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A Proof of Lemma 1: Optimizer comparison

The first claim (4) follows immediately from the definition of the error bound (5).

To establish the second claim, we note that our (sub)differentiability assumptions and the optimality of z,, and
Ty, imply that 0 € Opa(z,,) and 0 = u + V(@1 — @2)(xy, ) for some u € pa(z,, ). Gradient growth (6) now
implies

V<P2(H$<f71 - xcsz2) < <ng1 T Ly, U — 0) = <x¢>1 - IE¢2,V(502 - 901)(55501»-
B Proof of Thms. 2 and 5: ACV-CV and ACV ,-CV assessment error

Thms. 2 and 5 will follow from the following more detailed statement, proved in App. B.1. Consider the
higher-order gradient estimator

ACVION) 2 157 (2, BE07(N) with  B5O7 (M) £ argming iy (P i, B, A; BN),

n -1 7
which recovers our approximate CV error (2) and estimate (3) when p = 2. We will make use of the following
assumptions which generalize Assumps. 1 and 1b.

Assumption 1d (Curvature of objective). For some q,¢;, > 0, all i € [n], and all X in a given A C [0, 0],
m(Pp,-i, -, A) has vy (1) = cpr? gradient growth

Assumption le (Curvature of Taylor approximation). For some p,q,ce, ¢ > 0 and Ay < 00, all i € [n], and all
A in a given A C [0,00], Tp(Pp. i, -, A; B(N)) has v(r) = cxar? gradient growth, where cx x = co + Ael[A > Ay,
Assumption 1f (Curvature of regularized Taylor approximation). For some p,q,cs, cx > 0 and Ay < 00, all
. . . ~ 3 Lip(vpm(lpnfi#':)‘)) A 1

i € [n], and all X in a given A C [0, 00], My (P s, -, A; B(N)) + ) - = BOIET has v(r) = exard
gradient growth, where cx x 2 e+ AN > Mg

Theorem 14 (ACV,-CV and ACV;IO—CV assessment error). If Assump. 1d holds for some A C [0,00], then,
for all X € A and i € [n],

18N = B3~ < £ 21V s€(zi B 2- (15)

If Assumps. 3b, 1d, and 1e hold for some A C [0,00], then, for all A € A and i € [n],

185 (N) = BIIE™H < m A 1B-4(0) = BV (16a)

A A CopritACrpia
Jor Ky \ = PllceFAcIAS )

If Assumps. 3b, 1d, and 1f hold for some A C [0,00], then, for all A € A and i € [n],

IBZHO (N) = BN~ < 262 5 [18-:(N) = BV B (16b)

If Assumps. 2, 3b, 1d, and 1e hold for some A C [0,00] and each (s,r) € {(0, PJ(QI(EI)?Q)? (1, (qzﬁ)z), (1, ’(’;fl_)%)},
then, for all A € A,

JACVIO()\) —CV(N)|

1 2 1
A Ya—1 X yg=1 Y=
1 (kpa)e ¢ 11 (kpa)d ¢ 1 (spa)e ¢
< RS AN A 0 pt(g—1)2 + bl 2p 2p B 2p + pTa—1  pra—1 B1 ptqg—1 and (17&)
n(@=-D? -1 " q=12 n(a—1)2 C7(7{171)2 " (g—1)2 n(@a—1)2 c,(,?_l)z ’(¢—1)2

— 2 p—
If Assumps. 2, 3b, 1d, and 1f hold for some A C [0,00] and each (s,r) € {(0, ”J(fq(jl)? ), (1, (qE’i)Z), (1, ’(’qtql)i)},
then, for all X € A,

IACV,(3) - CV(V)|

1 2 1
A )a-1 A Vg1 X \g=1
1 (2Rp)e ¢ 11 (@spa)e ¢ 1 (2rpa)e ¢
< —F —r 0 pra=1)2 + 2 2p 2p Bl 2p T —pEe=T pTa—1 Bl ptg—1- (17b)
n (a=1) cla—b " (q=1)2 n (a—1)2 C7<nq71)2 T(a—1)? n-1D2  (a=1)2 T(q—1)2
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Thm. 2 follows from Thm. 14 with p = ¢ = 2 since Assump. 1 implies u = ¢p + e I[A > \;] strong convexity and

hence v(r) = pr? gradient growth for each s (P, i, -, A; B(N)).

Thm. 5 follows from Thm. 14 with ¢ = 2 since Assumps. 1b and 3b and the following lemma imply that each
. - Lip(VEm(Pan,-s,, A . )

m(Pp i, -, A) and My (Pp -5, -, A; B(A)) + P(Vs p_(H ) |- =BN)5H has u = g+ AexI[X > Ay] strong convexity

and hence v(r) = ur? gradient growth.

Lemma 15 (Curvature of regularized Taylor approximation). If ¢ is u strongly convex and VP is Lipschitz,

then ®(z) £ B, (z;w) + Li&ﬁp)f) |z — w|5™ s p strongly convex.

Proof This result is inspired by [Nesterov, 2019, Thm. 1]. In particular, by Taylor’s theorem with integral
remainder, we can bound the residual between a function and its Taylor approximation as

Lip(V 1
lo(x) — Bplw;w)| < B2 |l — B

Note also that for d(z) = L|z||?
p
V2d(z) = (p = 2)|l|P za T + [l2|P~1g = [lo]|PLa. (18)
For p > 2, applying the same reasoning to (Vf(-), h) and (V2f(:)h, h) we can similarly conclude:
~ Lip(V”
IVeo(@) = Yy (a5 w) lop < “EUZE | — w8

Lip (VP —
IV20(z) — V2@ (2;w)lop < “ESHE 2 — w5~

Subsequently, for any direction h € R?

