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A Proof of Lemma 1: Optimizer comparison

The first claim (4) follows immediately from the definition of the error bound (5).

To establish the second claim, we note that our (sub)differentiability assumptions and the optimality of xϕ1
and

xϕ2
imply that 0 ∈ ∂ϕ2(xϕ2

) and 0 = u +∇(ϕ1 − ϕ2)(xϕ1
) for some u ∈ ∂ϕ2(xϕ1

). Gradient growth (6) now
implies

νϕ2
(‖xϕ1

− xϕ2
‖2) ≤ 〈xϕ1

− xϕ2
, u− 0〉 = 〈xϕ1

− xϕ2
,∇(ϕ2 − ϕ1)(xϕ1

)〉.

B Proof of Thms. 2 and 5: ACV-CV and ACVp-CV assessment error

Thms. 2 and 5 will follow from the following more detailed statement, proved in App. B.1. Consider the
higher-order gradient estimator

ACVHO
p (λ) , 1

n

∑n
i=1 `(zi, β̃

HOp
9i (λ)) with β̃

HOp
9i (λ) , argminβ m̂p(Pn,9i, β, λ; β̂(λ)),

which recovers our approximate CV error (2) and estimate (3) when p = 2. We will make use of the following
assumptions which generalize Assumps. 1 and 1b.

Assumption 1d (Curvature of objective). For some q, cm > 0, all i ∈ [n], and all λ in a given Λ ⊆ [0,∞],
m(Pn,9i, ·, λ) has νm(r) = cmr

q gradient growth

Assumption 1e (Curvature of Taylor approximation). For some p, q, c`, cπ > 0 and λπ <∞, all i ∈ [n], and all

λ in a given Λ ⊆ [0,∞], m̂p(Pn,9i, ·, λ; β̂(λ)) has ν(r) = cλ,λr
q gradient growth, where cλ,λ , c` + λcπI[λ ≥ λπ].

Assumption 1f (Curvature of regularized Taylor approximation). For some p, q, c`, cπ > 0 and λπ < ∞, all

i ∈ [n], and all λ in a given Λ ⊆ [0,∞], m̂p(Pn,9i, ·, λ; β̂(λ)) +
Lip(∇pβm(Pn,9i,·,λ))

p+1 ‖· − β̂(λ)‖p+1
2 has ν(r) = cλ,λr

q

gradient growth, where cλ,λ , c` + λcπI[λ ≥ λπ].

Theorem 14 (ACVp-CV and ACVHO
p -CV assessment error). If Assump. 1d holds for some Λ ⊆ [0,∞], then,

for all λ ∈ Λ and i ∈ [n],

‖β̂(λ)− β̂9i(λ)‖q−1
2 ≤ 1

n
1
cm
‖∇β`(zi, β̂(λ))‖2. (15)

If Assumps. 3b, 1d, and 1e hold for some Λ ⊆ [0,∞], then, for all λ ∈ Λ and i ∈ [n],

‖β̃HOp
9i (λ)− β̂9i(λ)‖q−1

2 ≤ κλp,λ‖β̂9i(λ)− β̂(λ)‖p2 (16a)

for κλp,λ , C`,p+1+λCπ,p+1

p!(c`+λcπI[λ≥λπ ]) .

If Assumps. 3b, 1d, and 1f hold for some Λ ⊆ [0,∞], then, for all λ ∈ Λ and i ∈ [n],

‖β̃RHOp
9i (λ)− β̂9i(λ)‖q−1

2 ≤ 2κλp,λ‖β̂9i(λ)− β̂(λ)‖p2. (16b)

If Assumps. 2, 3b, 1d, and 1e hold for some Λ ⊆ [0,∞] and each (s, r) ∈ {(0, p+(q−1)2

(q−1)2 ), (1, 2p
(q−1)2 ), (1, p+q−1

(q−1)2 )},
then, for all λ ∈ Λ,

|ACVHO
p (λ)−CV(λ)|

≤ 1

n
p

(q−1)2

(κλp,λ)
1
q−1

c

p

(q−1)2
m

B`
0,
p+(q−1)2

(q−1)2

+ 1
2

1

n
2p

(q−1)2

(κλp,λ)
2
q−1

c

2p

(q−1)2
m

B`
1, 2p

(q−1)2

+ 1

n
p+q−1

(q−1)2

(κλp,λ)
1
q−1

c

p+q−1

(q−1)2
m

B`
1, p+q−1

(q−1)2

and (17a)

If Assumps. 2, 3b, 1d, and 1f hold for some Λ ⊆ [0,∞] and each (s, r) ∈ {(0, p+(q−1)2

(q−1)2 ), (1, 2p
(q−1)2 ), (1, p+q−1

(q−1)2 )},
then, for all λ ∈ Λ,

|ACVp(λ)−CV(λ)|

≤ 1

n
p

(q−1)2

(2κλp,λ)
1
q−1

c

p

(q−1)2
m

B`
0,
p+(q−1)2

(q−1)2

+ 1
2

1

n
2p

(q−1)2

(2κλp,λ)
2
q−1

c

2p

(q−1)2
m

B`
1, 2p

(q−1)2

+ 1

n
p+q−1

(q−1)2

(2κλp,λ)
1
q−1

c

p+q−1

(q−1)2
m

B`
1, p+q−1

(q−1)2

. (17b)
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Thm. 2 follows from Thm. 14 with p = q = 2 since Assump. 1 implies µ = c` + λcπI[λ ≥ λπ] strong convexity and

hence ν(r) = µr2 gradient growth for each m̂2(Pn,9i, ·, λ; β̂(λ)).

Thm. 5 follows from Thm. 14 with q = 2 since Assumps. 1b and 3b and the following lemma imply that each

m(Pn,9i, ·, λ) and m̂p(Pn,9i, ·, λ; β̂(λ)) +
Lip(∇pβm(Pn,9i,·,λ))

p+1 ‖ ·−β̂(λ)‖p+1
2 has µ = c`+λcπI[λ ≥ λπ] strong convexity

and hence ν(r) = µr2 gradient growth.

Lemma 15 (Curvature of regularized Taylor approximation). If ϕ is µ strongly convex and ∇pϕ is Lipschitz,

then Φ(x) , ϕ̂p(x;w) + Lip(∇pϕ)
(p+1)! ‖x− w‖

p+1
2 is µ strongly convex.

Proof This result is inspired by [Nesterov, 2019, Thm. 1]. In particular, by Taylor’s theorem with integral
remainder, we can bound the residual between a function and its Taylor approximation as

|ϕ(x)− ϕ̂p(x;w)| ≤ Lip(∇pϕ)
(p+1)! ‖x− w‖

p+1
2

Note also that for d(x) = 1
p‖x‖p

∇2d(x) = (p− 2)‖x‖p−4xx> + ‖x‖p−2Id < ‖x‖p−2Id. (18)

For p ≥ 2, applying the same reasoning to 〈∇f(·), h〉 and 〈∇2f(·)h, h〉 we can similarly conclude:

‖∇ϕ(x)−∇ϕ̂p(x;w)‖op ≤ Lip(∇pϕ)
p! ‖x− w‖p2

‖∇2ϕ(x)−∇2ϕ̂p(x;w)‖op ≤ Lip(∇pϕ)
(p−1)! ‖x− w‖

p−1
2

Subsequently, for any direction h ∈ Rd

〈(∇2ϕ(x)−∇2ϕ̂p(x;w))h, h〉 ≤ ‖∇2ϕ(x)−∇2ϕ̂p(x;w)‖op · ‖h‖22 ≤ Lip(∇pϕ)
(p−1)! ‖x− w‖

p−1
2 · ‖h‖22,

and therefore,

∇2ϕ(x) 4 ∇2ϕ̂p(x;w) + Lip(∇pϕ)
(p−1)! ‖x− w‖

p−1
2 Id

(18)

4 ∇2Φ(x).

B.1 Proof of Thm. 14: ACVp-CV and ACVHO
p -CV assessment error

B.1.1 Proof of (15): Proximity of CV and full-data estimators

We begin with a lemma that translates the polynomial gradient growth of our objective into a bound on the
difference between a full-data estimator β̂(λ) and a leave-one-out estimator β̂9i(λ).

Lemma 16 (Proximity of CV and full-data estimators). Fix any λ ∈ [0,∞) and i ∈ [n]. If `(zi, ·) is differentiable,
and m(Pn,9i, ·, λ) has νm(r) = cmr

q gradient growth (6) for cm > 0 and q > 0, then

‖β̂(λ)− β̂9i(λ)‖q−1
2 ≤ 1

n
1
cm
‖∇β`(zi, β̂(λ))‖2.

Proof The result follows from the Optimizer Comparison Lemma 1 with ϕ1(β) = m(Pn, β, λ) and ϕ2(β) =
m(Pn,9i, β, λ) and Cauchy-Schwarz, as

cm‖β̂(λ)− β̂9i(λ)‖q2 ≤ 〈β̂(λ)− β̂9i(λ),∇βm(Pn,9i, β̂(λ), λ)−∇βm(Pn, β̂(λ), λ)〉
= 1

n 〈β̂9i(λ)− β̂(λ),∇β`(zi, β̂(λ))〉 ≤ 1
n‖β̂(λ)− β̂9i(λ)‖2‖∇β`(zi, β̂(λ))‖2.

Now fix any λ ∈ Λ and i ∈ [n]. If λ = ∞, then β̂(λ) = β̂9i(λ), ensuring the result (15). If λ 6= ∞, then our
assumptions and Lemma 16 immediately establish the result (15).
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B.1.2 Proof of (16a): Proximity of ACVHO
p and CV estimators

The result (16a) will follow from a general Taylor comparison lemma that bounds the optimizer error introduced
by approximating part of an objective with its Taylor polynomial.

