optimization and learning
tasks. Classically, the structure of data has been stud-
ied under an Euclidean assumption. The simplicity of
vector spaces and the wide range of well-studied tools
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and algorithms that assume such structure make this
a natural approach. However, lately, it has been rec-
ognized that Euclidean spaces do not necessary allow
for the most ‘natural’ representation, at least not in
the low-dimensional regime. Recently, the represen-
tation of data in hyperbolic space has gained signif-
icant interest (Nickel and Kiela, 2017; Chamberlain
et al., 2017; Sala et al., 2018; Tifrea et al., 2019). The
intrinsic hierarchical structure of data sets ranging
from social networks to wordnets has been related to
“tree-likeness” and in turn to hyperbolic embeddability,
since trees embed with low distortion into hyperbolic
space (Sarkar, 2012). On the other hand, there is a
long tradition for spherical embeddings in computer
vision and shape analysis, where volumetric data is
efficiently represented in spherical space.

In this work, we study the question of embeddability in
the context of relational representation learning: For
a given set of pairwise similarity relations, we want
to determine the geometric priors of an embedding
space that reflects the intrinsic structure of the data.
Optimization-based embeddability methods (Sala et al.,
2018; Gu et al., 2019) rely on Multi-dimensional Scaling
(MDS ), that require performing large-scale minimiza-
tion tasks to determine suitable embedding parameters.
Furthermore, such methods require an a priori fixed
embedding dimension. Here, we introduce a purely com-
binatorial approach, that efficiently determines suitable
priors through a direct analysis of the data’s discrete
geometry without a priori dimensionality assumptions.

The paper is structured as follows: We will first analyze
the relation between embeddability and neighborhood
growth rates. Expanding neighborhoods (exponential
growth) exhibit tree-like properties and contribute to
the hyperbolicity of the data set. On the other hand,
cycles have a contracting effect, as they slow down local
growth. Therefore, slowly expanding neighborhoods
are an indicator of good embeddability into Euclidean
(linear growth) or Spherical space (sublinear growth).
To extend this framework from canonical graphs to
heterogeneous relational data, we introduce a regular-
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ization that ensures uniform node degrees and there-
fore allows for a direct comparison of growth in diverse
graph neighborhoods. We then introduce a statistic
(3-regular score) that aggregates local growth informa-
tion across the graph. Based on the 3-regular score,
we determine the geometric priors of the most suit-
able embedding space. For canonical graphs (N -cycles,
(
√
N ×

√
N)-lattices and b-ary trees) we give a proof

that the approach matches classical embeddability re-
sults. Furthermore, we establish a relation between the
3-regular score and discrete Ricci curvature (Forman,
2003; Ollivier, 2010), a concept from Discrete Geometry
that has been linked to embeddability (Weber et al.,
2017b).

The introduced method is purely combinatorial with a
computational complexity linear in the average neigh-
borhood size multiplied by the number of nodes. More-
over, as a local analysis, it can be efficiently parallelized.

1.1 Related Work

Embeddings for Representation Learning. The
theoretical foundation of Euclidean embeddability has
been layed out by (Bourgain, 1985) and (Johnson and
Lindenstrauss, 1984). Here, the relation of intrinsic
and metric dimension is of special interest: One can
show with a volume argument that data X with intrin-
sic dimension dim(X) can be embedded with metric

dimension Θ
(

dim(X)
log(α)

)

and distortion α into Euclidean

space. (Abraham et al., 2008) study this relation al-
gorithmically and derive distortion bounds. Recently,
optimization-based hyperbolic embeddings have gained
a surge of interest in the representation learning com-
munity. (Nickel and Kiela, 2017, 2018; Chamberlain
et al., 2017; Tifrea et al., 2019) proposed optimization-
based frameworks for embedding similarity data into
hyperbolic space. (Sala et al., 2018) analyze representa-
tion trade-offs in hyperbolic embeddings with varying
geometric priors. (Gu et al., 2019) introduce mixed-
curvature embeddings by studying embeddability onto
product manifolds. A related approach by (Weber
and Nickel, 2018) explores connections between graph
motifs and hyperbolic vs. spherical embeddability.