(V2p(x) — V23, (asw))h, ) < [ V2o() — V23y(a30)op - A3 < “ECPE |1z — w5~ - 13,

and therefore,

N : B (18)
V2p(z) < V23, (w5 w) + B2 o — w[f 7'y 5 V2e(x).

B.1 Proof of Thm. 14: ACV,-CV and ACV?O-CV assessment error

B.1.1 Proof of (15): Proximity of CV and full-data estimators

We begin with a lemma that translates the polynomial gradient growth of our objective into a bound on the
difference between a full-data estimator 3(\) and a leave-one-out estimator 5_;(\).

Lemma 16 (Proximity of CV and full-data estimators). Fiz any A € [0,00) and ¢ € [n]. If £(z;,-) is differentiable,
and m(Pp_i, -, A) has vy (1) = epr? gradient growth (6) for ¢y, >0 and g > 0, then

1B = B3 < 5ot lIValzi, BOV) 2-

Proof The result follows from the Optimizer Comparison Lemma 1 with ¢1(8) = m(P,, 8, \) and pa(8) =
m(Py i, B, A) and Cauchy-Schwarz, as

emllBO) = B < (BOV) = B-i(N), Vgm(Pr,-i, BN, A) = Vam(Pn, 5(N), A))
2 {B-i(N) = BN, Vb2, BOV)) < LB = BN 21V 51 BOV)2-

O
Now fix any A € A and i € [n]. If A = oo, then B()\) = B_;(\), ensuring the result (15). If A # co, then our
assumptions and Lemma 16 immediately establish the result (15).
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B.1.2 Proof of (16a): Proximity of ACVII:IO and CV estimators

The result (16a) will follow from a general Taylor comparison lemma that bounds the optimizer error introduced
by approximating part of an objective with its Taylor polynomial.

Lemma 17 (Taylor comparison). Suppose
T, € argmin (x) + po(r) and x5, € argmin @, (z; w) + @o(x).

for @p(z;w) £ 30 ) 2Vip(w)[z—w]® the p-th-order Taylor polynomial of ¢ about a point w. If VP is Lipschitz

and @p(-;w) + o has v(r) = pr? gradient growth (6) for p >0 and g > 0, then

Lip(VP¢

-1
[ L2z — w3,

Pp — 7

Proof Define f(x) = (v5, — x4, Vo(z)). The result follows from the Optimizer Comparison Lemma 1 with
©1 =@+ o and w2 = Pp(;w) + @o, Taylor’s theorem with integral remainder, and Cauchy-Schwarz as

ulze = 25,13 < (2o = 25,, VaBp(agiw) = Vp(a,)) = f(z,) = iy §V f(w)[z, — w]®

Lip (VP! Lip(VP¢)
p!

< Dz, —wl|h < oy — 24,2

< e g — w5

O
To see this, fix any A € A and ¢ € [n], and consider the choices ¢ = m(P, _;,-,A), o = 0, and w = BN).
By Assump. le, @,(-;w) + o has v(r) = pr? gradient growth for p = ¢p + AcI[A > A;]. Since Lip(VPyp) <
Cop+1+ ACx py1 by Assump. 3b, the desired result (16a) follows from Lemma 17.

B.1.3 Proof of (16b): Proximity of ACV, and CV estimators

The result (16b) will follow from a regularized Taylor comparison lemma that bounds the optimizer error
introduced by approximating part of an objective with a regularized Taylor polynomial.

Lemma 18 (Regularized Taylor comparison). Suppose

Lip(VPy)

5
(p+1)! 2

[ = w]

T, € argmin, p(z) +po(r) and x5, € argmin, p(x;w) + + o(x).

for @p(z;w) £ 30 ) AVip(w)[z—w]® the p-th-order Taylor polynomial of ¢ about a point w. If VP is Lipschitz

MH ——wl||5T + o has v(r) = ure gradient growth (6) for u >0 and g > 0, then

and @p(+w) + =5

< 2Lip(VPp) 1

—1
[z — 25,157 < m P! [z — wl3-

Proof Define f(x) = (x5, — z,, Vo(z)). The result follows from the Optimizer Comparison Lemma 1 with

~ Lip (VP 1
o1 = ¢+ po and @y = Gy(sw) + SR —w|5T

Cauchy-Schwarz as

+ ¢, Taylor’s theorem with integral remainder, and

~ Lip (VP —
pllze — 25,113 < (g — 35,, Vabp(Tp;w) — Vo (,)) + L28Z (2, — 25, )|z — w5, 2 — w)

= f(wy) = X000 AV f(w)[mp — w]® + BRUEO (0 — 25 )2 — w]§ 7, (2 — )

< Lip(vP71)) Lip(V? 2 Lip(V?¢)

< B Da, —wlb + o, - zg, 22252 2, — w]lf < ||z, — 25, [l 222F2 |z, - wl}.