Lemma 17 (Taylor comparison). Suppose

xϕ ∈ argmin
x

ϕ(x) + ϕ0(x) and xϕ̂p ∈ argmin
x

ϕ̂p(x;w) + ϕ0(x).

for ϕ̂p(x;w) ,
∑p
i=0

1
i!∇iϕ(w)[x−w]⊗i the p-th-order Taylor polynomial of ϕ about a point w. If ∇pϕ is Lipschitz

and ϕ̂p(·;w) + ϕ0 has ν(r) = µrq gradient growth (6) for µ > 0 and q > 0, then

‖xϕ − xϕ̂p‖q−1
2 ≤ Lip(∇pϕ)

µ
1
p!‖xϕ − w‖

p
2.

Proof Define f(x) = 〈xϕ̂p − xϕ,∇ϕ(x)〉. The result follows from the Optimizer Comparison Lemma 1 with
ϕ1 = ϕ+ ϕ0 and ϕ2 = ϕ̂p(·;w) + ϕ0, Taylor’s theorem with integral remainder, and Cauchy-Schwarz as

µ‖xϕ − xϕ̂p‖q2 ≤ 〈xϕ − xϕ̂p ,∇xϕ̂p(xϕ;w)−∇ϕ(xϕ)〉 = f(xϕ)−∑p−1
i=0

1
i!∇if(w)[xϕ − w]⊗i

≤ Lip(∇p−1f)
p! ‖xϕ − w‖p2 ≤ ‖xϕ − xϕ̂p‖2 Lip(∇pϕ)

p! ‖xϕ − w‖p2.

To see this, fix any λ ∈ Λ and i ∈ [n], and consider the choices ϕ = m(Pn,9i, ·, λ), ϕ0 ≡ 0, and w = β̂(λ).
By Assump. 1e, ϕ̂p(·;w) + ϕ0 has ν(r) = µrq gradient growth for µ = c` + λcπI[λ ≥ λπ]. Since Lip(∇pϕ) ≤
C`,p+1 + λCπ,p+1 by Assump. 3b, the desired result (16a) follows from Lemma 17.

B.1.3 Proof of (16b): Proximity of ACVp and CV estimators

The result (16b) will follow from a regularized Taylor comparison lemma that bounds the optimizer error
introduced by approximating part of an objective with a regularized Taylor polynomial.

Lemma 18 (Regularized Taylor comparison). Suppose

xϕ ∈ argminx ϕ(x) + ϕ0(x) and xϕ̂p ∈ argminx ϕ̂p(x;w) + Lip(∇pϕ)
(p+1)! ‖x− w‖

p+1
2 + ϕ0(x).

for ϕ̂p(x;w) ,
∑p
i=0

1
i!∇iϕ(w)[x−w]⊗i the p-th-order Taylor polynomial of ϕ about a point w. If ∇pϕ is Lipschitz

and ϕ̂p(·;w) + Lip(∇pϕ)
(p+1)! ‖ · −w‖

p+1
2 + ϕ0 has ν(r) = µrq gradient growth (6) for µ > 0 and q > 0, then

‖xϕ − xϕ̂p‖q−1
2 ≤ 2 Lip(∇pϕ)

µ
1
p!‖xϕ − w‖

p
2.

Proof Define f(x) = 〈xϕ̂p − xϕ,∇ϕ(x)〉. The result follows from the Optimizer Comparison Lemma 1 with

ϕ1 = ϕ + ϕ0 and ϕ2 = ϕ̂p(·;w) + Lip(∇pϕ)
(p+1)! ‖ · −w‖

p+1
2 + ϕ0, Taylor’s theorem with integral remainder, and

Cauchy-Schwarz as

µ‖xϕ − xϕ̂p‖q2 ≤ 〈xϕ − xϕ̂p ,∇xϕ̂p(xϕ;w)−∇ϕ(xϕ)〉+ Lip(∇pϕ)
p! 〈(xϕ − xϕ̂p)‖xϕ − w‖p−1

2 , xϕ − w〉
= f(xϕ)−∑p−1

i=0
1
i!∇if(w)[xϕ − w]⊗i + Lip(∇pϕ)

p! 〈(xϕ − xϕ̂p)‖xϕ − w‖p−1
2 , (xϕ − w)〉

≤ Lip(∇p−1f)
p! ‖xϕ − w‖p2 + ‖xϕ − xϕ̂p‖2 Lip(∇pϕ)

p! ‖xϕ − w‖p2 ≤ ‖xϕ − xϕ̂p‖2 2 Lip(∇pϕ)
p! ‖xϕ − w‖p2.

Fix any λ ∈ Λ and i ∈ [n], and consider the choices ϕ = m(Pn,9i, ·, λ), ϕ0 ≡ 0, and w = β̂(λ). By Assump. 1f,

ϕ̂p(·;w) + Lip(∇pϕ)
(p+1)! ‖ · −w‖

p+1
2 + ϕ0 has ν(r) = µrq gradient growth for µ = c` + λcπI[λ ≥ λπ]. Since Lip(∇pϕ) ≤

C`,p+1 + λCπ,p+1 by Assump. 3b, the desired result (16b) follows from Lemma 18.
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B.1.4 Proof of (17a): Proximity of ACVHO
p and CV

Fix any λ ∈ Λ. To control the discrepancy between ACVHO
p (λ) and CV(λ), we first rewrite the difference using

Taylor’s theorem with Lagrange remainder:

ACVHO
p (λ)−CV(λ) = 1

n

∑n
i=1 `(zi, β̃

HOp
9i (λ))− `(zi, β̂9i(λ))

= 1
n

∑n
i=1〈∇β`(zi, β̂9i(λ)), β̃

HOp
9i (λ)− β̂9i(λ)〉+ 1

2∇2
β`(zi, s̃i)[β̃

HOp
9i (λ)− β̂9i(λ)]⊗2

for some s̃i ∈ {tβ̃HOp
9i + (1− t)β̂9i(λ) : t ∈ [0, 1]}. We next use the mean-value theorem to expand each function

〈∇β`(zi, ·), β̃HOp
9i (λ)− β̂9i(λ)〉 around the full-data estimator β̂(λ):

ACVHO
p (λ)−CV(λ) = 1

n

∑n
i=1〈∇β`(zi, β̂(λ)), β̃

HOp
9i (λ)− β̂9i(λ)〉+ 1

2∇2
β`(zi, s̃i)[β̃

HOp
9i (λ)− β̂9i(λ)]⊗2

+ 〈∇2
β`(zi, si)(β̂9i(λ)− β̂(λ)), β̃

HOp
9i (λ)− β̂9i(λ)〉

for some si ∈ {tβ̂(λ) + (1− t)β̂9i(λ) : t ∈ [0, 1]}. Finally, we invoke Cauchy-Schwarz, the definition of the operator
norm, the estimator proximity results (15) and (16a), and Assump. 2 to obtain

|ACVHO
p (λ)−CV(λ)| ≤ 1

n

∑n
i=1 ‖∇β`(zi, β̂(λ))‖2‖β̃HOp

9i (λ)− β̂9i(λ)‖2 + 1
2‖∇2

β`(zi, s̃i)‖op‖β̃HOp
9i (λ)− β̂9i(λ)‖22

+ ‖∇2
β`(zi, si)‖op‖β̂(λ)− β̂9i(λ)‖2‖β̃HOp

9i (λ)− β̂9i(λ)‖2
≤ 1

n

∑n
i=1(κλp,λ)

1
q−1 ‖∇β`(zi, β̂(λ))‖2‖β̂9i(λ)− β̂(λ)‖

p
q−1

2

+ 1
2 (κλp,λ)

2
q−1 ‖∇2

β`(zi, s̃i)‖op‖β̂9i(λ)− β̂(λ)‖
2p
q−1

2

+ (κλp,λ)
1
q−1 ‖∇2

β`(zi, si)‖op‖β̂(λ)− β̂9i(λ)‖
p+q−1
q−1

2

≤ 1

n
p

(q−1)2

(κλp,λ)
1
q−1

c

p

(q−1)2
m

1
n

∑n
i=1 ‖∇β`(zi, β̂(λ))‖

p+(q−1)2

(q−1)2

2

+ 1
2

1

n
2p

(q−1)2

(κλp,λ)
2
q−1

c

2p

(q−1)2
m

1
n

∑n
i=1 ‖∇2

β`(zi, s̃i)‖op‖∇β`(zi, β̂(λ))‖
2p

(q−1)2

2

+ 1

n
p+q−1

(q−1)2

(κλp,λ)
1
q−1

c

p+q−1

(q−1)2
m

1
n

∑n
i=1 ‖∇2

β`(zi, si)‖op‖∇β`(zi, β̂(λ))‖
p+q−1

(q−1)2

2

≤ 1

n
p

(q−1)2

(κλp,λ)
1
q−1

c

p

(q−1)2
m

B`
0,
p+(q−1)2

(q−1)2

+ 1
2

1

n
2p

(q−1)2

(κλp,λ)
2
q−1

c

2p

(q−1)2
m

B`
1, 2p

(q−1)2

+ 1

n
p+q−1

(q−1)2

(κλp,λ)
1
q−1

c

p+q−1

(q−1)2
m

B`
1, p+q−1

(q−1)2

.

B.1.5 Proof of (17b): Proximity of ACVp and CV

The proof of the bound (17b) is identical to that of the bound (17a) once we substitute 2κλp,λ for κλp,λ by invoking
(16b) in place of (16a).

C Proof of Prop. 3: Sufficient conditions for assumptions

We prove each of the independent claims in turn.

Assump. 3 holds This first claim follows from the triangle inequality and the definition of the Lipschitz
constant Lip.

β̂(λ) → β̂(∞) For each λ ∈ [0,∞), by the Optimizer Comparison Lemma 1 with ϕ2 = π and ϕ1 = 1
λm(Pn, ·, λ)

and the nonnegativity of `,

νπ(‖β̂(λ)− β̂(∞)‖2) ≤ 1
λ (`(Pn, β̂(∞))− `(Pn, β̂(λ))) ≤ 1

λ`(Pn, β̂(∞)).

