
Weilbach, Beronov, Harvey, Wood

A Stability
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(a) Deconditioning.
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(b) Backpropagation (both)

Figure 10: Effect of sparsity patterns on the numerical
stability and computation time during training. More
iterations are worse. The faithfully inverted flow con-
ditions the flow better than both the fully connected
variant and the FFJORD baseline, both for decondi-
tioning and the joint dynamics in training. It has some
difficulty in the beginning to do stable conditioning,
an issue that warrants further investigation. We again
plot the median and a confidence band between the
16th and 84th percentiles over 10 runs.

B Loss components
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(a) Effect on forward KL of different optimization objec-
tives.
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(b) Effect on reverse KL of different optimization objec-
tives.

Figure 11: Continuing Figure 6, correlations between
different KL variants used as training loss and test
metric.



Structured Conditional Continuous Normalizing Flows

C Inverted MNIST classifier

(a) Faithful inverse structure of the image classifier.
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(b) Posterior samples of input images.

Figure 12: Building on Section 4.4, we consider the
stochastic inversion of an entire image classifier. Its
architecture consists of a convolution to a hidden layer
with a ReLU activation and Gaussian dropout, followed
by a linear mapping and softmax function.

D Gaussian state space model
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Figure 13: A simple Gaussian one dimensional state
space model with 5 state transitions. Optimization
using the reverse KL loss gives better performance
than in the arithmetic circuit model in Figure 6, but is
still worse than using either the forward or symmetric
KL.