O

Fix any A € A and i € [n], and consider the choices ¢ = m(P, _;,-, ), ¢o = 0, and w = B(\). By Assump. 1f,
Op(w) + %H w5 + o has v(r) = pr? gradient growth for 1 = ¢z 4+ AezI[A > Az]. Since Lip(VPy) <

Copt1 + ACr py1 by Assump. 3b, the desired result (16b) follows from Lemma 18.
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B.1.4 Proof of (17a): Proximity of ACVII:IO and CV

Fix any A € A. To control the discrepancy between ACVZ},IO()\) and CV(A), we first rewrite the difference using
Taylor’s theorem with Lagrange remainder:

ACV,‘.S‘OM)*CV(A):%Z? Uz B0 (A )H(zl,/% )
07 () = BLi(N) + V22, 5) B0 (N) — BLa(N)] =2

= & Y (Vallzi, (), B

for some §; € {tﬁf{io? + (1 —1)B5(N\) : t € [0,1]}. We next use the mean-value theorem to expand each function
(Val(z,-), BHOP(A) — B.4(\)) around the full-data estimator S()):

ACVEO(N) = CV(\) = L7 (Vsllzi, BIN)), 8577 () = Ba(N) + 2V2L(zi, 515507 (A) — Ba(N)]#2
(V202 50) (B (V) — BON), BEOT(A) — Bua(N)

for some s; € {tB(\) + (1 —t)B_;(\) : t € [0,1]}. Finally, we invoke Cauchy-Schwarz, the definition of the operator
norm, the estimator proximity results (15) and (16a), and Assump. 2 to obtain

IACVEO(3) — CV(N)| <L T, [IV5t(zi, AN 2B () — BN 12 + SIV28(z1 80 lop 187 () — Ai(N)
+ (V3 £(z4,53) lopll BOY) = BiM201B57 (V) = B (V)2
<L (k)T NV, BN 2B (N) — BT T
)T V3 0 50 apl B — BV

3

1 5 phacl
+ (53 ) TTIVE (20, 50) [loplIB(N) = Boi(A )”2
) (2 %1 ) R p+(q;12>2
D SRS UL =iy IVl(zi BN 7
n(a—1)2 ela= 1)2
_2_ 2p
( ! 3 -1?
+i o)1 1 & 2 VB2, 30) [|op [V 5€(25, BV |5
n(a—1)2 efa= 1)
1 ptg—1
1 (kp \) =T 15y 2 Y, q—1)2
+7n%% e Ly V321, 50) lopl |V 58(zi, BV IS
< 1 (Kp A)ﬁ l + 1 (H:J\)% BZ + ;MBE
n (a p1>2 ela— 1)2 07”(2("71;2)2 n(ﬁ’i)? C(qﬁﬂ 1’<qfﬁ>2 nf;jﬁé cf:—qf)% ’f:—qJ)%
m m

B.1.5 Proof of (17b): Proximity of ACV, and CV

The proof of the bound (17b) is identical to that of the bound (17a) once we substitute 2/&2‘7 5 for nf; » by invoking
(16b) in place of (16a).

C Proof of Prop. 3: Sufficient conditions for assumptions
We prove each of the independent claims in turn.

Assump. 3 holds This first claim follows from the triangle inequality and the definition of the Lipschitz
constant Lip.

,3()\) — B(oo) For each A € [0, 00), by the Optimizer Comparison Lemma 1 with ¢ = 7 and ¢; = %m([?’n, A)
and the nonnegativity of ¢,

ve(IBO) = B(00)l2) < X (E(Pn, B(00)) = £(Pn, B(N))) < (P, B(o0)).

Therefore, v.(||3(A) — B(c0)[2) — 0 as A — co. Now, since vy is increasing, its inverse wy is increasing with
wx(0) = 0, and hence we have ||5(A) — f(c0)]]2 — 0 as A — oc.
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Assump. 1 holds Fix any A C [0,00], and let mineig denote the minimum eigenvalue. The local strong
convexity of m implies that there exist a neighborhood A of B(oo) and some ¢, > 0 for which V27 (3) > c,Id for
all B € N. Since 3(\) — B(c0) as A — oo, there exists Ay < oo such that S(\) € N for all A > \,. Hence, for
any A\, \' € A and ¢ € [n], we may use the ¢,,-strong convexity of m(P, ;, -, \') and m(P,, _;,-,0) = (P, _;,-) to
conclude that

mineig(V3m(Py, i, $(A), X)) = mineig(VEE(By i, B(A)) + X' VET(B(N)) 2 max(com, (em + Nex)IA > Ax]).

Furthermore, the c,,-strong convexity and differentiability of m(PP, _;, -, A) imply that m(IP,, _;, -, A) has v, (r) =
cmr? gradient growth. Thus, Assump. 1 is satisfied for A.

Assump. 2 holds Fix any A C [0,00] and A € A. For each i € [n], the triangle inequality and the definition of
the Lipschitz constant imply

IVs(zis B2 < IV58(zi, B(00)) |2 + [V (=i BN) = V(i B(00)) 12
< [ Vs(zi, B(00) 2 + Lill B(X) = B(o0)l2-

Moreover, since m(Py, _;, -, A) is ¢p-strongly convex and the minimum eigenvalue is a concave function, Jensen’s
inequality gives for each

mineig(m(P,, 5,\)) = mineig(ﬁ S m(Py, B,0)) > ﬁ o, mineig(m(Pp i, 8,A)) > 5.

Hence m(P,, -, A\) has v, (r) = %cmrz gradient growth, and the Optimizer Comparison Lemma 1 with o = A

and ¢; = m(P,, -, \) and Cauchy-Schwarz imply

2 1eml[BN) = B(00) 2 < IV 5E(Pn, B(00))]|2.