Therefore, νπ(‖β̂(λ)− β̂(∞)‖2) → 0 as λ → ∞. Now, since νπ is increasing, its inverse ωπ is increasing with

ωπ(0) = 0, and hence we have ‖β̂(λ)− β̂(∞)‖2 → 0 as λ→∞.
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Assump. 1 holds Fix any Λ ⊆ [0,∞], and let mineig denote the minimum eigenvalue. The local strong

convexity of π implies that there exist a neighborhood N of β̂(∞) and some cπ > 0 for which ∇2π(β) ≥ cπId for

all β ∈ N . Since β̂(λ)→ β̂(∞) as λ→∞, there exists λπ <∞ such that β̂(λ) ∈ N for all λ ≥ λπ. Hence, for
any λ, λ′ ∈ Λ and i ∈ [n], we may use the cm-strong convexity of m(Pn,9i, ·, λ′) and m(Pn,9i, ·, 0) = `(Pn,9i, ·) to
conclude that

mineig(∇2
βm(Pn,9i, β̂(λ), λ′)) = mineig(∇2

β`(Pn,9i, β̂(λ)) + λ′∇2
βπ(β̂(λ))) ≥ max(cm, (cm + λ′cπ)I[λ ≥ λπ]).

Furthermore, the cm-strong convexity and differentiability of m(Pn,9i, ·, λ) imply that m(Pn,9i, ·, λ) has νm(r) =
cmr

2 gradient growth. Thus, Assump. 1 is satisfied for Λ.

Assump. 2 holds Fix any Λ ⊆ [0,∞] and λ ∈ Λ. For each i ∈ [n], the triangle inequality and the definition of
the Lipschitz constant imply

‖∇β`(zi, β̂(λ))‖2 ≤ ‖∇β`(zi, β̂(∞))‖2 + ‖∇β`(zi, β̂(λ))−∇β`(zi, β̂(∞))‖2
≤ ‖∇β`(zi, β̂(∞))‖2 + Li‖β̂(λ)− β̂(∞)‖2.

Moreover, since m(Pn,9i, ·, λ) is cm-strongly convex and the minimum eigenvalue is a concave function, Jensen’s
inequality gives for each β

mineig(m(Pn, β, λ)) = mineig( 1
n−1

∑n
i=1m(Pn,9i, β, λ)) ≥ 1

n−1

∑n
i=1 mineig(m(Pn,9i, β, λ)) ≥ n

n−1cm.

Hence m(Pn, ·, λ) has νm(r) = n
n−1cmr

2 gradient growth, and the Optimizer Comparison Lemma 1 with ϕ2 = λπ
and ϕ1 = m(Pn, ·, λ) and Cauchy-Schwarz imply

n
n−1cm‖β̂(λ)− β̂(∞)‖2 ≤ ‖∇β`(Pn, β̂(∞))‖2.

Therefore,

B`s,r ≤ 1
n

∑n
i=1L

s
i (‖∇β`(zi, β̂(∞))‖2 + n−1

n
Li
cm
‖∇β`(Pn, β̂(∞))‖2)r <∞.

D Proof of Thm. 4: ACVIJ-ACV assessment error

We will prove the following more detailed statement from which Thm. 4 immediately follows.

Theorem 19 (ACVIJ-ACV assessment error). If Assump. 1 holds for Λ ⊆ [0,∞], then, for each λ ∈ Λ,

‖β̃IJ
9i (λ)− β̃9i(λ)‖2 ≤ ‖∇

2
β`(zi,β̂(λ))‖op‖∇β`(zi,β̂(λ))‖2

c2λ,λn
2 (19)

where cλ,λ , c` +λcπI[λ ≥ λπ]. If, in addition, Assump. 2 holds for Λ and each (s, r) ∈ {(1, 2), (2, 2), (3, 2)}, then

|ACVIJ(λ)−ACV(λ)| ≤ B`1,2
c2λ,λn

2 +
B`2,2
c3λ,λn

3 +
B`3,2

2c4λ,λn
4 . (20)

D.1 Proof of (19): Proximity of ACV and ACVIJ estimators

We begin with a lemma that controls the discrepancy between two Newton (or, more generally, proximal Newton)
estimators. Recall the definition of the proximal operator proxϕ0

H (11).

Lemma 20 (Proximal Newton comparison). For any β, g ∈ Rd, invertible H, H̃ ∈ Rd×d, and convex ϕ0, the
proximal Newton estimators

βH = proxϕ0

H (β −H−1g) and βH̃ = proxϕ0

H̃
(β − H̃−1g)

satisfy

‖βH − βH̃‖2 ≤
‖(H̃−H)(βH−β)‖2

mineig(H̃)∨0
≤ ‖H̃−H‖op‖βH−β‖2

mineig(H̃)∨0
.
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Proof If mineig(H̃) ≤ 0, the claim is vacuous, so assume mineig(H̃) > 0. Writing ϕ2(x) = 1
2‖β − H̃−1g −

x‖2
H̃

+ ϕ0(x) and ϕ1(x) = 1
2‖β −H−1g − x‖2H + ϕ0(x), note that βH̃ = argminx ϕ2(x) and βH = argminx ϕ1(x)

by the definition of the proximal operator (11). Importantly, ϕ2 is subdifferentiable and satisfies the gradient
growth property with νϕ2

(r) = mineig(H̃)r2. Invoking the Optimizer Comparison Lemma 1 and Cauchy-Schwarz,
we have

mineig(H̃)‖βH − βH̃‖22 ≤ 〈H̃(β − βH)− g −H(β − βH) + g, βH − βH̃〉 ≤ ‖(H̃ −H)(β − βH)‖2‖βH − βH̃‖2.

Rearranging both sides gives the first advertised inequality.
Now fix any λ ∈ Λ and i ∈ [n], and let

H̃ = ∇2
βm(Pn,9i, β̂(λ), λ) and H = ∇2

βm(Pn, β̂(λ), λ) = n
n−1

1
n

∑n
j=1∇2

βm(Pn,9j , β̂(λ), λ).

By Assump. 1, mineig(H̃) ≥ cλ,λ. Moreover, Assump. 1, the concavity of the minimum eigenvalue, and Jensen’s
inequality imply

mineig(H) ≥ n
n−1

1
n

∑n
j=1 mineig(∇2

βm(Pn,9j , β̂(λ), λ)) ≥ n
n−1cλ,λ ≥ cλ,λ.

Hence, we may apply Lemma 20 with βH = β̃IJ
9i (λ), βH̃ = β̃9i(λ), β = β̂(λ), and ϕ0 ≡ 0 to find that

‖β̃IJ
9i (λ)− β̃9i(λ)‖2 ≤ 1

cλ,λ
‖∇2

βm(Pn, β̂(λ), λ)−∇2
βm(Pn,9i, β̂(λ), λ)‖op‖β̃IJ

9i (λ)− β̂(λ)‖2
= 1

n2
1

cλ,λ
‖∇2

β`(zi, β̂(λ))‖op‖∇2
βm(Pn, β̂(λ), λ)−1∇β`(zi, β̂(λ))‖2

≤ 1
n2

1
c2λ,λ
‖∇2

β`(zi, β̂(λ))‖op‖∇β`(zi, β̂(λ))‖2.

D.2 Proof of (20): Proximity of ACV and ACVIJ

Fix any λ ∈ Λ. To control the discrepancy between ACV(λ) and ACVIJ(λ), we first rewrite the difference using
Taylor’s theorem with Lagrange remainder:

ACVIJ(λ)−ACV(λ) = 1
n

∑n
i=1 `(zi, β̃

IJ
9i (λ))− `(zi, β̃9i(λ))

= 1
n

∑n
i=1〈∇β`(zi, β̃9i(λ)), β̃IJ

9i (λ)− β̃9i(λ)〉+ 1
2∇2

β`(zi, s̃i)[β̃9i(λ)− β̃IJ
9i (λ)]⊗2

for some s̃i ∈ {tβ̃9i(λ) + (1− t)β̃IJ
9i (λ) : t ∈ [0, 1]}. We next use the mean-value theorem to expand each function

〈∇β`(zi, ·), β̃IJ
9i (λ)− β̃9i(λ)〉 around the full-data estimator β̂(λ):

ACVIJ(λ)−ACV(λ) = 1
n

∑n
i=1〈∇β`(zi, β̂(λ)), β̃IJ

9i (λ)− β̃9i(λ)〉+ 1
2∇2

β`(zi, s̃i)[β̃9i(λ)− β̃IJ
9i (λ)]⊗2

+ 〈∇2
β`(zi, si)(β̃9i(λ)− β̂(λ)), β̃IJ

9i (λ)− β̃9i(λ)〉

for some si ∈ {tβ̂(λ) + (1− t)β̃9i(λ) : t ∈ [0, 1]}. Now, by Assump. 1, we have

‖β̃9i(λ)− β̂(λ)‖2 = 1
n‖H

−1
i ∇β`(zi, β̂(λ))‖2 ≤ 1

ncλ,λ
‖∇β`(zi, β̂(λ))‖2.

