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Abstract

The choice of batch-size in a stochastic opti-
mization algorithm plays a substantial role for
both optimization and generalization. Increas-
ing the batch-size used typically improves op-
timization but degrades generalization. To
address the problem of improving generaliza-
tion while maintaining optimal convergence in
large-batch training, we propose to add covari-
ance noise to the gradients. We demonstrate
that the learning performance of our method
is more accurately captured by the structure
of the covariance matrix of the noise rather
than by the variance of gradients. More-
over, over the convex-quadratic, we prove in
theory that it can be characterized by the
Frobenius norm of the noise matrix. Our
empirical studies with standard deep learn-
ing model-architectures and datasets shows
that our method not only improves general-
ization performance in large-batch training,
but furthermore, does so in a way where the
optimization performance remains desirable
and the training duration is not elongated.

1 Introduction

From a strictly mathematical perspective, training neu-
ral networks is a high-dimensional non-convex optimiza-
tion problem and the dynamics of the training process
is incredibly complicated. Despite this, Stochastic Gra-
dient Descent (SGD) and its variants have proven to
be extremely effective for training neural networks in
practice. Much of the recent successes of deep learn-
ing in application tasks such as image recognition (He
et al., 2016), speech recognition (Amodei et al., 2016),
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Figure 1: Noise structure in a simple two-dimensional
regression problem. Top-left: One-step SGD update.
Top-right: One-step SGD update with isotropic Gaussian
(o0 =0.1) noise. Bottom-left: One-step SGD update with
full Fisher noise. Bottom-right: One-step SGD update
with diagonal Fisher noise. The full Fisher noise almost
recovers the SGD noise. Observe that the full Fisher noise
direction is perpendicular to the contours of the loss sur-
face. Moreover, full Fisher exhibits slower convergence than
diagonal Fisher; we refer to Section 4 for a more detailed
analysis.

natural language processing (Wu et al., 2016) and game
playing (Mnih et al., 2015) can be seen as testaments
to the effectiveness of SGD.

The choice of a batch-size plays an important role in
the learning behavior of SGD. Taking larger batch-
sizes ensures better gradient estimation which typically
leads to faster training convergence. However, there
is a tradeoff from the viewpoint of generalization; the
intrinsic noise stemming from mini-batch gradients
provides regularization effects (Chaudhari and Soatto,
2017; Smith and Le, 2017) and by increasing batch-
sizes, we lose such generalization benefits. It is then
an interesting question to ask whether large-batch can
be engineered in a way such that generalization signifi-
cantly improves but at the same time not sacrificing
too much the training convergence. This is exactly the
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central objective of our paper.

To address this question, we propose to add a noise
term whose covariance structure is given by the diago-
nal Fisher matrix to the large-batch gradient updates.
We discuss the motivations underlying our approach.
Under the standard log-likelihood loss assumption, the
difference of large-batch gradients and small-batch gra-
dients can be modeled as a Fisher noise. We can expect
that adding this noise directly to large-batch gradients
will yield small-batch performance. While this may re-
solve generalization issues associated with large-batch
training (Keskar et al., 2016; Hoffer et al., 2017), the
resulting convergence performance is undesirable. To
attain our ultimate goal of designing a method which
enjoys desirable optimization and generalization per-
formance simultaneously, we reduce the noise level by
changing the covariance structure from full Fisher to
diagonal Fisher.

Variance is commonly regarded as a criteria of optimiza-
tion performance. However, for our proposed method
in this paper, studying the gradient variance is not suf-
ficient in deducing any information on the optimization
behavior. Rather, it is the structure of the covariance
matrix of the noise which plays a critical role. For
large-batch training with diagonal Fisher, we find that
despite having a high gradient variance, it still attains
an ideal optimization performance.