Spectral Approaches. (Wilson et al., 2014) pro-
pose a spectral approach that determines embedding
parameters by minimizing the magnitude of the first
(spherical case) or second (hyperbolic case) eigenvalue.
In this approach, the sign of the curvature is a hyper-
parameter of the objective and has to be prior known.
However, the framework is only valid for isometrically
embeddable data, leading to inaccuracies in heteroge-
neous data. In addition, spectral methods have limited
scalability on large-scale data.

Discrete Curvature. In addition to spectral ap-

proaches, discrete curvature has recently gained in-
terest as a structural graph characteristic. Gromov’s
δ-hyperbolicity (Gromov, 1987), a discrete notion of
sectional curvature, has been used to study the hyper-
bolicity of relational data (Chen et al., 2013; Gu et al.,
2019). Discrete notions of Ricci curvature were studied
as graph characteristics (Ollivier, 2010; Weber et al.,
2017a,b), providing insight into the local geometry of
the underlying relational data.

1.2 Contributions

In the present paper, we connect the structure of near-
est neighbor relations to the intrinsic geometry of rela-
tional data. We argue that the growth rates of graph
neighborhoods serve as a proxy for the geometric pri-
ors of a suitable embedding space. To account for the
heterogeneity of complex data sets, we perform a regu-
larization that allows for a low-cost embedding of any
graph into a 3-regular graph quasi-isometrically. In the
regularized setting, where node degrees are uniform,
we directly compare local neighborhood growth rates
and deduce the curvature of the embedding space.

We show that our classification scheme matches theo-
retical results for canonical graphs. Furthermore, we
establish a relation to discrete Ricci curvature. For
analyzing complex, heterogeneous data sets as typically
encountered in ML applications, we introduce a statistic
(3-regular score) that aggregates local growth informa-
tion and approximates the algorithm’s decision rule. A
series of validation experiments on classic benchmark
graphs and real-world data sets demonstrates the appli-
cability of the proposed approach. Finally, we compare
our method to recently published embeddability bench-
marks, validating that the 3-regular score predicts the
lowest-distortion embedding.

2 Background and Notation

2.1 Model Spaces

We consider canonical Riemannian manifolds with con-
stant curvature as embedding spaces, which can be
characterized through the following set of model spaces
{Md

κ}:

1. Mn
0 = R

n denotes the canonical Euclidean

space with the inner product 〈u, v〉E =
∑n

i=1 uivi
that gives rise to the Euclidean norm ‖v‖E =
√

v21 + · · ·+ v2n and the metric dE(u, v) =
‖u− v‖E .

2. The n-sphere Mn
κ>0 = S

n = {v ∈ R
n+1 : ‖v‖E =√

κ} is an embedded submanifold of the Rn+1 with
constant positive curvature. A canonical metric is
given by dS(u, v) = arcos(〈u, v〉E).
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3. The hyperboloid Mn
κ<0 = H

n = {v ∈ R
n+1 :

‖v‖H =
√−κ, v1 > 0} is a manifold with constant

negative curvature. It is defined with respect to
the Minkowski inner product

〈u, v〉H = uTdiag(−1, 1, . . . , 1)v

= −u1v1 + u2v2 + · · ·+ unvn ,

which gives rise to the hyperbolic metric
dH(u, v) = acosh(−〈u, v〉H) and norm ‖u‖H =
√

〈u, v〉H .

Here, we focus on the canonical model spaces M0,±1.
Table 1 summarizes important geometric properties
that will be used in the following sections. Note that
M±1 can be easily generalized to arbitrary curvatures
(|κ| 6= 1) by multiplying the respective distance func-
tions by 1√

|κ|
. In the following, we will drop the sub-

script E when referring to the Euclidean notions. For
a more comprehensive overview on model spaces, see,
e.g. (Bridson and Haefliger, 1999).