Therefore,

BL, < 30 LIV (i, B(00))ll2 + 52 B[V (B, B(00))]|2)" < o0

D Proof of Thm. 4: ACVY-ACV assessment error

We will prove the following more detailed statement from which Thm. 4 immediately follows.
Theorem 19 (ACV"-ACV assessment error). If Assump. 1 holds for A C [0,c], then, for each \ € A,

~ ~ 20(2. 8 2. B
||B{;](A) _ B—z()\)HZ S HV[;Z( ’L!ﬁ()‘))HODHVﬁZ( uﬁ()‘))|‘2 (19)

2 2
Cx A

where cx x = ¢+ Aexl[A > A, If, in addition, Assump. 2 holds for A and each (s,r) € {(1,2),(2,2),(3,2)}, then

£
IACVY()\) — ACV()\)| < 0?132 + f? 2y 4 QCB“
A,

(20)

n4*

D.1 Proof of (19): Proximity of ACV and ACV" estimators

We begin with a lemma that controls the discrepancy between two Newton (or, more generally, proximal Newton)
estimators. Recall the definition of the proximal operator proxf (11).

Lemma 20 (Proximal Newton comparison). For any (8,9 € R?, invertible H,ﬁ € R4 and convex g, the
proximal Newton estimators

B =proxiX(B—H 'g) and Bz = prox 7’ (8 — H™'g)
satisfy

_B- [(A-H)Br—B)ll2 ~ |IH=HlloplBr—Bll2
HBH BH” < mineig(H)VO0 - mineig(FI)\/O ’
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Proof If mineig(H) < 0, the claim is vacuous, so assume mineig(H) > 0. Writing ¢ (z) = 1B - Hlg—
x||§~l + ¢o(x) and ¢y (z) = 3|8 — H 'g — z||% + ¢o(x), note that B; = argmin, @2(z) and By = argmin, ¢1(z)
by the definition of the proximal operator (11). Importantly, @2 is subdifferentiable and satisfies the gradient
growth property with v, (r) = mineig(H)r?. Invoking the Optimizer Comparison Lemma 1 and Cauchy-Schwarz,
we have

mineig(H)|8u — Bal13 < (H(B - Bu) —g— H(B - Bu) + 9, B — B) < |(H — H)(B — Bu)|2llBer — B lla-

Rearranging both sides gives the first advertised inequality. O
Now fix any A € A and i € [n], and let

H = V2m(P, i, B0, N) and  H = V3m(By, B0, N) = 325 2 S0, V3m(Pn . (V). A).

By Assump. 1, mineig(I:I ) > ¢x x. Moreover, Assump. 1, the concavity of the minimum eigenvalue, and Jensen’s
inequality imply

mineig(H) > 252 Y7, mineig(Vim(Py, j, B(A), ) > 227can > o
Hence, we may apply Lemma 20 with 8y = BH()\), i = B.i(N), B = ﬁ( ), and o = 0 to find that
IBH(A) = B-iNl2 < 5 IVEM(Ba, BV, A) = VER(Br,-is B, Mop 185 () = BV Iz
= M||v2 (i, BON lop I VEM(Pr, BV, A) ™1V 5l(2i, BOV) |12
1

x 2 I VR(z0 BOD) op V(215 B 2

I /\

D.2 Proof of (20): Proximity of ACV and ACV"

Fix any A € A. To control the discrepancy between ACV(\) and ACV™ (), we first rewrite the difference using
Taylor’s theorem with Lagrange remainder:

ACVY(\) = ACV(\) = L 577 0(2, B (N) — £(2, B (A ))
= L5 (Val(zi, B-i(N), BEN) = Boi(N) + 3V20(z1, 5:)[B-i (M) — BH(N)]®2

for some 3; € {t6;(\) 4+ (1 — )Y (\) : t € [0,1]}. We next use the mean-value theorem to expand each function
(V5l(zi,+), B(N) — B-;(\)) around the full-data estimator B(\):

ACVY(X) = ACV(A) = £ 301 (Vsllzi, BN)), B (A) = B-i(N) + §VE(zi, 3:)[B-i(A) = BH (V)]
+ (V31,8 (B-i(A) = BOV), B (V) = B-i(V))

for some s; € {tB(\) + (1 — t)B.;(\) : t € [0,1]}. Now, by Assump. 1, we have

1B-:(A) = BOVlz = EIH Vab(zi, Bl < 7ot 11V (i BO) o

Combining these observations with Cauchy-Schwarz, the definition of the operator norm, the estimator proximity
result (19), the definition of the Lipschitz constant Lip(Vgl(z;,-)), and Assump. 2 we obtain

IACVY(A) = ACV(N)| < & 300, I1V5£(z0 BOD 12018-:(A) = BE Vll2 + 311VE(z0: 3)llopll5-i(X) = BH (V)13
+ V32, 5 lopllB-(A) = BVl Bi(N) = BH NIz
< mmrsn Lim VB, 8 3 lopl V(=i B 13
+ %nax 0 i VB 30 lop V320, BON, 1V 54z, BOV)IIB
lZHHVZE(»%Si)\lopllvzﬁ( BONlop IV (=0 BOV) I3

1 4 b4
44 B32+ B22

< 212 B12+ 5



Ashia Wilson, Maximilian Kasy, Lester Mackey

E Proof of Thm. 6: ACV-CYV selection error

The first claim follows immediately from the following more detailed version of Thm. 6.