Outline and Summary of Main Contributions.
We begin in Section 2 by introducing the basic frame-
work and necessary definitions. We consider different
covariance structures for large-batch training in Sec-
tion 2.2 and then propose the choice of diagonal Fisher.
Sections 3 and 4 constitute the central contributions
of the paper. The primary takeaways are:

e Gradient variance is not an accurate indicator of
optimization behavior. In Fig. 3, we find empir-
ically that the convergence of large-batch with
diagonal Fisher is much faster than that of large-
batch with full Fisher and small-batch. However,
in Fig. 2, we find that all these regimes share
roughly the same average gradient variance.

e The main theoretical contribution is Theorem 4.1.
We show over the convex quadratic setting, the
convergence can be characterized by the Frobenius
norm of the noise covariance matrix. In Fig. 5(a),
we show empirically that this carries over to the
non-convex deep learning context.

In Section 5, we apply our methodology to address
the “generalization gap” problem. We show that within
the same number of training epochs, large-batch with
diagonal Fisher can attain generalization performance

roughly comparable to that of small-batch. Related
works are discussed in Section 6 and we close the paper
in Section 7.

2 Preliminaries and Approach

2.1 Preliminary Background

Excess Risk Decomposition. We work in the stan-
dard framework of supervised learning. Let D be
the unknown joint probability distribution over the
data domain X x ) where X is the input space
and ) is the target space. We have a training set
S={(z1,11),...,(xn,yn)} of N input-target samples
drawn i.i.d. from D. The family of classifiers of interest
to us are neural network outputs f(x;,6), where § € R?
are parameters of the network. Let £:) x )Y — R be
the loss function measuring the disagreement between
outputs f(z;,0) and targets y;. For convenience, we
use the notation ¢;(6) to denote ¢(f(x;,60),y;). The
expected risk and empirical risk functions are defined
to be

N
L0) = EgapnlUS (2,0 0)], £60) = 5 D 6(0).

The standard technique to analyze the interplay be-
tween optimization and generalization in statistical
learning theory is through excess risk decomposition.
The excess risk, after k iterations, is defined as:

Ak = f(gk) — inf 3(9)
R4

From Bottou and Bousquet (2008); Chen et al. (2018),
the expected excess risk can be upper-bounded by

Es[Ax] < Es[L(0k) — L(0k)] +Es[L(0k) — L(6%)].

Egen Eopt

(1)
where 6* = argming £(6) here is the empirical risk min-
imizer. The terms Egen and Ep¢ are the expected gen-
eralization and optimization errors respectively. It is
often the case that optimization algorithms are studied
from one perspective: either optimization or general-
ization. The decomposition in Eqn. 1 indicates that
both aspects should be analyzed together (Bottou and
Bousquet, 2008; Chen et al., 2018); since the goal of
a good optimization-generalization algorithm in ma-
chine learning is to minimize the excess risk in the least
amount of iterations.

2.2 DMotivations and Approach

We begin by formalizing the setup. Let By denote
large-batch and M; = |Bj| denote the size of the
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large-batch. We consider the following modification of
large-batch SGD updates

Okt1 =0k — VL, (Ok) + rC(0k) &k (2)

where ay, is the learning rate, & ~ N (0, I) is the multi-
variate Gaussian distribution with mean zero and iden-
tity covariance, and VLy;, (0) = N% > ien, VEi(Ok)
is the large-batch gradient. We can interpret Eqn. 2
as modifying large-batch SGD by injecting Gaussian
noise with mean zero and covariance C(6;)C(6x) " to
the gradients. The central goal of this paper is to de-
termine a suitable matrix C () such that the excess
risk of the algorithm in Eqn. 2 is minimized; in more
concrete terms, it achieves low optimization and gen-
eralization error simultaneously within a reasonable
computational budget.

