
A SUPPLEMENTARY MATERIAL

A.1 Proof of Theorem 4.1

The proof of this theorem follows the spirit of Bottou
et al. (2018). The algorithm

θk+1 = θk − αk∇L(θk) + αkCξk+1, ξk+1 ∼ N (0, Id).
(1)

falls into the Robbins-Monro setting where the true
gradient is perturbed by random noise. This pertur-
bation can be considered as a martingale difference in
the sense that

E[Cξk+1|Fk] = 0

where (Fk)k∈N is a increasing filtration generated by
the sequence of parameters (θk)k∈N. When the step
size is constant αk = α for all k, it corresponds to the
Euler discretization of a gradient flow with random
perturbation. We begin the proof by considering the
equality,

L(θk+1) = L(θk) + 〈L(θk), θk+1 − θk〉

+
1

2
(θk+1 − θk)>∇2L(θk)(θk+1 − θk).

Using the fact that ∇L(θk) = Aθk, ∇2L(θk) = A, and
from the definition of θk+1, we can rewrite the above
equation as

L(θk+1) = L(θk) + 〈Aθk,−αkAθk + αkCξk+1〉

+
1

2
‖αkAθk − αkCξk+1‖2A .

Now, taking the conditional expectation E[·|Fk] on
both sides of the equality, we obtain by independence
of the noise ξk+1 to Fk

E[L(θk+1)|Fk] = L(θk)− αk ‖Aθk‖22 +
α2
k

2
‖Aθk‖2A

+
α2
k

2
E[‖Cξk+1‖2A]

(2)
A simple computation shows

E[‖Cξk+1‖2A] = E[(Cξk+1)>A(Cξk+1)]

= E[ξ>k+1C
>ACξk+1]

= Tr(C>AC)

(3)

Moreover, we have

‖Aθk‖2A ≤ λmax ‖Aθk‖22 , (4)

where λmax denotes maximum eigenvalue of A (and
λmin correspondingly denotes minimum eigenvalues of
A). This comes from the fact that for any symmetric,
positive-definite matrix B,

‖x‖2B ≤ λmax,B ‖x‖22 , (5)

where λmax,B denotes maximum eigenvalue of B. Using
the results in Eqns. 3 and 4 as well as the assumption
on the step-size schedule for all k: αk < α0 <

1
λmax

, we
rewrite Eqn. 2 as

E[L(θk+1)|Fk] ≤ L(θk) +
(αk

2
λmax − 1

)
αk ‖Aθk‖22

+
α2
k

2
Tr(C>AC)

≤ L(θk)− αk
2
‖Aθk‖22 +

α2
k

2
Tr(C>AC).

(6)
Now, taking x = Aθk and B = A−1 in Eqn. 5, we have

‖Aθk‖2A−1 ≤ λmax,A−1 ‖Aθk‖22

Note that λmax,A−1 = λmin and simplifying the above,

‖Aθk‖22 ≥ λmin ‖Aθk‖2A−1

= λmin(θ>k A)A−1(Aθk)

= λmin ‖θk‖2A
= 2λminL(θk).

Using the above inequality in Eqn. 6 and then taking
expectation yields

E[L(θk+1)] ≤ (1− αkλmin)E[L(θk)] +
α2
k

2
Tr(C>AC).

We proceed by induction to prove the final result. By
definition of ν, the result is obvious for k = 0. For the
inductive step, suppose that the induction hypothesis
holds for k, i.e.,

αk =
2

(k + γ)λmin
, E[L(θk)] ≤ ν

k + γ
.

We prove the k + 1 case.

E[L(θk+1)] ≤
(

1− 2

k + γ

)
ν

k + γ

+
2

(k + γ)2λ2
min

Tr(C>AC)

≤ ν

(k + γ + 1)

This comes from the definition of ν and also the in-
equality (k+γ−1)(k+γ+1) ≤ (k+γ)2. This concludes
the proof.

A.2 Relationship Between Noise Covariance
Structures and Generalization

As in the previous section, we work entirely in the
convex quadratic setting. In this case, Eqn. 2 becomes

θk+1 = θk − αk∇L(θk) + αkCξk, ξk ∼ N (0, Id). (7)

Our aim in this section is to provide some theoretical
discussions on how the choice of covariance structure
C influences the generalization behavior.