Combining these observations with Cauchy-Schwarz, the definition of the operator norm, the estimator proximity
result (19), the definition of the Lipschitz constant Lip(∇β`(zi, ·)), and Assump. 2 we obtain

|ACVIJ(λ)−ACV(λ)| ≤ 1
n

∑n
i=1 ‖∇β`(zi, β̂(λ))‖2‖β̃9i(λ)− β̃IJ

9i (λ)‖2 + 1
2‖∇2

β`(zi, s̃i)‖op‖β̃9i(λ)− β̃IJ
9i (λ)‖22

+ ‖∇2
β`(zi, si)‖op‖β̃9i(λ)− β̂(λ)‖2‖β̃9i(λ)− β̃IJ

9i (λ)‖2
≤ 1

n2c2λ,λ

1
n

∑n
i=1 ‖∇2

β`(zi, β̂(λ))‖op‖∇β`(zi, β̂(λ))‖22
+ 1

2
1

n4c4λ,λ

1
n

∑n
i=1 ‖∇2

β`(zi, s̃i)‖op‖∇2
β`(zi, β̂(λ))‖2op‖∇β`(zi, β̂(λ))‖22

+ 1
n3c3λ,λ

1
n

∑n
i=1 ‖∇2

β`(zi, si)‖op‖∇2
β`(zi, β̂(λ))‖op‖∇β`(zi, β̂(λ))‖22

≤ 1
n2c2λ,λ

B`1,2 + 1
2n4c4λ,λ

B`3,2 + 1
n3c3λ,λ

B`2,2.
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E Proof of Thm. 6: ACV-CV selection error

The first claim follows immediately from the following more detailed version of Thm. 6.

Theorem 21 (ACV proximity implies β̂ proximity). Suppose Assumps. 1 and 3 hold for some Λ ⊆ [0,∞] and
each (s, r) ∈ {(0, 2), (1, 2)}. Then, for all λ′, λ ∈ Λ with λ′ < λ,

‖β̂(λ)− β̂(λ′)‖22 ≤ C1,λ,λ′

(
C̃2,λ,λ′

n + ACV(λ)−ACV(λ′) +
C3,λ,λ′

n2

)
,

for C1,λ,λ′ and C3,λ,λ′ defined in Thm. 7 and

C̃2,λ,λ′ =
3B`0,2

c`+λcπI[λ≥λπ ] +
B`0,2

c`+λ′cπI[λ′≥λπ ] .

Proof Fix any λ′, λ ∈ Λ with λ′ < λ. We will proceed precisely an in the proof of Thm. 23, except we will
provide alternative bounds for the quantities ∆T2 and ∆T3 in the loss decomposition (26). First, we apply
Cauchy-Schwarz, the definition of the operator norm, the triangle inequality, and the arithmetic-geometric mean
inequality in turn to find

|∆T2| = 1
n | 1n

∑n
i=1〈∇β`(zi, β̂(λ))−∇β`(zi, β̂(λ′)),∇2

βm(Pn,9i, β̂(λ), λ)−1∇β`(zi, β̂(λ))〉|
≤ 1

n2

∑n
i=1 ‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖op‖∇β`(zi, β̂(λ))‖2(‖∇β`(zi, β̂(λ))‖2 + ‖∇β`(zi, β̂(λ′))‖2)

≤ 1
n2

∑n
i=1 ‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖op( 3
2‖∇β`(zi, β̂(λ))‖22 + 1

2‖∇β`(zi, β̂(λ′))‖22)

≤ 1
n

2B`0,2
c`+λcπI[λ≥λπ ] , (21)

where we have used Assump. 1 and Assump. 2 for (s, r) = (0, 2) in the final line.

Next, we again apply the triangle inequality, the definition of the operator norm, the arithmetic-geometric mean
inequality, Assump. 1, and Assump. 2 for (s, r) = (0, 2) to obtain

|∆T3| = | 1
n2

∑n
i=1〈∇β`(zi, β̂(λ′)),∇2

βm(Pn,9i, β̂(λ), λ)−1∇β`(zi, β̂(λ))〉
− 1

n2

∑n
i=1〈∇β`(zi, β̂(λ′)),∇2

βm(Pn,9i, β̂(λ′), λ′)−1∇β`(zi, β̂(λ′))〉|
≤ 1

n
1
n

∑n
i=1 ‖∇β`(zi, β̂(λ′))‖2‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖op‖∇β`(zi, β̂(λ))‖2
+ ‖∇β`(zi, β̂(λ′))‖22‖∇2

βm(Pn,9i, β̂(λ′), λ′)−1‖op

≤ 1
n

1
n

∑n
i=1( 1

2‖∇β`(zi, β̂(λ′))‖22 + 1
2‖∇β`(zi, β̂(λ))‖22)‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖op

+ ‖∇β`(zi, β̂(λ′))‖22‖∇2
βm(Pn,9i, β̂(λ′), λ′)−1‖op

≤ 1
n (

B`0,2
c`+λcπI[λ≥λπ ] +

B`0,2
c`+λ′cπI[λ′≥λπ ] ). (22)

Plugging the bounds (21) and (22) into the proof Thm. 23 yields the result.
The second claim (10) follows the first and the following bound on |ACV(λCV)−ACV(λACV)|.
Lemma 22. Suppose Assumps. 1, 2, and 3 hold for some Λ ⊆ [0,∞] and each (s, r) ∈ {(0, 3), (1, 3), (1, 4)}. If
λACV ∈ argminλ∈Λ ACV(λ) and λCV ∈ argminλ∈Λ CV(λ), then

0 ≤ ACV(λCV)−ACV(λACV) ≤ 2(κ2

n2

B`0,3
c2m

+ κ2

n3

B`1,3
c3m

+
κ2
2

n4

B`1,4
2c4m

).

Proof Since λCV minimizes CV and λACV minimizes ACV,

0 ≤ ACV(λCV)−ACV(λACV) ≤ ACV(λCV)−ACV(λACV) + CV(λACV)−CV(λCV).

The result now follows from two applications of Thm. 2.
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F Proof of Thm. 7: Strong ACV-CV selection error

The first claim follows immediately from the following more detailed version of Thm. 7, proved in App. F.1.

Theorem 23 (Strong ACV proximity implies β̂ proximity). Suppose Assumps. 1, 2, 3, and 4 hold for some

Λ ⊆ [0,∞] with 0 ∈ Λ and each (s, r) ∈ {(0, 2), (1, 1), (1, 2)}. Suppose also ‖∇π(β̂(0))‖2 > 0. Then for all
λ′, λ ∈ Λ with λ′ < λ,

‖β̂(λ)− β̂(λ′)‖22 ≤ C1,λ,λ′

(
C2,λ,λ′/n‖β̂(λ)− β̂(λ′)‖2 + ACV(λ)−ACV(λ′) + C3,λ,λ′/n

2
)

and hence (23)

|‖β̂(λ)− β̂(λ′)‖2 − C1,λ,λ′C2,λ,λ′

2n | ≤
√

C2
1,λ,λ′C

2
2,λ,λ′

4n2 + C1,λ,λ′(ACV(λ)−ACV(λ′)) +
C1,λ,λ′C3,λ,λ′

n2 , (24)

where

C1,λ,λ′ = 2
cm

λ−λ′
λ+λ′

n−1
n ,

C2,λ,λ′ =
2B`1,1

c`+λcπI[λ≥λπ ] +
2B`0,2κ

λ′
2,λ′

c`+λ′cπI[λ≥λπ ] + n−1
n

B`0,2Cπ,2κ
λ
1,λκ

λ
1,λ′

‖∇π(β̂(0))‖2cm
,

C3,λ,λ′ =
B`1,2
c2m

for κλp,λ′ defined in Thm. 14.

The second claim follows directly from the Thm. 23 bound (24) and Lemma 22.

F.1 Proof of Thm. 23

Fix any λ′, λ ∈ Λ with λ′ < λ. The statement (24) follows directly from (23) and the quadratic formula, so we
will focus on establishing the bound (23). We begin by writing the difference in estimator training losses as a
difference in ACV values plus a series of error terms:

`(Pn, β̂(λ))− `(Pn, β̂(λ′)) = ACV(λ)−ACV(λ′) + ∆T1 −∆T2 −∆T3 (25)

for

∆T1 , ÂCV(λ)−ACV(λ) + ACV(λ′)− ÂCV(λ′),

ÂCV(λ) , `(Pn, β̂(λ)) + 1
n

∑n
i=1〈∇β`(zi, β̂(λ)), β̃9i(λ)− β̂(λ)〉,

∆T2 , 1
n

∑n
i=1〈∇β`(zi, β̂(λ))−∇β`(zi, β̂(λ′)), β̃9i(λ)− β̂(λ)〉, and

∆T3 , 1
n

∑n
i=1〈∇β`(zi, β̂(λ′)), β̃9i(λ)− β̂(λ)− (β̃9i(λ

′)− β̂(λ′))〉. (26)

Here, ÂCV(λ) arises by first-order Taylor-expanding each `(Pn, β̃9i(λ)) about β̂(λ) in the expression of ACV(λ).

To complete the proof, we will bound ∆T1, ∆T2, ∆T3, and `(Pn, β̂(λ))− `(Pn, β̂(λ′)) in turn.

F.1.1 Bounding ∆T1

To control ∆T1, we will appeal to the following lemma which shows that ÂCV provides an O(1/n2) approximation
to ACV, uniformly in λ. The proof can be found App. F.2.

Lemma 24 (ACV-ÂCV approximation error). Suppose Assumps. 1 and 2 hold for some Λ ⊆ [0,∞] and
(s, r) = (1, 2). Then, for each λ ∈ Λ,

|ACV(λ)− ÂCV(λ)| ≤ 1
n2

B`1,2
2c2m

.

Applying Lemma 24 to λ and λ′, we obtain

|∆T1| ≤ 1
n2

B`1,2
c2m

. (27)
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F.1.2 Bounding ∆T2

We employ the mean value theorem, Cauchy-Schwarz, the definition of the operator norm, Assump. 1, and
Assump. 2 for (s, r) = (1, 1) to find that

|∆T2| = 1
n | 1n

∑n
i=1〈∇β`(zi, β̂(λ))−∇β`(zi, β̂(λ′)),∇2

βm(Pn,9i, β̂(λ), λ)−1∇β`(zi, β̂(λ))〉|
= 1

n | 1n
∑n
i=1〈∇2

β`(zi, sλ,λ′)(β̂(λ)− β̂(λ′)),∇2
βm(Pn,9i, β̂(λ), λ)−1∇β`(zi, β̂(λ))〉|

≤ 1
n‖β̂(λ)− β̂(λ′)‖2 1

n

∑n
i=1 ‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖op‖∇2
β`(zi, sλ,λ′)‖op‖∇β`(zi, β̂(λ))‖2

≤ 1
n‖β̂(λ)− β̂(λ′)‖2 B`1,1

c`+λcπI[λ≥λπ ] (28)

for some convex combination sλ,λ′ of β̂(λ) and β̂(λ′).