2.2.1 Intrinsic SGD Noise

Let B C S be a mini-batch drawn uniformly and with-
out replacement from S and M = |B| be the size of
this chosen mini-batch. We can write the SGD update
rule here as

0k+1 = gk - akV£M(9k)
=0 —ar VL) + arp(VLOR) — VLA (6k))

Ok

where VL(0) = & Zi\; Vi (0) is the full-batch gra-
dient. The difference 6, = VL(0,) — VL (0y) is the
intrinsic noise stemming from mini-batch gradients.
The covariance of §j is given by

M1 .
S NTVLO) — VE(0R)) (VL(O) — VE(6r))
M N ; k k k k

(3)
This result can be found in Hu et al. (2017); Hoffer et al.
(2017). Moreover, this type of noise has been studied
in Zhu et al. (2018). For the purposes of this paper,
we assume that the loss is taken to be negative log-
likelihood, ¢;(0)) = —log p(yi|zi, 0r) where p(y|z, ) is
the density function for the model’s predictive distribu-
tion. Moreover, we assume that the gradient covariance
matrix above can be approximated by

N
— 1
NZ log p yz|xza0k)VI0gp(yz|xuak) )

F(0k)

(4)
where (z;,y;) are sampled from the empirical data
distribution. In the literature, the matrix F(6y)
above is often referred to as the empirical Fisher ma-
trix (Martens, 2014). We make this approximation for
two reasons. First, computing the full-batch gradient

VL(0) at every iteration is not feasible computation-
ally. Secondly, from Fig. 3, we find empirically that the
training dynamics of a large-batch regime with empiri-
cal Fisher is very close to a small-batch regime (which
by the above analysis should be captured by large-batch
with empirical covariance in Eqn. 3); suggesting that
it is a reasonable assumption to make.

For the remainder of this paper, unless otherwise speci-
fied, all mentions of “Fisher matrix” or F'(6) refers to the
empirical Fisher. For completeness, we provide explicit
expressions of diagonal Fisher for feed-forward and
convolutional network architectures in Appendix A.3.

2.2.2 Naive Choices of Covariance Matrices

We begin by considering the choice of C(6) = 0. In
this case, Eqn. 2 is just standard large-batch gradient
descent. Since large-batches provide better gradient
estimation, we can expect better training error per
parameter update. However, from the perspective of
generalization, it has been observed in LeCun et al.
(1998); Keskar et al. (2016); Hoffer et al. (2017) that
using larger batch-sizes can lead to a decay in general-
ization performance of the model.

Now, let Bg, By, denote small-batch and large-batch,
Mg = |Bg|, M, = |BL| denote the size of small-batch
and large-batch. Consider C(6)) to be

CO) =\ s VE). (5)

Now, if the intrinsic SGD noise is reasonably approxi-
mated as a Gaussian distribution with mean zero and
covariance given by C(6y) above, then Eqn. 2 with
this choice of C'(6y) should exhibit similar behavior as
small-batch. If this is the case, then we can expect that
Eqn. 2 exhibits poor convergence. Indeed, as shown on
a 2D convex example in Fig. 1, choosing C'(6;) as in
Eqn. 5 essentially recovers SGD behavior. Furthermore,
on the CIFAR-10 image classification task trained us-
ing ResNet-44 in Fig. 3, we find that adding this noise
significantly worsens the training convergence. Thus,
choosing C(0) as in Eqn. 5 does not satisfy our objec-
tive of simultaneously attaining desirable convergence
and generalization for large-batch training.

2.2.3 Using Diagonal Fisher

We now propose to take a “middle ground” and choose
C(6k) to be

c<ok>:\/% Gag (F(6r).  (6)

A formal statement is given in Algorithm 1. Chang-
ing from full Fisher to diagonal Fisher has important
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Algorithm 1 Adding diagonal Fisher noise to large-
batch SGD. Differences from standard large-batch SGD
are highlighted in blue

Require: Number of iterations K, initial step-size ay,
large-batch By, of size My, small-batch Bg of size
Mg, initial condition 6, € R?
for k=1 to K do

& ~ N(0, 1a)

MEre /diag (F(04))
9k+1 =0, — akV£ML (Gk) + €
end for

€ = O

implications for both optimization and generalization
behavior. In our empirical analysis in Sections 3 and 5,
we show that Algorithm 1 can achieve both desirable
convergence and generalization performance within an
epoch training budget; which implies that the excess
risk is minimized.