Uniform stability. Uniform stability (Bousquet and
Elisseeff, 2002) is one of the most common techniques
used in statistical learning theory to study general-
ization of a learning algorithm. Intuitively speaking,
uniform stability measures how sensitive an algorithm
is to perturbations of the sampling data. The more sta-
ble an algorithm is, the better its generalization will be.
Recently, the uniform stability has been investigated
for Stochastic Gradient methods (Hardt et al., 2015)
and also for Stochastic Gradient Langevin Dynamics
(SGLD) (Mou et al., 2017; Raginsky et al., 2017). We
present the precise definition.

Definition A.1 (Uniform stability). A randomized
algorithm A is ε-stable if for all data sets S and S ′
where S and S ′ differ in at most one sample, we have

sup
(x,y)

|EA[L(θS)− L(θS′)]| ≤ ε,

where L(θS) and L(θS′) highlight the dependence of
parameters on sampling datasets. The supremum is
taken over input-target pairs (x, y) belonging to the
sample domain.

The following theorem from Bousquet and Elisseeff
(2002) shows that uniform stability implies generaliza-
tion.

Theorem A.2 (Generalization in expectation). Let A
be a randomized algorithm which is ε-uniformly stable,
then

|EA[Egen]| ≤ ε,

where Egen is the expected generalization error as de-
fined in Eqn. 1 of Section 2.

Continuous-time dynamics. We like to use the
uniform stability framework to analyze generalization
behavior of Eqn. 1. To do this, we borrow ideas from
the recent work of Mou et al. (2017) which give uni-
form stability bounds for Stochastic Gradient Langevin
Dynamics (SGLD) in non-convex learning. While the
authors in that work give uniform stability bounds in
both the discrete-time and continuous-time setting, we
work with the continuous setting since this conveys rel-
evant ideas while minimizing technical complications.
The key takeaway from Mou et al. (2017) is that uni-
form stability of SGLD may be bounded in the following
way

εSGLD ≤ sup
S,S′

√
H2(πt, π′t). (8)

Here, πt and π′t are the distributions on parameters θ
trained on the datasets S and S ′. The H2 refers to the
Hellinger distance.

We now proceed to mirror the approach of Mou et al.
(2017) for Eqn. 1. Our usage of stochastic differential
equations will be very soft but we refer to reader to Gar-
diner (2009); Pavliotis (2014) for necessary background.
For the two datasets S and S ′, the continuous-time ana-
logue of Eqn. 1 are Ornstein-Uhlenbeck processes (Uh-
lenbeck and Ornstein, 1930):

dθS(t) = −ASθS(t)dt+
√
αCSdW (t)

dθS′(t) = −AS′θS′(t)dt+
√
αCS′dW (t).

The solution is given by

θS(t) = e−AStθS(0) +
√
α

∫ t

0

e−AS(t−u)CSdW (u),

In fact, this yields the Gaussian distribution

θS(t) ∼ N (µS(t),ΣS(t)),

where
µS(t) = e−AStθS(0)

and ΣS(t) satisfies the Ricatti equation,

d

dt
ΣS(t) = −(ASΣS(t) + ΣS(t)AS) + αCSC

>
S .

Observe that AS is symmetric and positive-definite
which means that it admits a diagonalization AS =
PSDSP

−1
S . Solving the equation for the covariance

matrix gives

ΣS(t) = αPS

(∫ t

0

e−DS(t−u)P−1
S CSC

>
S PSe

−DS(t−u)du

)
P−1
S .

(9)

We are in the position to directly apply the frame-
work of (Mou et al., 2017). Choosing πt and πt′

in Eqn. 8 to be the Gaussians N (µS(t),ΣS(t)) and
N (µS′(t),ΣS′(t)) respectively, we obtain a uniform sta-
bility bound for Eqn. 1. We compute the right-hand
side of the bound to obtain insights on generalization.
Using the standard formula for Hellinger distance be-
tween two Gaussians, we have

H2(πt, π
′
t) = 1− det(ΣS)

1
4 det(ΣS′)

1
4

det(ΣS+ΣS′
2)

1
2

ΛS,S′ (10)

where ΛS,S′ is

exp

{
−1

8
(µS − µS′)>

(
ΣS + ΣS′

2

)−1

(µS − µS′)

}
.

Choosing the noise covariance. From Eqn. 10
above, it is evident that to ensure good generaliza-
tion error for Eqn. 1, we want to choose a covariance
CS such that the Hellinger distance H2 is minimized.

Since we are working within the uniform stability frame-
work, a good choice of CS should be one where Eqn. 1
becomes less data-dependent. This is intuitive after all
– the less data-dependent an algorithm is; the better
suited it should be for generalization.