2.2 Graph Motifs and Local Topology

The present paper focuses on relational data, i.e., we
assume access to a measure of similarity between any
two elements. Natural representations of such data are
graphs G = {V,E}, where V denotes the set of vertices
or nodes (representing data points) and E the set of
edges (representing relations). Additional features may
be given through weights on the edges which we encode
in the weight functions ωE(e) : E → R.

The importance of graph motifs for understanding the
higher-order structure of graphs has long been recog-
nized and intensely studied (Chen et al., 2013; Maugis
et al., 2017; Verbeek and Suri, 2016). Motifs are com-
monly defined as characteristic local connectivity pat-
terns that occur in varying sizes and frequencies. While
there is no canonical classification, trees and cycles have
emerged as prevalent motifs in the study of network
topology, due to having the greatest topological sta-
bility (i.e., the highest Euler characteristic) (Maugis
et al., 2017). A random walk initiated at the root of a
tree will never return to its point of origin, but expand
into space. On the other hand, a random walk within
a cycle is guaranteed (or, in a circle with outgoing con-
nections, likely) to return to its origin, introducing a
local contraction. This naturally relates to local growth
rates in graph neighborhoods: While trees intrinsically
encode exponential growth, cycles introduce a local con-
traction, resulting in sublinear growth rates. We will
connect these ideas with the problem of embeddability.

2.3 Embeddability

An embedding between metric spaces (X1, d1) and
(X2, d2) is described as a map φ : X1 → X2. Here,
we consider embeddings of relational data into canon-
ical model spaces, i.e. we want to embed the graph
metric (V, dG) of a (weighted or unweighted) graph
G = {V,E} using a map φ : V → Md

0,±1, where dG
denotes the usual path distance metric. The goodness
of an embedding is measured in terms of distortion.
We denote the additive distortion cA ≥ 0 of the map φ
as

|dG(u, v)− dM(φ(u), φ(v))| ≤ cA ∀u, v ∈ V ,

and the multiplicative distortion cM ≥ 0 as

dM(φ(u), φ(v)) ≤ dG(u, v)

≤ cMdM(φ(u), φ(v)) ∀u, v ∈ V .

Note that for an isometric map cA = 0 and cM = 1.

While little is known about the embeddability of large,
heterogeneous graphs, there exists a large body of lit-
erature on the embeddability of canonical graphs. The,
to our knowledge, best known results for multiplicative
distortion are summarized in Table 2. In the following
we develop a computational method that applies not
only to canonical graphs, but to any relational data
set.

3 Methods

We determine the geometric priors of a suitable embed-
ding space with a two-step method, (1) by performing
a regularization that enforces uniform node degrees
while preserving structural information and (2) by an-
alyzing local neighborhood growth rates to determine
the dominating geometry (3-regular score).

3.1 Regularization

Relational data as typically encountered in data science
applications is very heterogeneous, making it difficult
to draw a conclusion on the global geometry from local
analysis. Our first step is therefore the regularization
of the graph’s connectivity structure that will allow
for a more efficient comparison of local neighborhood
growth rates and, in turn, the local geometry. We will
use throughout the paper the following (conventional)
notation: When analyzing the neighborhood of a ver-
tex v ∈ V , we say that v is the root or center of the
neighborhood. Neighborhood directionality is always
assumed from the root outwards, the start of an out-
ward facing edge is called parent, the end child. The
root has no parent. Furthermore, diam(G) denotes the
diameter of the graph.
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Euclidean R
d Spherical Sd Hyperboloid H

d

Space R
n {x ∈ R

n+1 : 〈x, x〉 = 1} {x ∈ R
n+1 : 〈x, x〉H = −1, x0 > 0}

〈u, v〉 ∑n

i=1 uivi
∑n

i=1 uivi −u0v0 +
∑n

i=1 uivi
d(u, v)

√

〈u− v, u− v〉 arccos(〈u, v〉) arcosh(−〈u, v〉H)
Curvature κ = 0 κ = 1 κ = −1

Canonical graph (
√
N ×

√
N)-lattice N -cycle regular N -tree

Table 1: Geometric properties of model spaces.