Theorem 21 (ACV proximity implies B proximity). Suppose Assumps. 1 and 3 hold for some A C [0, 00] and
each (s,7) € {(0,2),(1,2)}. Then, for all N, A € A with N < A,

n2

180 = B3 < Crax (222 + ACV(A) — ACV(X) + “ ),

for Cian and Cs 5y defined in Thm. 7 and

£ £
3B0,2 BO.2

Coan = oA IA>AL] + AN AN >,

Proof Fix any X, A € A with M < A. We will proceed precisely an in the proof of Thm. 23, except we will
provide alternative bounds for the quantities ATy and ATj in the loss decomposition (26). First, we apply
Cauchy-Schwarz, the definition of the operator norm, the triangle inequality, and the arithmetic-geometric mean
inequality in turn to find

ATy| = J15 201 (Vabl(zi, BN) = Vl(zi, BON)), VEm(Pa,-i, BN, N) 7'V sb(zi, B
< s iy IVEm(Priy BN, N) " Hlop IV (=i BON 1201V 5€(z0, B2 + [V (=i B 2)
w2 iy IVEm(Pa,i B0, ) lop (3 1V (20 BONIE + 311V 64(zi, BON))I13)

1 ZBS,Z
n cotAeI[A>AL]?

IN

IN

(21)

where we have used Assump. 1 and Assump. 2 for (s,r) = (0,2) in the final line.
Next, we again apply the triangle inequality, the definition of the operator norm, the arithmetic-geometric mean
inequality, Assump. 1, and Assump. 2 for (s,r) = (0,2) to obtain
AT| = [ S0 (Val(zi, BV)), VEM(By s B(N), A) 1Vl (25, BON))
— 5 S (Val(zi, BIX)), VEM(Pr, i, BN), X) 71V 521, BN)))]
< %%Z?:l ||V5€(2i,3()\/))||2||v%m( n,-is ( )sA)” 1||op||V5€(ZZ, ( N2
+ ||Vﬁf(zzv BONIBIVEM(Pr-i5 B, X) ™ op
< E Y (GIVsE(zs BB + 5V (20 BODIDIVER(Pr, i B, A) " lop
+ ||vﬂ£(zi7 BNIBIVEm(Br, i, BOV), X)) lop

B B
l( 0,2 4 0,2 )
n\ci+AerI[A> ] coFN I[N >Xx]

IN

Plugging the bounds (21) and (22) into the proof Thm. 23 yields the result. O
The second claim (10) follows the first and the following bound on |[ACV(Acy) — ACV(Aacv)|-

Lemma 22. Suppose Assumps. 1, 2, and 3 hold for some A C [0,00] and each (s,r) € {(0,3),(1,3),(1,4)}. If
Aacv € argminycy ACV(A) and Acv € argminyc, CV(A), then

4
0 < ACV(Acv) — ACV(Aacv) < 2(53 752 4 53 242

Proof Since Acyv minimizes CV and Aacv minimizes ACV,
0<ACV(A\cv) — ACV(Aacv) S ACV(A\cv) — ACV(Aacv) + CV(Aacv) — CV(Acv).

The result now follows from two applications of Thm. 2. O
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F Proof of Thm. 7: Strong ACV-CYV selection error

The first claim follows immediately from the following more detailed version of Thm. 7, proved in App. F.1.

Theorem 23 (Strong ACV proximity implies B proximity). Suppose Assumps. 1, 2, 3, and 4 hold for some
A C [0,00] with 0 € A and each (s,r) € {(0,2),(1,1),(1,2)}. Suppose also |[Vx(3(0))|2 > 0. Then for all
AoA e N with N < ),

IB(A) = B3 < Cran (CQ,A,X/nHB(A) —B\)[2+ ACV(N) — ACV(X) + 03,>\7,\//n2> and hence (23)

N ~ 02 c? .
1B = BV s — Csagfoast) < \fBasCan 1 0y (ACV(Y) ~ AGV (V) 4+ Dotfonst (g
where
Ciax j\\lii o=l
2B{ , 2B, ;lxl n—1 Béacﬂ‘?"fx"“i,w

Copn = e dDsa] T aFvedbsa] T n V7B l2em

Bi,
C3an = =
"

for li;‘,)\/ defined in Thm. 1}.

The second claim follows directly from the Thm. 23 bound (24) and Lemma 22.

F.1 Proof of Thm. 23

Fix any X', A € A with X < A\. The statement (24) follows directly from (23) and the quadratic formula, so we
will focus on establishing the bound (23). We begin by writing the difference in estimator training losses as a
difference in ACV values plus a series of error terms:

(P, B(N) — (P, B(N)) = ACV(N) — ACV(N) + ATy — AT, — AT (25)
for
AT, 2 ACV(\) — ACV()\) + ACV(N) — ACV(X),
ACV()) 2 U(P,,, B(N) + 2 31, (Vsl(zi, BN)), B-i(A) — BON)
ATy £ LS (Vsl(zi, B(N) — Vl(zi, B(N)), B-i(N) — B(N)), and
ATy 2 LS (Vsl(z;, BN)), Boi(N) — BON) — (Boi(V) — BX))). (26)

Here, ACV (\) arises by first-order Taylor-expanding each (P, 3_;(\)) about 3 (A) in the expression of ACV(A).
To complete the proof, we will bound ATy, ATy, ATs, and £(P,, B(N\)) — £(P,, B(XN)) in turn.

F.1.1 Bounding AT}

To control AT, we will appeal to the following lemma which shows that ACV provides an O(1/n?) approximation
to ACV, uniformly in A. The proof can be found App. F.2.

Lemma 24 (ACV—m approximation error). Suppose Assumps. 1 and 2 hold for some A C [0,00] and
(s,7) =(1,2). Then, for each A € A,

e
Bio
5.
201”

IACV(\) —ACV())| < &

Applying Lemma 24 to A and )\, we obtain

2
(27)

c m

|ATY| < %
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F.1.2 Bounding AT,

We employ the mean value theorem, Cauchy-Schwarz, the definition of the operator norm, Assump. 1, and
Assump. 2 for (s,7) = (1,1) to find that

S (Vsl(zi, BON) — Vial(zi, BN)), VEm (P, i, BN, A) "1V 025, BN)))]
S (V32,530 ) (BON) = BN)), VEM(Pr i, BN, N) 1V sL(21, B(N)))|
A) = B2t S0 1V2m(Pa-s B, N) " Mlopl V2 2, 530 lop IV 522, BOV) |2

Bl
B e g renttisya

|AT|

[= 3= 3=

IN

n

IN
Sy
g>
>
|

for some convex combination s - of 3(\) and B(X).