We study Eqn. 10. Note that as time t→∞, the expo-
nential term goes to 1. Hence, we focus our attention on
the ratio of the determinants. Suppose that we choose
CS =

√
AS and note that AS is the Fisher in this con-

vex quadratic example. Simplifying the determinant of
ΣS(t) in this case,

det(ΣS(t)) =
(α

2

)d
det(Id − e−2DSt)

Suppose that we choose C = Id. Proceeding analo-
gously,

det(ΣS(t)) =
(α

2

)d det(Id − e−2DSt)

det(DS)

We can think of choosing C = Id or C =
√
A to be

extreme cases and it is interesting to observe that the
Hellinger distance is more sensitive to dataset pertur-
bation when C = Id. Our proposed method of this
paper was to choose C =

√
diag (A) and our experi-

ments seem to suggest that choosing the square-root of
diagonal captures much of the generalization behavior
of full Fisher. Understanding precisely why this is the
case poses an interesting research direction to pursue
in the future.

A simple scaling argument also highlights the impor-
tance of the trade-off between optimization and gen-
eralization. Consider Cλ = λC. Then Theorem 4.1
suggests to take λ small to reduce the variance and
improve convergence. However, in that case Σλ = λ2Σ
where Σ is given by the Eqn. 9 for C and

H2(πt, π
′
t) = 1− det(ΣS)

1
4 det(ΣS′)

1
4

det(ΣS+ΣS′
2)

1
2

ΛS,S′,λ,

where ΛS,S′,λ is

exp

{
− 1

8λ2
(µS − µS′)>

(
ΣS + ΣS′

2

)−1

(µS − µS′)

}
.

The Hellinger distance gets close to one in the limit
of small λ (which intuitively corresponds to the large
batch situation).

A.3 Fisher Information Matrix for Deep
Neural Networks

In this section, we give a formal description of the
Fisher information matrix for both feed-forward net-
works and convolutional networks. In addition, we give

the diagonal expression for both networks. Note that
these expressions are valid for both the empirical and
the exact Fisher; in the empirical case, the expecta-
tion will be taken over the empirical data distribution
whereas in the exact case, the expectation will be taken
over the predictive distribution for targets y.

A.4 Feed-forward networks

Consider a feed-forward network with L layers. At each
layer i ∈ {1, . . . , L}, the network computation is given
by

zi = Wiai−1

ai = φi(zi),

where ai−1 is an activation vector, zi is a pre-activation
vector, Wi is the weight matrix, and φi : R → R is a
nonlinear activation function applied coordinate-wise.
Let w be the parameter vector of network obtained
by vectorizing and then concatenating all the weight
matrices Wi,

w = [vec(W1)> vec(W2)> . . . vec(WL)>]>.

Furthermore, let Dv = ∇v log p(y|x,w) denote the log-
likelihood gradient. Using backpropagation, we have a
decomposition of the log-likelihood gradient DWi into
the outer product:

DWi = gia
>
i−1,

where gi = Dzi are pre-activation derivatives. The
Fisher matrix F (w) of this feed-forward network is a
L× L matrix where each (i, j) block is given by

Fi,j(w) = E[vec(DWi) vec(DWj)
>] = E[ai−1a

>
j−1⊗gig>j].

(11)

Diagonal version. We give an expression for the
diagonal of Fi,i(w) here. The diagonal of F (w) fol-
lows immediately afterwards. Let a2

i−1 and g2
i be the

element-wise product of ai−1 and gi respectively. Then,
in vectorized form,

diag (Fi,i(w)) = E[vec((a2
i−1)(g2

i)>)],

where (a2
i−1)(g2

i)> is the outer product of a2
i−1 and g2

i .

A.5 Convolutional networks

In order to write down the Fisher matrix for convolu-
tional networks, it suffices to only consider convolution
layers as the pooling and response normalization lay-
ers typically do not contain (many) trainable weights.
We focus our analysis on a single layer. Much of the
presentation here follows (Grosse and Martens, 2016;
Luk and Grosse, 2018).

A convolution layer l takes as input a layer of activations
aj,t where j ∈ {1, . . . , J} indexes the input map and
t ∈ T indexes the spatial location. T here denotes
the set of spatial locations, which we typically take to
be a 2D-grid. We assume that the convolution here
is performed with a stide of 1 and padding equal to
the kernel radius R, so that the set of spatial locations
is shared between the input and output feature maps.
This layer is parameterized by a set of weights wi,j,δ,
where i ∈ {1, . . . , I} indexes the output map and δ ∈ ∆
indexes the spatial offset. The numbers of spatial
locations and spatial offsets are denoted by |T | and |∆|
respectively. The computation of the convolution layer
is given by

zi,t =
∑
δ∈∆

wi,j,δaj,t+δ. (12)

The pre-activations zi,t are then passed through a non-
linear activation function φl. The log-likelihood deriva-
tives of the weights are computed through backpropa-
gation:

Dwi,j,δ =
∑
t∈T

aj,t+δDzi,t.