With regards to computational complexity, computing
diagonal Fisher only introduces minor overhead. Good-
fellow (2015) shows that it can be done at the cost of
one forward pass.

3 Variance and Optimization

The objective of this section is to examine the optimiza-
tion performance of the four regimes: large-batch with
C(6k) equal to 0 (standard large-batch), large-batch
with C'(6y) equal to diagonal Fisher as in Eqn. 6, large-
batch with C(6)) equal to full Fisher as in Eqn. 5 and
small-batch. In the experimentation, we fix large-batch
to be 4096 and small-batch to be 128. For conciseness,
we set forth the notation LB and SB for large-batch
and small-batch respectively.

In Fig. 3, we compare the training error (measured per
parameter update) of ResNet44 (CIFAR-10) of the four
regimes. The same learning rate is used across all four
regimes (better training error can be obtained if we
tune the learning rate further for the LB regimes). We
find that LB with diagonal Fisher trains much faster
than LB with full Fisher and SB. In contrast, LB with
diagonal Fisher attains a convergence similar to LB,
demonstrating that adding this particular form of noise
does not hamper much the optimization performance.

We now analyze the gradient variance of each of the
four regimes. We define gradient variance here to be
the trace of the covariance matrix of the gradients. In
the experiment depicted in Fig. 2, we provide an esti-
mation of the variance of gradients of the four regimes.
The experiment is performed as follows: we freeze a
partially-trained network and compute Monte-Carlo
estimates of gradient variance with respect to each pa-
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Figure 2: Average variance of gradients for LB, SB, LB
with full Fisher and LB with diagonal Fisher.
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Figure 3: Training error per parameter update for SB,
LB, LB with full Fisher and LB with diagonal Fisher.

rameter over different mini-batches. This variance is
then averaged over the parameters within each layer.

In Fig. 2, we find that LB with diagonal Fisher, LB
with full Fisher, and SB all share roughly the same
gradient variance meanwhile LB has a much lower one.

However, the optimization behaviors are completely
different. These experiments show that the number of
iterations needed to reach a small optimization error is
not purely determined by the gradient variance. Many
recent works have suggested to add isotropic noise to
the gradient dynamics to escape from saddle point or
local minima (Ge et al., 2015; Jin et al., 2017). We
believe that the number of iterations needed to escape
saddle points is determined by the nature of the noise.
A similar observation has been made in Zhu et al.
(2018) where the authors studied the effects of how
using Fisher covariance noise relates to the efficiency of
escaping from local minima and compare it to isotropic
noise.

In the next section, we analyze the efficiency of the
algorithm in Eqn. 2 for a convex quadratic when the
covariance matrix is given by the (exact true) Fisher
matrix. We prove that it requires less iterations to reach
the global optimum compared to isotropic noise. We
iterate that this choice of diffusion matrix is completely
specific to the convex quadratic example.
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4 Convex Quadratic Example

4.1 Motivations

In this section, we analyze the optimization behavior
of our proposed algorithm for the convex quadratic
model. Analyzing the convex quadratic model serves
as a good proxy to understand the complex dynamics
of neural network training. Although the optimization
landscape of neural networks is non-convex, using such
a model marginalizes away inessential features and en-
ables us to tractably analyze optimization phenomena
of neural networks. There is ample evidence suggesting
this: the recent work of Zhang et al. (2019) uses the
convex quadratic model to accurately predict critical
batch-sizes for commonly used optimizers in neural
networks. Short-horizon bias phenomena of optimized
learning rates were studied in Wu et al. (2018) for the
convex quadratic and their theoretical insights were suc-
cessfully translated to neural networks. Furthermore,
a convex quadratic objective can always be obtained
by first linearizing around a given parameter vector
and then taking a second-order Taylor approximation.
Recent empirical work (Lee et al., 2019) have demon-
strated that linearized approximations do indeed match
the training phenomena of large yet realistic networks.