F.1.3 Bounding ATj3

We next show that the double difference term ATj is controlled by estimator proximity ||3(A) — 3(X)||2 and
regularization parameter proximity |A — A’| times an extra factor of 1/n. This result is proved in App. F.3.

Lemma 25. Suppose Assumps. 1, 2, 3, and 4 hold for some A C [0,00] and each (s,r) = {(0,2),(1,1)}. Then,
for all \, N € A,

N A BY 2Bf L),
IATa] < 3100 - SOVl (i + oot ) (29)
BS ,Cr.
+ A= N (cz+c,rAH[)\ZA:S(C@—{?CWA’H[AZAW})

for ATs defined in (26) and Hg‘:)\, defined in Thm. 14.

We combine (29) with the following bound on |\ — A’| proved in App. F.4:

Lemma 26 (B proximity implies A proximity). Suppose Assumps. 1 and 4 hold for some A C [0, 00] with 0 € A.
Then, for all \, N € A,

ne1 (Coa+ACr 2)(Crat N Cr 5 5
|>\ )\/l < 1( 2+ 2)(Ce,2t+ 2) HVW(Bl(o))”2 Hﬂ()‘) . B(X)”Q' (30)

Cm

Together, (29) and (30) imply

IATs| < L1300 = BV Bl + 2B 553 + n—1B02C0r 2K1 053 51 (31)
3> 5 2\ AR IS ] T e N e IAS AL n|IVr(B0)2em )

F.1.4 Putting the pieces together

Our final lemma, proved in App. F.5, establishes that, due to the curvature of the loss, two estimators with
similar training loss must also be close in Euclidean norm.

Lemma 27 (Loss curvature). Suppose that for some ¢, >0 and 0 < XN < A < oo and all i € [n], m(Pp i, -, A)
and m(Py, i, -, N') have vy, (1) = cpr? gradient growth. Then

G BN = BB < & S0y €Pnis BOV) = £(Pr-iy BN)) = 252 (0B, B(N)) — £, BV))).

The advertised result (23) now follows by combining Lemma 27 with the loss difference decomposition (25) and
the component bounds (27), (28), and (31).

F.2 Proof of Lemma 24: ACV-ACV approximation error

By Taylor’s theorem with Lagrange remainder,

ACV()) — ACV(A) = & 31 V20(z, 5) [B-4(A) — B(N)]22
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for some s; € £; = {tB(\) + (1 — t)B.:(\) : t € [0,1]}. Assump. 1 implies that m(P,, _;, B(\), \) is ¢, strongly
convex and hence that Vﬁm( =i, B(\), \) = mly. Therefore, we may apply the definition of the operator norm
and Assump. 2 to find that

JACV(\) = ACV(A)| < 2 S0 [IV3€(z0, 80) lopll B-i(X) — BV

= 1 i= 1||vﬁ (zi, )Hopnsz( n, z;ﬁ(/\)a)‘) 1v,3€( B(A))”%
< L S 93t 59 op 2 IV, BOV) B

Bi,
< 771220%"'

F.3 Proof of Lemma 25: AT3-bound

Fix any A\, X' € A. We first expand ATj3 into three terms:

ATy = 25 370 (Vsl(zi, BON)), VEM(Pr, i, BO), N)THV 5z, BOV) — Vll(zi, BN))))
+ 2 2 (V26 BN, (VEM(Py, i, BN, N)F = VEm(By i, BOV), X))V al(2i, BN)))
+ 5 S (Val(zi, BN)), (VMR i, BN, A)™F = VEM(P,, i, BON), X)) V(2 BIN)))
£ ATy + ATso + ATss.

BN
BN

Precisely as in (28) we obtain

N N B¢
|AT31] < I8 = B2 grsetiis -

Furthermore, we may use Cauchy-Schwarz, the definition of the operator norm, Assumps. 1 and 3, and Assump. 2
with (s,7) = (0,2) to find

|AT5o| < 21570 Vb2, BN BIVEM(Pr i, BO), X)) Hopl VEM(Prs, BV, N) " lop
NIVEM(Pr,-i, BN, N) = VEMU(Pr i, BN, N)lop

B{ 5(Ce,3+) Cr 3) A
— (cz-‘r)\/cﬂ-ﬂ[g;)\ ] (Cg+)\/c,rH[A’>A7r]) nH/B( ) /8()\/)”2

Finally, Cauchy-Schwarz, the definition of the operator norm, Assumps. 1 and 4, and Assump. 2 with (s,r) = (0, 2)
yield

|AT33] < 22570 [[V2m(Pr i, BN, A) 7l Val(zi, BN BIVEM(Pr, i, BO), X)) = VEM(Pr i, B, N)|op
NVEM( P is BV, N) 2

A= XNNVETBODlopzs 2oiey IVEM(Br, -5 BN, A)H2lIVEM(Pr, -5, BN, X) M2 Vsl(zi, BN)) |13

l|>\ _ )\/| Bfi,acﬂﬂ
n (cetca AIASAZ]) (cetex NIA>AL])

IN

We obtain the desired result by applying the triangle inequality and summing these three estimates.