Euclidean R
d Spherical Sd Hyperboloid H

d

(
√
N ×

√
N) - lattice cM ≤ O(1) a) - cM ≥ O(

√
N/ log(N)) a)

N -cycle cM ≤ O(1) a) cM ≤ O(1) a) cM ≥ O(N/ log(N)) a)

b-regular tree (size N) cM ≤ O(N
1

d−1 ) c) - cM ≤ O(1 + ǫ) b)

Table 2: Known results on embeddability of canonical graphs. For a) see (Verbeek and Suri, 2016), for b) see (Sarkar,

2012) and c) (Gupta, 1999). Here, N denotes the size of the graph, d the embedding dimension and ǫ > 0 a small
real number.

We utilize a quasi-isometric embedding (Bermudo et al.,
2013) that allows for embedding any (connected) graph
into a three-regular graph, i.e. a graph with uniform
node degrees (deg(v) = 3 for all v ∈ V ). The regu-
larization algorithm is shown schematically in Fig. 1,
for more details see Appendix A. One can show the
following bound on the distortion induced by this trans-
formation:

Theorem 3.1 ( Bermudo et al. (2013)). G →֒φ G3 is a
(ǫ+1, ǫ)-quasi-isometric embedding, i.e. cM = O(1+ ǫ)
and cA = O(ǫ).

3.2 Estimating local neighborhood growth

rates

In order to decide the geometry of a suitable embedding
space, we want to analyze neighborhood growth rates.
Consider first a continuous, metric space (X , dX ). The
δ-neighborhood of a point x ∈ X is defined as the set
of points within a distance δ, i.e.

Bδ(x) = {y ∈ X : dX (x, y) ≤ δ} . (1)

In Euclidean space, the volume of Bδ(x) is growing at
a polynomial rate in δ. However, in hyperbolic space,
the volume growth is exponential. Therefore, the local
volume growth of neighborhoods serves as a proxy for
the space’ global geometry.

In discrete space, instead of analyzing volume growth,
we characterize the local growth of neighborhoods. We
denote the r-neighborhood of a vertex v ∈ V (G) as

Nr(v) = {u ∈ V (G) : dG(u, v) ≤ r ≤ diam(G)} . (2)

We say that Nr(v) is exponentially expanding, if it grows
exponentially in r and linearly expanding, if it grows at
least linearly in r. Otherwise, we call Nr(v) sublinearly

expanding. Thanks to the regularized structure of our
graphs, we can quantify precisely the corresponding
neighborhood growth laws:

1. exponentially expanding : γEE(v,R) = |v| +
∑R

r=1 3 · 2r−1;

2. linearly expanding : γLE(v,R) = |v|+∑R
r=1 3r.

Here, |v| denotes the size of the root structure, i.e.,
|v| = 1, if deg(v) ≤ 3 and |v| = deg(v) otherwise, due
to the transformation of star-nodes into three-regular
rings (see Fig. 1 and Appendix A). Then we say that the
R-neighborhood of a vertex u ∈ V (G) is exponentially
expanding, if |NR(u)| ≥ γEE(R), linearly expanding,
if |NR(u)| ≥ γLE(R) and sublinearly expanding oth-
erwise. For canonical graphs, we get the following
neighborhood growth rates (a proof can be found in
Appendix B):

Theorem 3.2 (Neighborhood growth in canonical
graphs). For 1 ≤ R ≤ diam(G), every R-neighborhood
in (i) a b-regular tree is exponentially expanding, (ii)
an (

√
N ×

√
N)-lattice is linearly expanding and (iii)

an N -cycle is sublinearly expanding.