F.1.3 Bounding ∆T3

We next show that the double difference term ∆T3 is controlled by estimator proximity ‖β̂(λ)− β̂(λ′)‖2 and
regularization parameter proximity |λ− λ′| times an extra factor of 1/n. This result is proved in App. F.3.

Lemma 25. Suppose Assumps. 1, 2, 3, and 4 hold for some Λ ⊆ [0,∞] and each (s, r) = {(0, 2), (1, 1)}. Then,
for all λ, λ′ ∈ Λ,

|∆T3| ≤ 1
n‖β̂(λ)− β̂(λ′)‖2

(
B`1,1

c`+λcπI[λ≥λπ ] +
2B`0,2κ

λ′
2,λ′

c`+λ′cπI[λ≥λπ ]

)
(29)

+ 1
n |λ− λ′|

B`0,2Cπ,2
(c`+cπλI[λ≥λπ ])(c`+cπλ′I[λ≥λπ ])

for ∆T3 defined in (26) and κλ
′

2,λ′ defined in Thm. 14.

We combine (29) with the following bound on |λ− λ′| proved in App. F.4:

Lemma 26 (β̂ proximity implies λ proximity). Suppose Assumps. 1 and 4 hold for some Λ ⊆ [0,∞] with 0 ∈ Λ.
Then, for all λ, λ′ ∈ Λ,

|λ− λ′| ≤ n−1
n

(C`,2+λCπ,2)(C`,2+λ′Cπ,2)
cm

1
‖∇π(β̂(0))‖2

‖β̂(λ)− β̂(λ′)‖2. (30)

Together, (29) and (30) imply

|∆T3| ≤ 1
n‖β̂(λ)− β̂(λ′)‖2

(
B`1,1

c`+λcπI[λ≥λπ ] +
2B`0,2κ

λ′
2,λ′

c`+λ′cπI[λ≥λπ ] + n−1
n

B`0,2Cπ,2κ
λ
1,λκ

λ
1,λ′

‖∇π(β̂(0))‖2cm

)
. (31)

F.1.4 Putting the pieces together

Our final lemma, proved in App. F.5, establishes that, due to the curvature of the loss, two estimators with
similar training loss must also be close in Euclidean norm.

Lemma 27 (Loss curvature). Suppose that for some cm > 0 and 0 ≤ λ′ < λ ≤ ∞ and all i ∈ [n], m(Pn,9i, ·, λ)
and m(Pn,9i, ·, λ′) have νm(r) = cmr

2 gradient growth. Then

cm
2 ‖β̂(λ)− β̂(λ′)‖22 λ+λ′

λ−λ′ ≤ 1
n

∑n
i=1 `(Pn,9i, β̂(λ))− `(Pn,9i, β̂(λ′)) = n−1

n (`(Pn, β̂(λ))− `(Pn, β̂(λ′))).

The advertised result (23) now follows by combining Lemma 27 with the loss difference decomposition (25) and
the component bounds (27), (28), and (31).

F.2 Proof of Lemma 24: ACV-ÂCV approximation error

By Taylor’s theorem with Lagrange remainder,

ACV(λ)− ÂCV(λ) = 1
2n

∑n
i=1∇2

β`(zi, si)[β̃9i(λ)− β̂(λ)]⊗2
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for some si ∈ Li = {tβ̂(λ) + (1 − t)β̃9i(λ) : t ∈ [0, 1]}. Assump. 1 implies that m(Pn,9i, β̂(λ), λ) is cm strongly

convex and hence that ∇2
βm(Pn,9i, β̂(λ), λ) < cmId. Therefore, we may apply the definition of the operator norm

and Assump. 2 to find that

|ACV(λ)− ÂCV(λ)| ≤ 1
2n

∑n
i=1 ‖∇2

β`(zi, si)‖op‖β̃9i(λ)− β̂(λ)‖22
= 1

2n

∑n
i=1 ‖∇2

β`(zi, si)‖op
1
n2 ‖m(Pn,9i, β̂(λ), λ)−1∇β`(zi, β̂(λ))‖22

≤ 1
2n

∑n
i=1 ‖∇2

β`(zi, si)‖op
1
n2

1
c2m
‖∇β`(zi, β̂(λ))‖22

≤ 1
n2

B`1,2
2c2m

.

F.3 Proof of Lemma 25: ∆T3-bound

Fix any λ, λ′ ∈ Λ. We first expand ∆T3 into three terms:

∆T3 = 1
n2

∑n
i=1〈∇β`(zi, β̂(λ′)),∇2

βm(Pn,9i, β̂(λ), λ)−1(∇β`(zi, β̂(λ))−∇β`(zi, β̂(λ′)))〉
+ 1

n2

∑n
i=1〈∇β`(zi, β̂(λ′)), (∇2

βm(Pn,9i, β̂(λ), λ′)−1 −∇2
βm(Pn,9i, β̂(λ′), λ′)−1)∇β`(zi, β̂(λ′))〉

+ 1
n2

∑n
i=1〈∇β`(zi, β̂(λ′)), (∇2

βm(Pn,9i, β̂(λ), λ)−1 −∇2
βm(Pn,9i, β̂(λ), λ′)−1)∇β`(zi, β̂(λ′))〉

, ∆T31 + ∆T32 + ∆T33.

Precisely as in (28) we obtain

|∆T31| ≤ 1
n‖β̂(λ)− β̂(λ′)‖2 B`1,1

c`+λcπI[λ≥λπ ] .

Furthermore, we may use Cauchy-Schwarz, the definition of the operator norm, Assumps. 1 and 3, and Assump. 2
with (s, r) = (0, 2) to find

|∆T32| ≤ 1
n

1
n

∑n
i=1 ‖∇β`(zi, β̂(λ′))‖22‖∇2

βm(Pn,9i, β̂(λ), λ′)−1‖op‖∇2
βm(Pn,9i, β̂(λ′), λ′)−1‖op

· ‖∇2
βm(Pn,9i, β̂(λ), λ′)−∇2

βm(Pn,9i, β̂(λ′), λ′)‖op

≤ B`0,2(C`,3+λ′Cπ,3)

(c`+λ′cπI[λ≥λπ ])(c`+λ′cπI[λ′≥λπ ])
1
n‖β̂(λ)− β̂(λ′)‖2.

Finally, Cauchy-Schwarz, the definition of the operator norm, Assumps. 1 and 4, and Assump. 2 with (s, r) = (0, 2)
yield

|∆T33| ≤ 1
n

1
n

∑n
i=1 ‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖2‖∇β`(zi, β̂(λ′))‖22‖∇2
βm(Pn,9i, β̂(λ), λ′)−∇2

βm(Pn,9i, β̂(λ), λ)‖op

· ‖∇2
βm(Pn,9i, β̂(λ), λ′)−1‖2

= 1
n |λ− λ′|‖∇2

βπ(β̂(λ))‖op
1
n

∑n
i=1 ‖∇2

βm(Pn,9i, β̂(λ), λ)−1‖2‖∇2
βm(Pn,9i, β̂(λ), λ′)−1‖2‖∇β`(zi, β̂(λ′))‖22

≤ 1
n |λ− λ′|

B`0,2Cπ,2
(c`+cπλI[λ≥λπ ])(c`+cπλ′I[λ≥λπ ]) .

We obtain the desired result by applying the triangle inequality and summing these three estimates.

F.4 Proof of Lemma 26: |λ− λ′|-bound

We begin with a lemma that allows us to rewrite a regularization parameter difference in terms of an estimator
difference.

Lemma 28. Fix any λ, λ′ ∈ [0,∞]. If ∇βm(Pn, ·, λ′) is absolutely continuous, then

0 = (λ− λ′)∇βπ(β̂(λ)) + E[∇2
βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))

= λ′−λ
λ ∇β`(Pn, β̂(λ)) + E[∇2

βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′)).

for Sλ,λ′ distributed uniformly on the set {tβ̂(λ) + (1− t)β̂(λ′) : t ∈ [0, 1]}.
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Proof The first order optimality conditions for β̂(λ) and β̂(λ′) and the absolute continuity of ∇βm(Pn, ·, λ′)
imply that

0 = ∇βm(Pn, β̂(λ), λ) = ∇β`(Pn, β̂(λ)) + λ∇π(β̂(λ))

= (λ− λ′)∇βπ(β̂(λ)) +∇βm(Pn, β̂(λ), λ′)

= (λ− λ′)∇βπ(β̂(λ)) + (∇βm(Pn, β̂(λ), λ′)−∇βm(Pn, β̂(λ′), λ′))

= (λ− λ′)∇βπ(β̂(λ)) + E[∇2
βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))

= λ′−λ
λ ∇β`(Pn, β̂(λ)) + E[∇2

βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))

by Taylor’s theorem with integral remainder.

Now fix any λ, λ′ ∈ Λ. Since ∇βm(Pn, ·, λ′), ∇βm(Pn, ·, λ), and ∇βm(Pn, ·, 0) = ∇β`(Pn, ·) are absolutely
continuous by Assump. 4, we may apply Lemma 28 first to (λ, λ′), then to (λ, 0), and finally to (0, λ) to obtain

0 = λ′−λ
λ ∇β`(Pn, β̂(λ)) + E[∇2

βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))

= λ′−λ
λ E[∇2

β`(Pn, Sλ,0)](β̂(λ)− β̂(0)) + E[∇2
βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))

= (λ− λ′)E[∇2
β`(Pn, Sλ,0)]E[∇2

βm(Pn, S0,λ, λ)]−1∇βπ(β̂(0)) + E[∇2
βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))

where Sλ,λ′ is distributed uniformly on the set {tβ̂(λ) + (1− t)β̂(λ′) : t ∈ [0, 1]} and Sλ,0, S0,λ are distributed

uniformly on the set {tβ̂(λ) + (1− t)β̂(0) : t ∈ [0, 1]}. Rearranging and taking norms gives the identity

|λ− λ′|‖∇βπ(β̂(0))‖2 = ‖E[∇2
βm(Pn, Sλ,0, λ)]E[∇2

β`(Pn, Sλ,0)]−1E[∇2
βm(Pn, Sλ,λ′ , λ′)](β̂(λ)− β̂(λ′))‖2.