Then, the Fisher matrix here is

E

[(∑
t∈T

aj,t+δDzi,t

)(∑
t′∈T

aj′,t′+δ′Dzi′,t′
)]

Diagonal version. To give the diagonal version, it
will be convenient for us to express the computation
of the convolution layer in matrix notation. First, we
represent the activations aj,t as a J × |T | matrix Al−1,
the pre-activations zi,t as a I × |T | matrix Zl, and the
weights wi,j,δ as a I × J |∆| matrix Wl. Furthermore,
by extracting the patches surrounding each spatial lo-
cation t ∈ T and flattening these patches into column
vectors, we can form a J |∆| × |T | matrix Aexp

l−1 which
we call the expanded activations. Then, the compu-
tation is Eqn. 12 can be reformulated as the matrix
multiplication

Zl = WlA
exp
l−1.

Readers familiar with convolutional networks can im-
mediately see that this is the Conv2D operation.

At a specific spatial location t ∈ T , consider the J |∆|-
dimensional column vectors of Aexp

l−1 and I-dimensional
column vectors of Zl. Denote these by a(:,t)

l−1 and z(t)
l

respectively. The matrix Wl maps a(:,t)
l−1 to z(t)

l . In this
case, we find ourselves in the exact same setting as the
feed-forward case given earlier. The diagonal is simply

E
[
vec
(

(a
(:,t)
l−1)2(Dz(t)

l)2
)]

A.6 Kronecker-Factored Approximate
Curvature (K-FAC)

Later in Section A.7, we will compare the diagonal
approximation of the Fisher matrix to the Kronecker-
factored approximate curvature (K-FAC) (Martens and
Grosse, 2015) approximation of the Fisher matrix. We
give a brief overview of the K-FAC approximation in
the case of feed-forward networks.

Recall that the Fisher matrix for a feed-forward network
is a L × L matrix where each of the (i, j) blocks are
given by Eqn. 11. Consider the diagonal (i, i) blocks. If
we approximate the activations ai−1 and pre-activation
derivatives gi as statistically independent, we have

Fi,i(w) = E[vec(DWi) vec(DWi)
>]

= E[ai−1a
>
i−1 ⊗ gig>i]

≈ E[ai−1a
>
i−1]⊗ E[gig

>
i].

Let Ai−1 = E[ai−1a
>
i−1] and Gi = E[gig

>
i]. The K-FAC

approximation F̂ of the Fisher matrix F is

F̂ =


A0 ⊗G1 0

A1 ⊗G2

. . .
0 AL−1 ⊗GL

 .
The K-FAC approximation of the Fisher matrix can
be summarized in the following way: (1) keep only
the diagonal blocks corresponding to individual layers,
and (2) make the probabilistic modeling assumption
where the activations and pre-activation derivatives are
statistically independent.

A.7 Supplementary Experiments Details

Learning rate: We tuned the learning rate schedule
for each method in Table 2 of Section 5 to obtain
best performance. As a result, for both LB and LB
with diagonal Fisher method, we need to scale up the
learning rate and use the linear warmup strategy in
the first 10 epochs. For LB, the optimal learning rate
on CIFAR-10 and CIFAR-100 with ResNet44 is 3.2
while is 1.6 for LB with diagonal Fisher. With VGG16
network on CIFAR-10 and CIFAR-100, the optimal
learning rates are 1.6 for both methods. We decay the
learning rate by 0.1 at the epoch of 100, 150 for all
above methods.

Noise Termination: For all training regimes involv-
ing noise injection, we found terminating the noise at
a quarter of the training trajectory and using standard
LB for the remainder of training achieves the best per-
formance. This finding is consistent to the result of
BatchChange in Table 1, which suggests that noise only
helps generalization in the beginning of the training.

Table 1: Validation accuracy results on classification tasks using BatchChange, Multiplicative, K-FAC and Fisher Trace.
Results are averaged over 3 random seeds. For the reader’s convenience, we report again the result of Diag-F.