Utilizing the link between neighborhood growth and
global geometry that we discussed above, we introduce
the following decision rule for the geometric prior of
the embedding space (sign(κ)):

• If NR(v) is exponentially expanding ∀v ∈ V and
1 ≤ R ≪ N , assume sign(κ) < 0, i.e., embed into
H

d;

• If NR(v) is lineraly expanding ∀v ∈ V and 1 ≤
R ≪ N , assume sign(κ) = 0, i.e., embed into R

d;
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Figure 1: Regularization G →֒ G3 following (Bermudo et al., 2013). A vertex v ∈ V is called leaf, if it has degree
1, chain if it has degree 2, 3-fork, if it has degree 3 and star otherwise. The transformation maps each vertex and
the edges connecting to its direct neighbors onto the respective three-regular structure as predicted by the vertex’
degree. Circles represent original vertices, squares auxiliary vertices that have been added to enforce uniform
node degrees.

• If NR(v) is sublinearly expanding ∀v ∈ V and
1 ≤ R ≪ N , assume sign(κ) > 0, i.e., embed into
S
d.

Note that these result match known embeddability
results for canonical graphs (see Table 2). In the fol-
lowing section we introduce a statistic that allows for
applying this decision rule to heterogeneous relational
data also.

3.3 3-Regular Score

The heterogeneity commonly encountered in relational
data makes it impossible to generalize global growth
rates from a local analysis as in Thm. 3.2. We will
typically find a mixture of local growth rates, that is
not covered by the decision rule above. Instead, we
focus on determining the globally dominating geometry:
We analyze growth rates locally and then compute an
average across the graph, weighted by the size of the
respective R-neighborhood. The resulting statistic, to
which we refer as the 3-regular score, can be computed
as follows:

A =
∑

v∈V

σ(v)|NR(v)| ;

σ(v) =











1, NR(v) sublinearly expanding

−1, NR(v) exponentially expanding

0, otherwise .

To determine the geometric priors, we apply the follow-
ing decision rule:

• if A > 0, assume sign(κ) > 0, i.e., embed into S
d;

• if A < 0, assume sign(κ) < 0, i.e., embed into H
d;

• and if A ≈ 0, assume sign(κ) = 0, i.e., embed into
R

d.

For weighted networks, we perform the same regulariza-
tion and computation of the 3-regular score, but replace
in the growth rate estimations 3 with the weighted node
degree of the center. When determining |NR(v)|, i.e.,
the set of all neighbors up to distance R from v, the
metric is the weighted path distance d̃G. Consequently,
we count all neighbors v′ with d̃G(v, v

′) ≤ R.

The decision rule is motivated by locally aggregating
neighborhood growth information. Hereby σ encodes
whether the neighborhood growth is locally exponential
(indicating hyperbolic space, i.e., sign(κ) = −1 and
σ = −1), linear (indicating Euclidean space, i.e., κ = 0
and σ = 0) or sublinear (indicating spherical space,
i.e., sign(κ) = 1 and σ = −1). Due to the heterogene-
ity of the graphs, we weigh the σs by the size of the
neighborhood (|NR(v)|) to give large neighborhoods a
larger influence on the overall score. This is motivated
by the fact that the "amount" of distortion incurred is
proportional to the largest subgraph of another space’s
canonical motif: For instance, when embedding a graph
into hyperbolic space, distortion is proportional to the
size of the largest cycle by a Steiner node construction
(see, e.g., (Verbeek and Suri, 2016)). The resulting
3-regular score A after reweighing will then depend
on the size of the graph, in particular on the number
of edges in the regularized graph G3. Therefore, we
normalize by dividing by the the number of edges in
G3, i.e., we compare A/#E(G3) across data sets. The
dependency of A on R is explicitly given through the
weights |NR(v)|; R is upper-bounded by the diameter
of the graph.

3.4 Comparison with other discrete

curvatures

The 3-regular score is conceptually related to dis-
crete notions of curvature, such as Gromov’s δ-
hyperbolicity (Gromov, 1987) or discrete Ricci cur-
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vature (Forman, 2003; Ollivier, 2010). While Gromov’s
δ captures by construction the hyperbolicity of a graph,
discrete Ricci curvature is not restricted to negative
values. In this section, we analyze the relationship
between the 3-regular score and discrete Ricci curva-
ture and compare the suitability of both concepts to
measuring embeddability.