Our gradient growth assumption for the regularization parameter 0 implies that each `(Pn,9i, ·) is cm-strongly
convex [Nesterov, 2008, Lem. 1]. Therefore,

E[∇2
β`(Pn, Sλ,0)] = n

n−1
1
n

∑n
i=1 E[∇2

β`(Pn,9i, Sλ,0)] < cm
n
n−1 Id.

Applying this inequality along with Cauchy Schwarz and Assump. 4 for λ and λ′, we now conclude that

|λ− λ′| ≤ n−1
n

(C`,2+λCπ,2)(C`,2+λ′Cπ,2)
cm

1
‖∇π(β̂(0))‖2

‖β̂(λ)− β̂(λ′)‖2.

F.5 Proof of Lemma 27: Loss curvature

Fix any λ, λ′ ∈ Λ with λ > λ′ and i ∈ [n], and consider the functions ϕ2 = m(Pn,9i, ·, λ′) and ϕ1 = λ′

λm(Pn,9i, ·, λ).
The gradient growth condition in Assump. 1 implies that m(Pn,9i, ·, λ′) and m(Pn,9i, ·, λ) are cm-strongly convex.

Hence, ϕ2 admits a νϕ2
(r) = cm

2 r
2 error bound, and ϕ1 admits a νϕ1

(r) = λ′

λ
cm
2 r

2 error bound. The result now
follows immediately from the optimizer comparison bound (4).

G Proof of Prop. 8

We write En[zi] , 1
n

∑n
i=1 zi to denote a sample average. Consider the Lasso estimator

β̂(λ) , argminβ
1

2n

∑n
i=1(β − zi)2 + λ|β| = max(z̄ − λ, 0).

Define εi = zi − z̄. The leave-one-out mean z̄−i = 1
n

∑
j 6=i zi is equal to z̄− zi

n . The IJ estimate β̃IJ
9i (λ) is given by

β̃IJ
9i (λ) =

{
0 λ ≥ z̄
β̂(λ)− zi−β̂(λ)

n = z̄ − λ− εi+λ
n else.

The IJ approximate cross-validation estimate for this estimator is therefore given by

2ACVIJ(λ) = En[(zi − β̃IJ
9i (λ))2] =

{
z̄2 + 1 λ ≥ z̄
(λ2 + 1)(1 + 1

n )2 else.
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By construction of our dataset, λ ≥ 0 > −z̄−i for all i. Now, the leave-one-out estimator of β is given by

β̂9i(λ) = max
(
z̄ − n

n−1λ− 1
n−1εi, 0

)
, and the leave-one-out CV estimate is given by

2CV(λ) = En[(z̄ − zi)2] + (z̄ − β̂(λ))2

+ 2En[(β̂9i(λ)− β̂(λ))zi] + En[(β̂9i(λ)− β̂(λ))2]

= 1 + min(z̄, λ)2

+ En[max(
(
z̄ − n

n−1λ− 1
n−1εi, 0

)
− (max(z̄ − λ, 0)) · (z̄ + εi)]

+ En[(max
(
z̄ − n

n−1λ− 1
n−1εi, 0

)
− (max(z̄ − λ, 0))2].

Evaluating these expressions at λ = z̄, we get β̂9i(z̄) = max
(
− zi
n−1 , 0

)
, so that

2ACVIJ(z̄) = z̄2 + 1,

2CV(z̄) = 1 + z̄2 + En[max(− zi
n−1 , 0) · zi]

+ En[max(− zi
n−1 , 0)2]

and thus

2(ACVIJ(z̄)−CV(z̄))

= En[max(− zi
n−1 , 0) · zi] + En[max(− zi

n−1 , 0)2]

= En[z2
i · 1(zi < 0)] · n

(n− 1)2
.

Our dataset was constructed such that

Pn(εi < 0) = 1/2

En[εi|εi < 0] =
√

2/π

En[ε2i |εi < 0] = 1

En[z2
i · 1(zi < 0)] = En[(z̄2 + 2z̄εi + ε2i ) · 1(εi < 0)]

= 1
2 (z̄2 − 2z̄

√
2/π + 1),

and thus

ACVIJ(z̄)−CV(z̄) = n
4(n−1)2

(
1− 2z̄

√
2/π + z̄2

)
.

To make λ = z̄ the ACVIJ minimizing choice in this example (a condition we have not assumed thus far), it
suffices to have z̄ ≤

√
2/n. For the choice z̄ =

√
2/n, we get

ACVIJ(z̄)−CV(z̄) =
n

4(n− 1)2

(
1− 4√

nπ
+ 2

n

)
.

H Proof of Prop. 9

We write En[zi] , 1
n

∑n
i=1 zi to denote a sample average. Consider the patched Lasso estimator

β̂(λ) , argmin
β

1
2n

∑
i

(β − zi)2 + λmin(|β|, δ2 + β2

2δ ) = max
(
z̄ − λ, z̄

1+λ/δ

)
.

Define εi = zi− z̄. The leave-one-out mean is equal to z̄−i = z̄− εi
n . For εi/n < z̄, we have β̂9i(λ)− β̂(λ) = − εi

n−1 if

εi < 0 and β̂9i(λ)− β̂(λ) = − εi
n−1

1
1+λ/δ if εi > 0. Considering left hand derivatives, we also have β̃IJ

9i (λ)− β̂(λ) =

− εin .
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For λ = δ and z̄ = 2δ, we get β̂(λ) = δ, and and thus, by our choice of dataset,

ACVIJ(z̄)−CV(z̄) = 1
2En

[
(Zi − β̃IJ

9i (λ))2 − (Zi − β̂9i(λ))2
]

= 1
2En

[
(2δ + εi − δ + εi

n )2 − (2δ + εi − δ + 1
2

εi
n−1 )2|εi > 0

]
+ 1

2En
[
(2δ + εi − δ + εi

n )2 − (2δ + εi − δ + εi
n−1 )2|εi < 0

]
= 1

2En
[
(δ + εi(1 + 1

n ))2 − (δ + εi(1 + 1
2(n−1) ))2|εi > 0

]
+O( 1

n2 )

= δEn[εi|εi > 0] · 1
n +O( 1

n2 )

= δ
√

2/π · 1
n +O( 1

n2 ).

I Proof of Thm. 10: ProxACV-CV assessment error

The optimization perspective adopted in this paper naturally points towards generalizations of the proximal
estimator (13). In particular, stronger assessment guarantees can be provided for (regularized) higher-order Taylor
approximations of the objective function. For example, for p ≥ 2, we may define the p-th order approximation

ProxACVHO
p (λ) , 1

n

∑n
i=1 `(zi, β̃

Prox-HOp
9i (λ)) with

β̃
Prox-HOp
9i (λ) , argminβ∈Rd{ˆ̀p(Pn,9i, β; β̂(λ)) + λπ(β)}

which recovers ProxACV (12) and the ProxACV estimator (13) in the setting p = 2. We also define the
regularized p-th order approximation

ProxACVRHO
p (λ) , 1

n

∑n
i=1 `(zi, β̃

Prox-RHOp
9i (λ)) with

β̃
Prox-RHOp
9i (λ) , argminβ∈Rd

{
ˆ̀
p(Pn,9i, β; β̂(λ)) +

Lip(∇pβ`(Pn,9i,·))
p+1 ‖β̂(λ)− β‖p+1

2 + λπ(β)
}
,

where ˆ̀
p(Pn,9i, ·; β̂(λ)) is a p-th order Taylor expansion of the loss `p(Pn,9i, ·) about β̂(λ), that is, f̂p(β; β̂(λ)) ,∑p

k=0
1
k!∇kf(β̂(λ))(β− β̂(λ))⊗k. To analyze both, we will make use of the following assumptions which generalize

Assump. 1c.

Assumption 1g (Curvature of proximal Taylor approximation). For some p, q, cm > 0, all i ∈ [n], and all λ in

a given Λ ⊆ [0,∞], ̂̀p(Pn,9i, ·, λ; β̂(λ)) + λπ has ν(r) = cmr
q gradient growth.

Assumption 1h (Curvature of regularized proximal Taylor approximation). For some p, q, cm > 0, all i ∈ [n],

and all λ in a given Λ ⊆ [0,∞], ̂̀p(Pn,9i, ·, λ; β̂(λ))+
Lip(∇pβ`(Pn,9i,·,λ))

p+1 ‖· − β̂(λ)‖p+1
2 +λπ has ν(r) = cmr

q gradient
growth.

Thm. 10 will then follow from the following more general statement, proved in App. I.1.

