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Figure 10: Effect of sparsity patterns on the numerical
stability and computation time during training. More
iterations are worse. The faithfully inverted flow con-
ditions the flow better than both the fully connected
variant and the FFJORD baseline, both for decondi-
tioning and the joint dynamics in training. It has some
difficulty in the beginning to do stable conditioning,
an issue that warrants further investigation. We again
plot the median and a confidence band between the
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(b) Backpropagation (both)

16th and 84th percentiles over 10 runs.
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(a) Effect on forward KL of different optimization objec-
tives.
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(b) Effect on reverse KL of different optimization objec-
tives.

Figure 11: Continuing Figure IEI, correlations between
different KLi variants used as training loss and test
metric.



Structured Conditional Continuous Normalizing Flows

C Inverted MNIST -classifier
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a) Faithful inverse structure of the image classifier.
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b) Posterior samples of input images.

Figure 12: Building on Section we consider the
stochastic inversion of an entire image classifier. Its
architecture consists of a convolution to a hidden layer
with a ReLU activation and Gaussian dropout, followed
by a linear mapping and softmax function.
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Figure 13: A simple Gaussian one dimensional state
space model with 5 state transitions. Optimization
using the reverse KL loss gives better performance
than in the arithmetic circuit model in Figure [6] but is
still worse than using either the forward or symmetric
KL.