Therefore, approximating the loss surface of a neural
network with a convex quadratic has proven to be a
fertile “testing ground” when introducing new method-
ologies in deep learning. Analyzing the toy quadratic
problem has led to important insights; for example, in
learning rate scheduling (Schaul et al., 2013) and formu-
lating SGD as approximate Bayesian inference (Mandt
et al., 2017).

4.2 Analysis

For strongly-convex objective functions and diminish-
ing step-sizes, the expected optimality gap is bounded
in terms of the second-order moment of the gradi-
ents (Bottou et al., 2018). However, in practice, dif-
ferent algorithms having the same gradient moments
might not need the same number of iterations to con-
verge to the minimum.

Consider the loss function
L+
L(0) = 59 Ad,

where A is a symmetric, positive-definite matrix. We
focus on the algorithm in Eqn. 2 and consider a con-
stant d x d covariance matrix C'. The following theorem,
adapted from Bottou et al. (2018), analyzes the con-
vergence of this optimization method. The proof is
relegated to Section A.1 of Appendix.

Full Fisher

R &/ @/

Figure 4: Trajectory using full Fisher versus diagonal
Fisher noise for the algorithm in Eqn. 2 used to minimize a
two-dimensional quadratic function. Blue dot indicates the
initial parameter value and the green dot shows the final
parameter value. We used a learning rate of 0.1 for 500 it-
erations (plotting every 10 iterations). Observe that adding
diagonal Fisher to the gradient achieves faster convergence
than full Fisher.

Diagonal Fisher

Theorem 4.1. Let Apmax and Amin denote the maxi-
mum and minimum eigenvalue of A respectively. For a
chosen ag < \,1., suppose that we run the algorithm

in Eqn. 2 according to the decaying step-size sequence

2

k= (k + 'V)Amin

)

for all k € Ny and where 7y is chosen such that ay, <
ag. Then for all k € N,

174
k+

E[L(0k)] <

where

2Tr(CTAC)
UV = 1max )\27

min

We make a couple of observations concerning this
bound. First, the convergence rate is optimal when
C = 0 which is expected. In this case, there is no noise
and hence we obtain no regularization benefits which
leads to poor generalization. A more formal discussion
is given at the end of Section A.2 in the appendix where
if we employ a scaling factor C := AC; as A — 0, the
expected generalization error becomes worse.

The second observation is that the term of importance
in this theorem is Tr(C'T AC). While the overall conver-
gence rate of the algorithm is O(1/k), the discrepancy
in convergence performance for different choices of the
matrix C' rests entirely on this term. The number of it-
erations for the algorithm in Eqn. 2 to reach the unique
minimum depends entirely on Tr(C'T AC) and not on
the second-order moment.
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Table 1: Number of iterations needed for the algorithm in Eqn. 2 to reach an ¢ error for a strongly-convex quadratic loss
function. Since ||diag (A)||%,., is smaller than ||A||2 ., less iterations are required when choosing C' = +/diag (A).

COVARIANCE MATRIX C'

VA diag (A)

STEPS k TO REACH € ERROR

||A||§‘rob /6 ”dlag (A)lei‘rob /6

We analyze two specific cases which are relevant for us:
the first case where C' is square-root of A, C' = V/A,
and the second case where C is the square-root of
the diagonal of A, C = y/diag (A). The second-order
moment of the noise perturbation is the same for both
and is given by

Ee[|| &)%) = Tr(CTC) = Tr(A). (7)

However, it is different for Tr(C'T AC); in the case of
C =A, we get

Te(CTAC) = Te(A%) = || AlAe »

and for the case of C = /diag(A),
Te(CT AC) = Tr(diag (4)°) = ||diag (4)[[fyqr -

Thus, the difference in training performance between
the two cases can be measured by the difference of
their respective Frobenius norms and less number of
iterations are needed with the choice of /diag (A).
This suggests that the off-diagonal elements of A play
a role in the optimization performance. In Fig. 4,
we provide a visualization of the difference between
C = VA and C = /diag (A) over a two-dimensional

quadratic function.