F.4 Proof of Lemma 26: |\ — \'|-bound

We begin with a lemma that allows us to rewrite a regularization parameter difference in terms of an estimator
difference.

Lemma 28. Fiz any A, X € [0,00]. If Vgm(Py,,-,X') is absolutely continuous, then

0= (A= X)Vsm(B(N) + E[VEm(Pn, Sxx, N (BY) = B(Y))
= X2AVU(P,, B(N) + E[VEm(P,, Sx v, X)I(BA) — BX)).

for Sy x distributed uniformly on the set {tBO) + (1 —t)BWN) : teo,1]}.
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Proof The first order optimality conditions for S(\) and 3()\') and the absolute continuity of Vgm(P,, -, \')
imply that

0= Vm(Pn, B(N), A) = Vl(Py, B(N)) + AVT(B(N)

= (A= X)Vsm(B(N) + Vam(Pn, B(N), V)
= (A= X)Vam(BN) + (Vam(Pa, B(N), N) = Vm (P, B(N), )
= (A= X)Vam(B(N) + E[VEm(Bn, Sx.x, X)(BO) — BV))
= X2AV50(P,, BN) + E[VEm(Py, Sax, MI(BA) — BN))

by Taylor’s theorem with integral remainder. O

Now fix any A, A" € A. Since Vgm(Py,-, X)), Vgm(P,,-,A), and Vgm(P,,-,0) = Vgl(P,, ) are absolutely
continuous by Assump. 4, we may apply Lemma 28 first to (A, \’), then to (A, 0), and finally to (0, \) to obtain
0 = 252AV50(Pn, BN) + E[VEM(Pr, Sxa, N)(BOY) = BV))
= AT2E[VAL(PA, S30))(B(Y) = 5(0)) + E[VEm(Pa, Sy, X)) — B(Y))

= (A= N)E[VEU(Py, Sx0)IE[VEM(Prs, Sox, ATV (B(0)) + E[VEm(Br, Sy, V(BN = B(V))
where Sy  is distributed uniformly on the set {t3(A\) 4+ (1 —)3(X) : ¢ € [0,1]} and Sx,0,50,x are distributed

uniformly on the set {t3(\) 4+ (1 —£)53(0) : t € [0,1]}. Rearranging and taking norms gives the identity
A = N[IIVsm(B0) |2 = IE[VEm(Pr, Sx0, NIEIVE(Pr, Sx0)] T E[VEM(Pr, Sy, A)I(BON) = BOV))l2-

) i

Our gradient growth assumption for the regularization parameter 0 implies that each ¢(P,, ;, ) is ¢,,-strongly

convex [Nesterov, 2008, Lem. 1]. Therefore,
E[VE{(Pn, Sx0)] = 3277 2im1 EIVEU(Pn i, Sx0)] = cmy51a.

Applying this inequality along with Cauchy Schwarz and Assump. 4 for A\ and X', we now conclude that

n—1 (Ce24ACr.2)(Co2+N Cr, A A
A= | < n (e td Cea) oo 1BO) = BV

F.5 Proof of Lemma 27: Loss curvature

Fix any A\, \ € A with A > X and ¢ € [n], and consider the functions @3 = m(P, -;,-, \') and @1 = )‘Tlm(]P’n,_i, S A).
The gradient growth condition in Assump. 1 implies that m(P, _;,-, \') and m(P, ;, -, A) are ¢,,-strongly convex.

: _ Cm 2 : _ XNem,2
Hence, @2 admits a vy, (r) = %*r? error bound, and ¢; admits a v, (1) = 5- %7 error bound. The result now

follows immediately from the optimizer comparison bound (4).

G Proof of Prop. 8

We write E,[2;] £ L 3" | 2; to denote a sample average. Consider the Lasso estimator

B(N) & argming ﬁ St (B = z)? 4+ AB] = max(z — ), 0).
Define €; = z; — z. The leave-one-out mean z_; = + > j4i %i 1s equal to z — 2. The 1J estimate BY(\) is given by
. 0 A>zZ
M=12 §
?) BN — 2B — 5 et e,
The 1J approximate cross-validation estimate for this estimator is therefore given by

241 A>Z

Uy — 2 — BY(N\)?] =
2ACVY(N) = E,[(zi — 55 (V)] {(AQH)(H )2 elge.
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By construction of our dataset, A > 0 > —Zz_; for all i. Now, the leave-one-out estimator of 3 is given by

B_i(/\) = max (2 — A - ﬁei, O), and the leave-one-out CV estimate is given by

fgqm)—@mﬂz—xonmz+gﬂ

+ En[(max(i e %ei,0> — (max(z — A, 0))?].

and thus
2(ACVY(2) — CV(2))
= E,[max(—;*5,0) - z;] + E, [max(— -5, 0)2]

=E,[2? (%<®]G£%F

Our dataset was constructed such that
P.(e; <0)=1/2

]En[ei|ei < 0] \/ /
E,[eZ]e; < 0] =
E,[22-1(z < 0)] =

K2

[(z +2z¢; 4+ €2) - 1(e; < 0)]
= 1(z2 - 27/2/7 + 1),
and thus
ACVU(Z) —CV(z) = ﬁ(l —2z/2/7 + 22)-

To make A = z the ACV" minimizing choice in this example (a condition we have not assumed thus far), it
suffices to have z < y/2/n. For the choice Z = 1/2/n, we get

oy 5) — n _ 4 2
ACVY(3) - CV(3) 4(n_1)2<1 m*n)‘

H Proof of Prop. 9

We write E,, [2;] £ % Y i, z to denote a sample average. Consider the patched Lasso estimator

B(\) £ argmin 5~ Z(ﬂ — z)?+ Amin(|8], § + g—;) = max(Z - A, ﬁ)
A i

Define €¢; = z; — z. The leave—one—out mean is equal to Z_; = Z— L. For ¢;/n < Z, we have BN =B\ = — ey if
e <0and B;(\) — B(\) = - 1+>\/6 if ¢; > 0. Considering left hand derivatives, we also have 3(\) — B(\) =
-t
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For A =4 and z = 26, we get B()\) =4, and and thus, by our choice of dataset,

ACVY(2) = CV(2) = 3B, [(Zi - B(N)? = (Z: = B(V)?]