Dataset Model SB BatchChange Multiplicative K-FAC Fisher Trace Diag-F

CIFAR-10 VGG16 93.25 93.18 90.98 93.06 92.91 93.19
CIFAR-100 VGG16 72.83 72.44 68.77 71.86 71.35 72.11
CIFAR-10 ResNet44 93.42 93.02 91.28 92.81 92.33 92.88
CIFAR-100 ResNet44x2 75.55 75.16 71.98 73.84 73.77 74.26

A.8 Validation Accuracy Results

We provide additional validation accuracy results to
complement Table 2 of Section 5. The additional
regimes are:

• BatchChange: Here, we use SB for the first 50
epochs and then use LB for the remainder. This
experimental setup was inspired by Smith et al.
(2017).

• Multiplicative: Here, we multiply the gradients
with a Gaussian noise with constant diagonal co-
variance structure. This experimental setup was
inspired by Hoffer et al. (2017).

• K-FAC: Instead of choosing diagonal Fisher as
the noise covariance structure, we use the block-
diagonal approximation of Fisher given by K-FAC
instead

• Fisher Trace: Instead of choosing diagonal
Fisher as the noise covariance structure, we use
square-root of the trace of Fisher

√
Tr(F (θk)) in-

stead

The results are reported in Table 1 above.

A.9 Sampling Full Fisher Noise

Sampling True Fisher Random Vector. We de-
scribe a method to sample a random vector with
Fisher covariance efficiently. We obtain prediction
f(x, θ) by a forward-pass. If we randomly draw la-
bels from the model’s predictive distribution and ob-
tain back-propagated gradients ∇θL, then we have
Cov(∇θL,∇θL) = Ex[J>f HLJf], which is the exact
true Fisher (Martens, 2014). Here, Jf is the Jacobian
of outputs with respect to parameters and HL is the
Hessian of the loss function with respect to the outputs.

Sampling Empirical Fisher Random Vector. Let
M be the size of the mini-batch and from the M -
forward passes we obtain the back-propagated gradi-
ents ∇l1, . . . ,∇lM for each data-point. Consider in-
dependent random variables σ1, . . . , σM drawn from
Rademacher distribution, i.e., P (σi = 1) = P (σi =

−1) = 1
2 . Then, the mean Eσ[

∑M
i=1 σi∇li] = 0. The

covariance is empirical Fisher.

References

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Op-
timization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

Olivier Bousquet and André Elisseeff. Stability and
generalization. Journal of machine learning research,
2(Mar):499–526, 2002.

Crispin Gardiner. Stochastic methods, volume 4.
springer Berlin, 2009.

Roger Grosse and James Martens. A kronecker-factored
approximate fisher matrix for convolution layers.
In International Conference on Machine Learning,
pages 573–582, 2016.

Moritz Hardt, Benjamin Recht, and Yoram Singer.
Train faster, generalize better: Stability of stochastic
gradient descent. CoRR, abs/1509.01240, 2015. URL
http://arxiv.org/abs/1509.01240.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: closing the generalization
gap in large batch training of neural networks. In
Advances in Neural Information Processing Systems,
pages 1731–1741, 2017.

Kevin Luk and Roger Grosse. A coordinate-free con-
struction of scalable natural gradient, 2018.

James Martens. New insights and perspectives
on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

James Martens and Roger Grosse. Optimizing neu-
ral networks with kronecker-factored approximate
curvature. In International conference on machine
learning, pages 2408–2417, 2015.

Wenlong Mou, Liwei Wang, Xiyu Zhai, and Kai Zheng.
Generalization bounds of sgld for non-convex learn-
ing: Two theoretical viewpoints. arXiv preprint
arXiv:1707.05947, 2017.

Grigorios A Pavliotis. Stochastic processes and appli-
cations: diffusion processes, the Fokker-Planck and
Langevin equations, volume 60. Springer, 2014.

http://arxiv.org/abs/1509.01240

Maxim Raginsky, Alexander Rakhlin, and Matus Tel-
garsky. Non-convex learning via stochastic gradient
langevin dynamics: a nonasymptotic analysis. CoRR,
abs/1702.03849, 2017.

Samuel L Smith, Pieter-Jan Kindermans, and Quoc V
Le. Don’t decay the learning rate, increase the batch
size. arXiv preprint arXiv:1711.00489, 2017.

George E Uhlenbeck and Leonard S Ornstein. On the
theory of the brownian motion. Physical review, 36
(5):823, 1930.

	SUPPLEMENTARY MATERIAL
	Proof of Theorem 4.1
	Relationship Between Noise Covariance Structures and Generalization
	Fisher Information Matrix for Deep Neural Networks
	Feed-forward networks
	Convolutional networks
	Kronecker-Factored Approximate Curvature (K-FAC)
	Supplementary Experiments Details
	Validation Accuracy Results
	Sampling Full Fisher Noise