In the following, we will think of data sets as graphs,
where nodes represent the data points and edges the
pairwise similarities between them. For simplicity, we
only consider unweighted graphs. We consider both
Ollivier-Ricci curvature (RicO) (Ollivier, 2010) and
Forman-Ricci curvature (RicF) (Forman, 2003; Weber
et al., 2017a) that have previously been analyzed in
the context of large-scale data and complex networks.
Although both curvatures are classically defined edge-
based, we will use node-based expressions. Those can
be derived by defining the Ricci curvature at a node as
the aggregate curvature of its incoming and outgoing
edges (see Appendix C for more details). For RicO,
consider

RicO(u, v) = 1−W1(mu,mv) ,

where W1(mu,mv) is the Wasserstein-1 distance that
measures the cost of transporting mass from u to v.
mu = 1

deg(u) denotes the uniform measure on the neigh-

borhood of v. The corresponding node-based notion is
given by

RicO(v) =
1

deg

∑

(u,v)

RicO(u, v) .

RicF of an edge (u, v) is defined as

RicF(u, v) = 4− deg(u)− deg(v) ,

the corresponding node-based expression as

RicF(v) =
1

deg

∑

(u,v)

RicF(u, v) .

The aggregation of local growth rates in the 3-regular
score resembles the Ricci curvature’s property of "lo-
cally averaging" sectional curvature. Note that both
Ricci curvatures encode only structural information of
the first and second neighbors, whereas the 3-regular
score measures structural information from neighbors
up to distance R. Both RicF and the 3-regular score
are very scalable due to their simple combinatorial no-
tion. RicO has limited scalability on large-scale data,
since the computation of Wasserstein distances requires
solving a linear program for every edge.

To evaluate whether Ricci curvature can select a
suitable embedding space, we consider again canonical
graphs. Due to their uniform structure, the global

average curvature is equal to the local curvature at
any node in the graph. We derive the following results:

Theorem 3.3. At any node v, we have

1. RicO(v) < 0 and RicF(v) < 0 in a b-regular tree,

2. RicO ≤ 0 and RicF(v) < 0 in an (
√
N ×

√
N)-

lattice, and

3. RicO = 0 and RicF = 0 in an N -cycle.

The proof follows from combinatorial arguments and
(for RicO) curvature inequalities (Jost and Liu, 2014);
it can be found in Appendix C. The theorem shows,
that Ricci curvature, similar to Gromov’s δ, correctly
detects hyperbolicity, but cannot characterize struc-
tures with non-negative curvature. We conclude, that
Ricci curvature is not suitable for model selection and
that the 3-regular score has broader applicability.

4 Experiments

We have shown above, that in the case of canonical
graphs, our approach’s prediction matches known em-
beddability results. In this section, we want to experi-
mentally validate that the 3-regular score determines
suitable embedding spaces for complex, heterogeneous
data. In the following, we report “normalized” 3-regular
scores, meaning that we divide by the number of edges
in the regularized graph multiplied by the mean edge
weight. This adjusts for differences in the average
neighborhood size and therefore allows for a compari-
son across data sets of varying sizes.

Data sets We test our method on both synthetic
graphs with known embeddability properties and bench-
mark data sets. For the former, we create data sets
of similar size (N := |V | ≈ 1, 000) to allow for di-
rect comparison. First we generate an N -Cycle, an
(
√
N ×