We summarize our observation in Table 1: different
choices of covariance matrix C' impacts the number of
iterations required to reach an e error.

Limitations: We mention a couple of limitations of
the current analysis. In the previous analysis, the
matrix A above is the Hessian which is also, in this
specific setup, equal to the (exact true) Fisher defined
as the expectation of the outer product of log-likelihood
gradients,
Ep, p,.[Viogp(ylz,0)Viogp(ylz,0)T]  (8)

Y

The expectation here is taken with respect to the data
distribution P, for inputs x and the model’s predictive
distribution Py, for targets y. For much of this pa-
per, we have been working with the empirical Fisher
instead. We believe this to be a reasonable approxi-
mation; in Fig. 3, we find that the training curves for
LB + full Fisher and LB + true Fisher are almost
identical. Furthermore, if we assume that the implicit
conditional distribution over the network’s output is
close to the conditional distribution of targets from

the training distribution, then the covariance of the
gradients closely matches the Hessian (Martens, 2014).
The recent work of Zhang et al. (2019) shows that this
relationship indeed holds tightly in empirical settings.

Secondly, we have focused solely on the optimization
performance of our proposed method. While it would
be desirable to accompany this with a complete theo-
retical analysis of generalization performance, this is
beyond the current scope of the paper. However, in Ap-
pendix A.2, we use the framework of uniform stability
to provide some theoretical insights on how different
choices of the covariance matrix impact generalization.

5 Experiments

5.1 Experimentation Details

Batch Normalization. For all experiments involving
LB, we adopt Ghost Batch Normalization (GBN) (Hof-
fer et al., 2017) and hence LB throughout stands for
LB with Ghost Batch Normalization. This allows a
fair comparison between LB and SB, as it ensures
that batch normalization statistics are computed on
the same number of training examples. Using stan-
dard batch normalization for large batches can lead to
degradation in model quality (Hoffer et al., 2017).

Models and Datasets. The network architectures
we use are fully-connected networks, shallow con-
volutional networks (LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012)), and deep convo-
lutional networks (VGG16 (Simonyan and Zisserman,
2014), ResNet44 (He et al., 2016), ResNet44x2 (the
number of filters are doubled)). These models are eval-
uated on the standard deep-learning datasets: MNIST,
Fashion-MNIST (LeCun et al., 1998; Xiao et al., 2017),
CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton,
2009).

5.2 Frobenius Norm

Over the convex quadratic setting in Section 4, The-
orem 4.1 tells us that the number of iterations to
reach optimum is characterized by the Frobenius norm.
Hence, the optimization difference between using large-
batch with diagonal Fisher versus full Fisher lies in the
difference of their respective Frobenius norms.

We now give an empirical verification of this phenomena
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Figure 5: a) Frobenius norms of full Fisher and diagonal
Fisher along the training trajectory. The model is trained
on ResNet44 with CIFAR-10. b) Maximum eigenvalue of
the Hessian matrix at the end of training for LB with Ghost
Batch Normalization, LB with Ghost Batch Normalization
+ diagonal Fisher and SB. Error bar is computed over 3
random seeds.

in the non-convex setting of deep neural networks. We
compute the Frobenius norms during the training of
the ResNet44 network on CIFAR-10. Fig. 5(a) shows
that the full Fisher matrix has much larger Frobenius
norm than the diagonal Fisher matrix, which suggests
that using diagonal Fisher noise should have faster
convergence than full Fisher noise in the deep neural
network setting. Indeed, Fig. 3 shows that LB with
full Fisher converges at the same rate as SB whereas
LB with diagonal Fisher converges much faster; and
in fact, roughly the same as LB. This indicates that
adding diagonal Fisher noise to LB does not degrade
the optimization performance of LB.