Theorem 29 (ProxACVHO
p -CV and ProxACVRHO

p -CV assessment error). If Assumps. 3c, 1d, and 1g hold
for some Λ ⊆ [0,∞], then, for all λ ∈ Λ and i ∈ [n],

‖β̃Prox-HOp
9i (λ)− β̂9i(λ)‖q−1

2 ≤ κ̃p‖β̂9i(λ)− β̂(λ)‖p2 with κ̃p ,
C`,p+1

p!cm
. (32a)

If Assumps. 3c, 1d, and 1g hold for some Λ ⊆ [0,∞], then, for all λ ∈ Λ and i ∈ [n],

‖β̃Prox-RHOp
9i (λ)− β̂9i(λ)‖q−1

2 ≤ 2κ̃p‖β̂9i(λ)− β̂(λ)‖p2. (32b)

If Assumps. 2, 3c, 1d, and 1g hold for some Λ ⊆ [0,∞] and each (s, r) ∈ {(0, p+(q−1)2

(q−1)2 ), (1, 2p
(q−1)2 ), (1, p+q−1

(q−1)2 )},
then, for all λ ∈ Λ,

|ProxACVHO
p (λ)−CV(λ)|

≤ 1

n
p

(q−1)2

(κ̃p)
1
q−1

c

p

(q−1)2
m

B`
0,
p+(q−1)2

(q−1)2

+ 1
2

1

n
2p

(q−1)2

(κ̃p)
2
q−1

c

2p

(q−1)2
m

B`
1, 2p

(q−1)2

+ 1

n
p+q−1

(q−1)2

(κ̃p)
1
q−1

c

p+q−1

(q−1)2
m

B`
1, p+q−1

(q−1)2

and (33a)
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If Assumps. 2, 3c, 1d, and 1h holds for Λ and each (s, r) ∈ {(0, p+(q−1)2

(q−1)2 ), (1, 2p
(q−1)2 ), (1, p+q−1

(q−1)2 )}, then, for all

λ ∈ Λ,

|ProxACVRHO
p (λ)−CV(λ)|

≤ 1

n
p

(q−1)2

(2κ̃p)
1
q−1

c

p

(q−1)2
m

B`
0,
p+(q−1)2

(q−1)2

+ 1
2

1

n
2p

(q−1)2

(2κ̃p)
2
q−1

c

2p

(q−1)2
m

B`
1, 2p

(q−1)2

+ 1

n
p+q−1

(q−1)2

(2κ̃p)
1
q−1

c

p+q−1

(q−1)2
m

B`
1, p+q−1

(q−1)2

. (33b)

Thm. 10 follows from Thm. 29 with p = q = 2 since Assump. 1c (with 0 ∈ Λ) implies µ = cm strong convexity for̂̀
2(Pn,9i, ·, λ; β̂(λ)). Since π is convex, we further have µ strong convexity and hence ν(r) = µr2 gradient growth

for ̂̀2(Pn,9i, ·, λ; β̂(λ)) + λπ(·) for each λ ∈ Λ.

I.1 Proof of Thm. 29: ProxACVHO
p -CV and ProxACVRHO

p -CV assessment error

I.1.1 Proof of (32a) and (32b): Proximity of ProxACVHO
p , ProxACVRHO

p , and CV estimators

The proofs follow exactly as in Apps. B.1.2 and B.1.3 if we take ϕ(x) = `(x), ϕ̂p(x;w) = ̂̀
p(x;w), ϕ0(x) = π(x),

and w = β̂(λ) and invoke Assumps. 3c, 1g, and 1h in place of Assumps. 3b, 1e, and 1f, respectively.

I.1.2 Proof of (33a) and (33b): Proximity of ProxACVHO
p ,ProxACVRHO

p , and CV

This proofs follow exactly as in follows directly from the proof contained in Apps. B.1.4 and B.1.5 if we substitute
(32a) and (32b) for (16a) and (16b) respectively.

J Proof of Thm. 11: ProxACVIJ-ProxACV assessment error

We will prove the following more detailed statement from which Thm. 11 immediately follows.

Theorem 30 (ProxACVIJ-ProxACV assessment error). If Assump. 1c holds for Λ ⊆ [0,∞] with 0 ∈ Λ, then,
for each λ ∈ Λ,

‖β̃prox,IJ
9i (λ)− β̃prox

9i (λ)‖2 ≤ ‖∇
2
β`(zi,β̂(λ))‖op‖∇β`(zi,β̂(λ))‖2

c2mn
2 (34)

If, in addition, Assump. 2 holds for Λ and each (s, r) ∈ {(1, 2), (2, 2), (3, 2)}, then

|ProxACVIJ(λ)−ProxACV(λ)| ≤ 1
n2c2m

B`1,2 + 1
2n4c4m

B`3,2 + 1
n3c3m

B`2,2. (35)

J.1 Proof of (34): Proximity of ProxACVIJ and ProxACV estimators

The concavity of the minimum eigenvalue, Jensen’s inequality, and Assump. 1c with 0 ∈ Λ imply that

mineig(H`) = mineig( n
n−1

1
n

∑n
i=1 H`,i) ≥ n

n−1
1
n

∑n
i=1 mineig(H`,i) ≥ n

n−1cm

for H` = ∇2
β`(Pn, β̂(λ)) and H`,i = ∇2

β`(Pn,9i, β̂(λ)). Moreover, Assump. 1c with 0 ∈ Λ implies µ = cm strong

convexity for ̂̀2(Pn,9i, ·, λ; β̂(λ)); since π is convex, we further have µ strong convexity and hence ν(r) = µr2

gradient growth for ̂̀2(Pn,9i, ·, λ; β̂(λ)) + λπ(·) for each λ ∈ Λ. Hence, we may apply the Proximal Newton
Comparison Lemma 20 to obtain

‖β̃prox,IJ
9i (λ)− β̃prox

9i (λ)‖2 ≤ 1
cm
‖∇2

β`(Pn, β̂(λ))−∇2
β`(Pn,9i, β̂(λ))‖op‖β̃prox

9i (λ)− β̂(λ)‖2
≤ 1

n
1
cm
‖∇2

β`(zi, β̂(λ))‖op‖β̃prox
9i (λ)− β̂(λ)‖2.

To complete the bound, we note that β̂(λ) = prox
H`,i
λπ (β̂(λ)−H−1

`,i∇β`(Pn, β̂(λ))) and use the 1-Lipschitzness of
the prox operator to conclude that

‖β̃prox
9i (λ)− β̂(λ)‖2 ≤ ‖H−1

`,i (∇β`(Pn, β̂(λ))−∇β`(Pn,9i, β̂(λ)))‖2 ≤ 1
ncm
‖∇β`(zi, β̂(λ))‖2. (36)
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J.2 Proof of (35): Proximity of ProxACVIJ and ProxACV

Fix any λ ∈ Λ. To control the discrepancy between ProxACV(λ) and ProxACVIJ(λ), we first rewrite the
difference using Taylor’s theorem with Lagrange remainder:

ProxACV(λ)−ProxACVIJ(λ) = 1
n

∑n
i=1 `(zi, β̃

prox
9i (λ))− `(zi, β̃prox,IJ

9i (λ))

= 1
n

∑n
i=1〈∇β`(zi, β̂9i(λ)), β̃prox

9i (λ)− β̃prox,IJ
9i (λ)〉

+ 1
2∇2

β`(zi, s̃i)[β̃
prox
9i (λ)− β̃prox,IJ

9i (λ)]⊗2

for some s̃i ∈ {tβ̃prox
9i (λ) + (1− t)β̃prox,IJ

9i (λ) : t ∈ [0, 1]}. We next use the mean-value theorem to expand each

function 〈∇β`(zi, ·), β̃prox
9i (λ)− β̃prox,IJ

9i (λ)〉 around the full-data estimator β̂(λ):

ProxACV(λ)−ProxACVIJ(λ) = 1
n

∑n
i=1〈∇β`(zi, β̂(λ)), β̃prox

9i (λ)− β̃prox,IJ
9i (λ)〉

+ 1
2∇2

β`(zi, s̃i)[β̃
prox
9i (λ)− β̃prox,IJ

9i (λ)]⊗2

+ 〈∇2
β`(zi, si)(β̂9i(λ)− β̂(λ)), β̃prox

9i (λ)− β̃prox,IJ
9i (λ)〉

for some si ∈ {tβ̂(λ) + (1 − t)β̃prox,IJ
9i (λ) : t ∈ [0, 1]}. Finally, we invoke Cauchy-Schwarz, the definition of the

operator norm, the estimator proximity results (15) and (34), and Assump. 2 to obtain

|ProxACV(λ)−ProxACVIJ(λ)| ≤ 1
n

∑n
i=1 ‖∇β`(zi, β̂(λ))‖2‖β̃prox

9i (λ)− β̃prox,IJ
9i (λ)‖2

+ 1
2‖∇2

β`(zi, s̃i)‖op‖β̃prox
9i (λ)− β̃prox,IJ

9i (λ)‖22
+ ‖∇2

β`(zi, si)‖op‖β̂9i(λ)− β̂(λ)‖2‖β̃prox
9i (λ)− β̃prox,IJ

9i (λ))‖2
≤ 1

n2c2m

1
n

∑n
i=1 ‖∇2

β`(zi, β̂(λ))‖op‖∇β`(zi, β̂(λ))‖22
+ 1

2n4c4m

1
n

∑n
i=1 ‖∇2

β`(zi, s̃i)‖op‖∇2
β`(zi, β̂(λ))‖2op‖∇β`(zi, β̂(λ))‖22

+ 1
n3c3m

1
n

∑n
i=1 ‖∇2

β`(zi, s̃i)‖op‖∇2
β`(zi, β̂(λ))‖op‖∇β`(zi, β̂(λ))‖22

≤ 1
n2c2m

B`1,2 + 1
2n4c4m

B`3,2 + 1
n3c3m

B`2,2.

K Proof of Thm. 12: ProxACV-CV selection error

The first claim follows immediately from the following more detailed version of Thm. 12.

Theorem 31 (Weak ProxACV proximity implies β̂ proximity). Suppose Assumps. 1c and 3c hold for some
Λ ⊆ [0,∞] and each (s, r) ∈ {(0, 2), (1, 2)}. Then, for all λ′, λ ∈ Λ with λ′ < λ,

‖β̂(λ)− β̂(λ′)‖22 ≤ C1,λ,λ′
( 4B`0,2
ncm

+
B`1,2
n2c2m

+ ProxACV(λ)−ProxACV(λ′)
)
, (37)

where C1,λ,λ′ = 2
cm

λ−λ′
λ+λ′

n−1
n .