√
N)-lattice and a ternary tree (b = 3) with

N nodes. We further sample from three classic net-
work models: The random graph model (ER) (Erdős
and Rényi, 1959), the small world model (WS) (Watts
and Strogatz, 1998) and the preferential-attachment
model (AB) (Barabási and Albert, 1999) with different
choices of hyperparameters. We sample ten networks
each and report the average 3-regular score to account
for structural sampling variances. Next, we analyze
some classic benchmark graphs (both weighted and un-
weighted) which were downloaded from the Colorado
Networks Index (Clauset et al., 2016). The Bunny

data was downloaded from the Stanford 3D Scanning
Repository (Stanford Computer Graphics Laboratory,
2014). Finally, for validating our approach against
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Figure 2: 3-regular scores for synthetic graphs and relational benchmark data (w: weighted, uw: unweighted).

recently published embeddability results, we analyze
data sets used in (Gu et al., 2019; Nickel and Kiela,
2017), downloaded from the given original sources. We
evaluate geographic distances between North Amer-
ican cities (Cities, Burkardt), PhD student-adviser
relationships (PhD, de Nooy et al. (2004)) and a cita-
tion networks (CondMat, Leskovec and Krevl (2014)).
Cities contains similarity data from which we created
a nearest-neighbor graph, maintaining edges to the top
5% neighboring cities.

Results 3-regular scores for all data sets are shown
in Fig. 2. For canonical graphs, the 3-regular score
matches both the theoretical results of our growth rate
analysis (Thm. 3.2) and embeddability results in the
literature (Tab. 2). It is well known that ER undergoes
phase transitions as the edge threshold increases. (Chen
et al., 2013) show that ER is not hyperbolic in the low
edge threshold regime, but that hyperbolicity emerges
with the giant component due to its locally tree-like
structure. We analyze ER shortly above (ER-3) and
below (ER-4) the giant threshold (p = 1

N
) as well

as shortly above (ER-2) and below (ER-1) the con-
nectivity threshold (p = logN

N
). Consistent with the

theoretical result of (Chen et al., 2013), we observe
hyperbolicity, if there is a large giant component (ER-

1) or if the graph is connected (ER-2). For AB with
linear attachment (m = 1), the 3-regular score predicts
a Euclidean embedding space to be most suitable, as
opposed to hyperbolic embeddings for the case of su-
perlinear attachment (m > 1). This is again consistent
with theoretical results on phase transitions in the AB

model. The presence of detectable network communi-
ties, as found for instance in social networks, has been
repeatedly linked to a locally tree-like structure (Ad-
cock et al., 2013; Krioukov et al., 2010). In agreement
with this, the 3-regular score predicts good hyperbolic
embeddability for both WS (a classic model for study-

ing community structure) and the social network data
sets Facebook and PhD. The wordnet Bible was
found to embed best into hyperbolic space, in-line
with the tree-likeness of such intrinsically hierarchical
data. (Sala et al., 2018) observed “less hyperbolicity”
in biological networks, which matches our results for
Diseases and Yeast. Finally, Bunny, a classic bench-
mark for spherical embeddings, is found to embed best
into spherical space.

Validation and comparison with related meth-

ods To validate our results, we compare our predicted
geometric priors against recently published embeddabil-
ity results by (Gu et al., 2019; Nickel and Kiela, 2017).
Table 4 shows that the 3-regular score predicts the
space with the smallest distortion for all benchmark
data sets. Here, we follow the authors in reporting
distortion using the following statistics: The average
distortion Davg, computed over all pairwise distances,
and the structural distortion score MAP that measures
the preservation of nearest-neighbor structures. Iso-
metric embeddability is characterized by Davg = 0 and
MAP = 1. For more details, see Appendix D.

Hyperparameters The size of the local neighbor-
hoods NR(v) over which we compute the 3-regular score
(determined by the neighborhood radius R) is the cen-
tral hyperparameter in our analysis. Choosing R too
small might leave us with too little information to prop-
erly evaluate growth rates, whereas a large R limits scal-
ability. First, note that for R < 3, γEE = γLE in the
regularized graph G3. However, for R ≥ 3 we always
have γEE 6= γLE . Consequentially, we require R ≥ 3.
Next, we investigated experimentally if an analysis with
larger neighborhood radii reveals additional geometric
information by computing 3-regular scores for three
data sets with different predicted geometric priors for
R ∈ {3, 4, 5, 10}. For the (

√
N ×

√
N)-lattice, the
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Data set 3-regular score dist R
10 dist S

10 dist H
10 Method

Cities 1.138 → S
d Davg = 0.074 Davg = 0.060 Davg = 0.093 Gu et al.