5.3 Maximum Eigenvalue of Hessian

While the relationship between the curvature of the loss
surface landscape and generalization is not completely
explicit, numerous works have suggested that the max-
imum eigenvalue of the Hessian is possibly correlated
with generalization performance (Keskar et al., 2016;
Chaudhari et al., 2016; Chaudhari and Soatto, 2017;
Yoshida and Miyato, 2017; Xing et al., 2018). In this
line of research, the magnitudes of eigenvalues of the
Hessian may be interpreted as a heuristic measure for
generalization; the smaller the magnitude the better
the model generalizes. To situate our method with this
philosophy, we compute the maximum eigenvalue of
the Hessian of the final model for the following three
regimes: SB, LB, and LB with diagonal Fisher.

We provide the details of this experiment. Computing
maximum eigenvalue without any modification to the
model gives inconsistent estimates even between differ-
ent runs of the same training configuration. To make
the maximum eigenvalue of the Hessian comparable
over different training trajectories, the Hessian needs to
be invariant under typical weight reparameterizations;
for example, affine transformations (Liao et al., 2018).
To achieve this, we make the following modification

to the trained model: (1) For the layers with batch
normalization, we can just push the batch-norm layer
parameters and running statistics into the layerwise
parameter space so that the the layer is invariant under
affine transformations; and (2) For the layers without
batch normalization, reparameterization changes the
prediction confidence while the prediction remains the
same. Hence, we train a temperature parameter on the
cross-entropy loss on the test data set, this encourages
the model to make a calibrated prediction (prevent it
from being over-confident). In Fig. 5(b), we give the
error bar of the maximum eigenvalue of the Hessian
over different runs, which indicates the modification
gives a roughly consistent estimate.

In Fig. 5(b), we give the error bar of the maximum
eigenvalue of the Hessian over different runs for the
regimes we experiment with. The central takeaway here
is that across all models with which we experiment, we
consistently find that the maximum eigenvalue of the
Hessian for LB with diagonal Fisher is lower than that
of LB and in some cases, comparable to SB.

5.4 Generalization Gap

In this last part of our empirical studies, we apply
our methodology to address the “generalization gap”
problem in stochastic optimization. Here, we exper-
iment with four regimes: SB, LB, LB with Fisher
Trace and LB with diagonal Fisher. All regimes are
trained for the same number for epochs. LB with
Fisher Trace refers to LB with the following noise
VTIr(F(0k))/d- &k, & ~ N(0, I4) injected at every iter-
ation. The purpose of this is to provide an experimental
comparison which adds isotropic noise with the same
variance as LB with diagonal Fisher.

We also point out that we do not experiment with
LB with full Fisher due to its exceeding long training
time. This can be seen from Fig. 3 where for ResNet44
trained on CIFAR-10, LB with full Fisher does not
achieve good convergence even after 8000 parameter
updates. There is typically no optimal learning-rate
scaling rule for large-batch training across different
models and datasets (Shallue et al., 2018); hence, we
tune the learning rate schedule to obtain optimal results
for each method.

The final validation accuracy numbers are reported in
Table 2. While it is true that using LB with diagonal
Fisher cannot completely close the “generalization gap”
in some cases, it yields definite improvements over
SB within an epoch-training budget. Such a training
regime typically favors small-batch training as they
perform more parameter updates (Shallue et al., 2018).
This highlights that our approach is a data-efficient
way to improve generalization for large-batch training.
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Table 2: Validation accuracy results on classification tasks for SB, LB, LB + Fisher Trace, and LB + diagonal Fisher.
The results are averaged over 3 random seeds. All methods in each row are trained with the same number of epochs. While
it is indeed not feasible to experiment LB with full Fisher for all the models below, we note that this reaches roughly the

same validation accuracy (93.22) as SB in the case of ResNet44 (CIFAR-10).