Proof Fix any λ′, λ ∈ Λ with λ′ < λ. We begin by writing the difference in estimator training losses as a
difference in ProxACV values plus a series of error terms:

`(Pn, β̂(λ))− `(Pn, β̂(λ′)) = ProxACV(λ)−ProxACV(λ′) + ∆T1 −∆T2 −∆T3 (38)

for

∆T1 , ProxACV̂(λ)−ProxACV(λ) + ProxACV(λ′)−ProxACV̂(λ′)

ProxACV̂(λ) , `(Pn, β̂(λ)) + 1
n

∑n
i=1〈∇β`(zi, β̂(λ)), β̃prox

9i (λ)− β̂(λ)〉
∆T2 , 1

n

∑n
i=1〈∇β`(zi, β̂(λ))−∇β`(zi, β̂(λ′)), β̃prox

9i (λ)− β̂(λ)〉
∆T3 , 1

n

∑n
i=1〈∇β`(zi, β̂(λ′)), β̃prox

9i (λ)− β̂(λ)− (β̃prox
9i (λ′)− β̂(λ′))〉.

We will frequently use the bound (36) which follows from Assump. 1c and implies

‖β̂(λ)− β̃prox
9i (λ)‖2 ≤ 1

n
1
cm
‖∇β`(zi, β̂(λ))‖2
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for each i ∈ [n].

To bound ∆T1, we first employ Taylor’s Theorem with Lagrange remainder,

ProxACV(λ)−ProxACV̂(λ) = 1
2n

∑n
i=1∇2

β`(zi, si)[β̃
prox
9i (λ)− β̂(λ)]⊗2

for some si ∈ Li = {tβ̂(λ) + (1 − t)β̂9i(λ) : t ∈ [0, 1]}. Next we apply the definition of the operator norm, the
bound (36), and Assump. 2 with (s, r) = (1, 2)

|ProxACV(λ)−ProxACV̂(λ)| ≤ 1
2n

∑n
i=1 ‖∇2

β`(zi, si)‖op‖β̃prox
9i (λ)− β̂(λ)‖22

≤ 1
2

1
n

∑n
i=1 ‖∇2

β`(zi, si)‖op

(
1
n2

1
c2m
‖∇β`(zi, β̂(λ))‖22

)
≤ 1

n2
1

2c2m
B`1,2

Since an identical bound holds for λ′, we have

|∆T1| ≤ 1
n2

1
c2m

B`1,2.

To bound ∆T2 and ∆T3, we apply Cauchy-Schwarz, the triangle inequality, the bound (36), the arithmetic-
geometric mean inequality, and Assump. 2 with (s, r) = (0, 2) to find

|∆T2| = 1
n | 1n

∑n
i=1〈∇β`(zi, β̂(λ))−∇β`(zi, β̂(λ′)), β̃prox

9i (λ)− β̂(λ)〉|
≤ 1

n

∑n
i=1 ‖β̃

prox
9i (λ)− β̂(λ)‖2

(
‖∇β`(zi, β̂(λ))‖2 + ‖∇β`(zi, β̂(λ′))‖2

)
≤ 1

n

∑n
i=1

1
n

1
cm
‖∇β`(zi, β̂(λ))‖2

(
‖∇β`(zi, β̂(λ))‖2 + ‖∇β`(zi, β̂(λ′))‖2

)
≤ 1

n
1
cm

1
n

∑n
i=1

3
2‖∇β`(zi, β̂(λ))‖22 + 1

2‖∇β`(zi, β̂(λ′))‖22 ≤ 2
n

B`0,2
cm

and

|∆T3| ≤ 1
n

∑n
i=1 ‖∇β`(zi, β̂(λ′))‖2

(
‖β̃prox

9i (λ)− β̂(λ)‖2 + ‖β̃prox
9i (λ′)− β̂(λ′)‖2

)
≤ 1

n

∑n
i=1

1
n

1
cm
‖∇β`(zi, β̂(λ))‖2

(
‖∇β`(zi, β̂(λ))‖2 + ‖∇β`(zi, β̂(λ′))‖2

)
≤ 2

n

B`0,2
cm

.

The advertised result (37) now follows by combining Lemma 27 with the loss difference decomposition (38) and
the component ∆T1,∆T2, and ∆T3 bounds.

The second claim in Thm. 12 follows from Thm. 31 and the following lemma.

Lemma 32. If Assumps. 1c, 2, and 3c hold for some Λ ⊆ [0,∞] and each (s, r) ∈ {(0, 3), (1, 3), (1, 4)}. If
λProxACV ∈ argminλ∈Λ ProxACV(λ) and λCV ∈ argminλ∈Λ CV(λ), then

0 ≤ ProxACV(λCV)−ProxACV(λACV) ≤ C`,3
n2

(B`0,3
c3m

+
B`1,3
nc4m

+
C`,3B`1,4
4n2c6m

)
.

Proof Since λCV minimizes CV and λProxACV minimizes ProxACV,

0 ≤ ProxACV(λCV)−ProxACV(λProxACV)

≤ ProxACV(λCV)−ProxACV(λProxACV) + CV(λProxACV)−CV(λCV).

The result now follows from two applications of Thm. 10.

L Proof of Prop. 13: O(1/
√
n) error bound is tight

For each i ∈ [n], define z̄i = z̄ − 1
nzi. For the target objective,

ProxACV(λ) = CV(λ) = 1
n

∑n
i=1

1
2 (β̂9i(λ)− zi)2 for all λ ∈ [0,∞],
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and a straightforward calculation shows

β̂(λ) =


z̄ − λ if z̄ > λ

z̄ + λ if z̄ < −λ
0 otherwise

and β̂9i(λ) =


z̄i − λ if z̄i > λ

z̄i + λ if z̄i < −λ
0 otherwise

for each i ∈ [n]. Hence, for each i, β̂9i(0) = z̄i,

β̂9i(z̄) =


− 1
nzi if 0 > zi

z̄i + z̄ if 2nz̄ < zi

0 otherwise

, and β̂9i(z̄)− zi =


−n+1

n zi if 0 > zi

z̄i − zi + z̄ if 2nz̄ < zi

−zi otherwise

.

Let C1 = {i ∈ [n] : zi ≤ 0}, C2 = {i ∈ [n] : zi > 2
√

2n = 2nz̄} and C3 = {i ∈ [n] : zi 6∈ C1 ∪ C2}. We have
selected our dataset so that C2 is empty. Therefore

2ProxACV(z̄) = 1
n

∑
i∈C1

(n+1)2

n2 z2
i + 1

n

∑
i∈C3

z2
i = (n+1)2

n2
1
n

∑n
i=1 z

2
i − ( 2

n + 1
n2 ) 1

n

∑
i∈C3

z2
i .

Meanwhile,

2ProxACV(0) = 1
n

∑n
i=1(z̄i − zi)2

= 1
n

∑n
i=1(z̄ − (1 + 1/n)z̄)2 + (1 + 1/n)2(z̄ − zi)2

= 1
n2 z̄

2 + (n+1)2

n2
1
n

∑n
i=1 z

2
i − (n+1)2

n2 z̄2

= (n+1)2

n2
1
n

∑n
i=1 z

2
i − (1 + 2

n )z̄2.

Hence,

2ProxACV(0)− 2ProxACV(z̄) = ( 2
n + 1

n2 ) 1
n

∑
i∈C3

z2
i − (1 + 2

n )z̄2 = ( 2
n + 1

n2 )a
2

2 − (1 + 2
n )z̄2 = 5

n2 .

M Additional Experiment Details

M.1 ProxACV versus ACV and ACVIJ

This section provides additional experimental details for the experiment of Sec. 5.1. In this experiment, we use
the exact experimental setup and code of [Stephenson and Broderick, 2019, App. F] with a modified number of
datapoints (n = 150). Specifically, we employ an `1 regularized logistic regression objective with 150 feature
coefficients plus an intercept coefficient. The data matrix of covariates is generated with i.i.d. N(0, 1) entries, and
binary labels for each datapoint are generated independently from a logistic regression model with ground truth
β∗ having its first five entries drawn i.i.d. N(0, 1) and the rest set to zero. We solve the proximal Newton steps
for ProxACV using FISTA Beck and Teboulle [2009].

We compare with the non-smooth ACV and ACVIJ extensions studied by [Obuchi and Kabashima, 2016, 2018,
Rad and Maleki, 2019, Stephenson and Broderick, 2019, Wang et al., 2018] and defined by restricting β̃9i(λ) and

β̃IJ
9i (λ) to have support only on Ŝ = support(β̂(λ)) and setting

[β̃9i(λ)]Ŝ=[β̂(λ)]Ŝ+ 1
n [HŜ,Ŝ

`,i ]−1[∇β`(zi, β̂(λ))]Ŝ

[β̃IJ
9i (λ)]Ŝ=[β̂(λ)]Ŝ+ 1

n [HŜ,Ŝ
` ]−1[∇β`(zi, β̂(λ))]Ŝ ,

where X ·,Ŝ denotes the submatrix of X with column indices in Ŝ, where H` and H`,i are given by (14) and (13),
respectively.

M.2 ProxACV Speed-up

This section provides additional experimental details for the experiment of Sec. 5.2. For this experiment, we
employed the standard graphical Lasso objective,

m(Pn, β, λ) = − log detβ + tr(βS) + λ
∑p
j,k=1 |βjk|,

m(Pn,9i, β, λ) = − log detβ + tr(βS−i) + λ
∑p
j,k=1 |βjk|,
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where β is now a positive-definite matrix in Rp×p, S = 1
n−1

∑n
i=1(zi−µ)(zi−µ)>, S−i = 1

n−1

∑
j 6=i(zj−µ−i)(zj−

µ−i)>, for µ = 1
n

∑n
i=1 zi, and µ−i = 1

n−1

∑
j 6=i zj .