PhD students -1.691 → H
d Davg = 0.054

MAP = 0.869
Davg = 0.057
MAP = 0.833

Davg = 0.050

MAP = 0.931
Gu et al.

Power -2.158 → H
d Davg = 0.092

MAP = 0.886

Davg = 0.050
MAP = 0.795

Davg = 0.039

MAP = 0.844
Gu et al.

Facebook -3.423 → H
d Davg = 0.065

MAP = 0.580
Davg = 0.066
MAP = 0.556

Davg = 0.060

MAP = 0.782
Gu et al.

CondMat -2.991 → H
d MAP = 0.356 - MAP = 0.799 Nickel, Kiela

Table 3: Comparison with recently published benchmark embeddability results (Gu et al., 2019; Nickel and Kiela, 2017).

3-regular score predicts uniformly sign(κ) = 0, i.e. R
d

to be the most suitable embedding space. For WS we
observe sign(κ) = −1 across all choices of R, predict-
ing hyperbolic embeddability. Finally, for Cities we
observe sign(κ) = 1 across the different neighborhood
radii. In consequence, the 3-regular scores reported
above are all computed for R = 3 to maximize scala-
bility.

5 Discussion

In this paper, we introduced a framework for determin-
ing a suitable embedding curvature for relational data.
Our approach evaluates local neighborhood growth
rates based on which we approximate suitable embed-
ding curvatures. We provide theoretical guarantees
for canonical graphs and introduce a statistic that effi-
ciently aggregates local growth information, rendering
the method applicable to heterogeneous, large-scale
graphs (both weighted and unweighted). Moreover,
we compare the 3-regular score with commonly used
notions of discrete curvature in terms of their ability
to measure embeddability. We find that discrete curva-
ture is suitable for detecting hyperbolicity, but not for
approximating non-negative sectional curvature. This
implies that the 3-regular score is better suited for
model space selection.

Contrary to related embeddability methods, our ap-
proach is purely combinatorial, circumventing the need
to solve costly large-scale optimization problems. Fur-
thermore, the method does not make any a priori as-
sumption on the dimensionality of the embedding space
as opposed to related approaches that impose dimen-
sionality constraints or fix the dimension of the target
space. Additionally, the locality of the approach con-
fines the analysis to a small subset of the graph at
any given time, allowing for a simple parallelization of
the method. This increases the algorithm’s scalability

significantly.

Our results tie into the more general problem of finding
data representations that reflect intrinsic geometric
and topological features. This problem is three-fold:
It requires us to determine (i) the sign of the curva-
ture, which in turn determines the model space, i.e.
whether to embed in hyperbolic (Hd), spherical (Sd)
or Euclidean space (Rd). Furthermore, (ii) the value
of the curvature, which determines local and global
geometric parameters of the embedding space, such as
distance and angle relations in geodesic triangles and
lastly (iii) the dimension of the embedding space. The
present work mostly focuses on (i) as we restrict our
analysis to canonical Riemannian manifolds with con-
stant sectional curvature (κ ∈ {±1, 0}). By combining
this approach with MDS-style embedding methods (Gu
et al., 2019; Sala et al., 2018; Bronstein et al., 2006) we
could determine the value of the curvature (problem
(ii)) also. Hereby, prior knowledge of the sign of the cur-
vature determines the metric of the target space (with
the curvature value as hyperparameter) and therefore
a suitable objective function to feed into an MDS-style
framework. Such a pre-analysis with combinatorial
methods should significantly narrow down the search
space of suitable curvature values and therefore reduce
the overall computational cost. The investigation of
such extensions is left for future work.
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