DATASET MODEL SB \ LB LB+FisHEr TrRacE LB+Diag
MNIST MLP 98.10 | 97.95 98.08 98.10
MNIST LENET 99.10 | 98.88 99.02 99.11
FASHION LENET 91.15 | 88.89 90.29 90.79
CIFAR-10 ALEXNET 87.80 | 86.42 N/A 87.61
CIFAR-100 ALEXNET 59.21 | 56.79 N/A 59.10
CIFAR-10 VGG16 93.25 | 91.81 92.91 93.19
CIFAR-100 VGG16 72.83 | 69.45 71.35 72.11
CIFAR-10 RESNET44 93.42 | 91.93 92.33 92.88
CIFAR-100 REesNET44x2 75.55 | 73.13 73.77 74.26

In addition, we experimented with other regimes such
as injecting multiplicative Gaussian noise with constant
covariance as in Hoffer et al. (2017) and replacing
diagonal Fisher with the block-diagonal Kronecker-
Factored Approximate Curvature (K-FAC) (Martens
and Grosse, 2015) !. We delegate these results to
Section A.8 of Appendix.

6 Related Works

Variance and Optimization. In the context of large-
scale learning, stochastic algorithms are very popular
compared to full-batch methods due to lower compu-
tational overhead (Bottou et al., 2018; Bottou, 1991).
The tradeoff is that stochastic algorithms exhibit slower
convergence asymptotically due to the inherent noise
present in their gradients (Moulines and Bach, 2011;
Bottou et al., 2018; Wen et al., 2018). For smooth and
strongly-convex functions, variance reduction is a com-
mon technique to improve convergence rates (Johnson
and Zhang, 2013; Defazio et al., 2014).

In contrast, for non-convex optimization, increasing
the variance by adding noise is often times beneficial.
Unlike the convex setting, the loss surface is much
more complicated and there is an abundance of global
minima (Choromanska et al., 2015). Adding noise
can significantly improve training since it enables the
dynamics to escape saddle points or shallow local min-
ima (Ge et al., 2015; Jin et al., 2017). More specifically
for deep learning, injecting annealed gradient noise has
been shown to speed up training of very deep neural
networks (Neelakantan et al., 2015).

Variance and Generalization. The inherent noise
in stochastic optimization methods is also conducive
to generalization performance. There are vast bodies
of literature devoted to this in deep learning; for ex-
ample, scaling the learning rate or batch-size (Smith

!This corresponds to the matrix-variate Gaussian noise
in Zhang et al. (2018)

and Le, 2017; Goyal et al., 2017; Hoffer et al., 2017) to
augment gradient noise in order to encourage better
generalization. More direct approaches of studying
the covariance structure of mini-batch gradients have
also been explored (Jastrzebski et al., 2017; Xing et al.,
2018; Zhu et al., 2018; Li et al., 2015). A closely-related
approach to ours is the Stochastic Gradient Langevin
Dynamics (SGLD) (Gelfand et al., 1992; Welling and
Teh, 2011); a modification of SGD where an annealed
isotropic Gaussian noise is injected to the gradients.
The recent systematic empirical study of Shallue et al.
(2018) demonstrates that links between optimization,
generalization, and the choice of batch-size in SGD
is extremely complex. It underscores the necessity of
a more foundational understanding of the interaction
between batch-sizes, model architectures, and other
optimization metaparameters.

7 Conclusion

In this paper, we explored using covariance noise in
designing optimization algorithms for deep neural net-
works that could potentially exhibit ideal learning be-
havior. We proposed to add diagonal Fisher noise
to large-batch gradient updates. Our empirical stud-
ies showed that this yield significant improvements in
generalization while retaining desirable convergence
performance. Furthermore, we demonstrated that the
structure of the noise covariance matrix encodes much
more information about optimization than the variance
of gradients. An immediate question which arises is to
better understand how the mathematical structure of
the noise covariance matrix ties to generalization. For
example, in the special cases of diagonal Fisher and
full Fisher, our experiments appear to indicate that the
generalization performance is somewhat comparable.
This seems to suggest that the diagonal elements con-
tribute much more to the generalization performance
than the off-diagonal elements. It is an interesting
theoretical question as to why this may be the case.
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