= 1B, |20+ € - 5+ 9)2 = 26+ — 6+ §:57)%e; > 0

+%En{(2é+ei—6+%)2—(25+ei—§+ﬁ)2\q<0}

n

=6Enleles > 0] - 1 +0(2)

=6y2/m- L+ 0(%).

I Proof of Thm. 10: ProxACV-CV assessment error

= B[O+ ei(1+ 1)) = 0+ ei(1+ 55i57))lei > 0] + O()

The optimization perspective adopted in this paper naturally points towards generalizations of the proximal
estimator (13). In particular, stronger assessment guarantees can be provided for (regularized) higher-order Taylor
approximations of the objective function. For example, for p > 2, we may define the p-th order approximation

ProxACVIO(\) £ L5z, g0 (\))  with

1=1 I3
BEFOHOP () £ argmingega {6y (Po i, B; B(N)) + Am(B)}

which recovers ProxACV (12) and the ProxACV estimator (13) in the setting p = 2. We also define the
regularized p-th order approximation

ProxACVEHO(\) 2 Ly y(z, gUOREOr (h)) with
Lip(V5L(Pn,-i,"))

BEFTHO (A) 2 argming g { € (Pr iy 85 B(N) + TSR BN - BB 4+ Am(8)

where £, (P (P, -is ,B( )) is a p-th order Taylor expansion of the loss £, (P, ;,-) about B(/\), that is, fp(ﬁ;B(/\)) &
o ,;l, vk f (ﬂ (M) (B — B(N)®k. To analyze both, we will make use of the following assumptions which generalize
Assump. 1lc.

Assumption 1g (Curvature of proximal Taylor approximation). For some p,q, ¢y, >0, all i € [n], and all X in

a giwven A C [0,00], £p(Pp, i, -, A; B(X)) + A has v(r) = ¢r? gradient growth.

Assumption 1h (Curvature of regularized proximal Taylor approximation). For some p,q,c, > 0, all i € [n],
. . ~ 5 Lip (VE€(Pn,-i,-,A)) A .

and all X in a given A C [0, 00], £,(Py—s, -, A; B(A)) + ”TH- — BB+ M has v(r) = ¢, gradient

growth.

Thm. 10 will then follow from the following more general statement, proved in App. I.1.

Theorem 29 (ProxACVEO—CV and ProxACVE“HO—CV assessment error). If Assumps. 3¢, 1d, and 1g hold
for some A C [0,00], then, for all A\ € A and i € [n],
5Proz-HO, A — - 1A 5 . - R
1B 100 (3) = BN 5™ < RpllBa(h) = BOVIG with Ry & Chess, (32a)

-i lem

If Assumps. 3c, 1d, and 1g hold for some A C [0, 00], then, for all A € A and i € [n],

IBL O () — By (VI15H < 2R, |1 B-(N) — BV, (32b)

If Assumps. 2, 3¢, 1d, and 1g hold for some A C [0,00] and each (s,r) € {(0, pJ(rq(ql)lg) ), (1, (qzﬁ)g), (1, Zr_qf)%)},
then, for all A € A,
[ProxACV.'?(X) — CV())|

1 2
1 (Rp)a T e 1 (Rp)iT e | (@)TT e
< 71’7]3 p+(g—1)2 + 2p p2p B 2p pFa— pp+q T B1 pta— and (3334)
n(a— 1)2 ola= 1)2 OW n(qfl)2 C$71)2 " (g—1)2 n(q—1)2 o= 1)? ?(q— 1)2
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If Assumps. 2, 3c, 1d, and 1h holds for A and each (s,r) € {(0, p(+qq1)12) ), (1, (qzﬁ)z), (1, qul)%)}, then, for all
AEA,

[ProxACV#9(\) — CV())|

1 2
1 (2Rp) I T e 11 (2Rp)971 o 1 (2f<)‘1 I Re
S 720177]30 p+(g—1)2 + 2 2p p2p B 2p + p+Q*1 piq Bl ptq—1- (33b)
n(@=D7 (¢-1)? " a-1)2 n(a=D%  (a=1)2 “@-»T p DT (- Bk e

Thm. 10 follows from Thm. 29 with p = ¢ = 2 since Assump. lc (with 0 € A) implies u = ¢,, strong convexity for
ég( i SN B )) Since 7 is convex, we further have u strong convexity and hence v(r) = ur? gradient growth
for I (P iy A5 B(A)) 4 A7 () for each A € A.

I.1 Proof of Thm. 29: ProxACVII,{O-CV and ProxACV?HO-CV assessment error
I.1.1 Proof of (32a) and (32b): Proximity of ProxACV?O, ProxACV?HO, and CV estimators

The proofs follow exactly as in Apps. B.1.2 and B.1.3 if we take ¢(x) = £(x), §p(z;w) = Zp(x;w), wo(z) = 7(x),
and w = B(/\) and invoke Assumps. 3c, 1g, and 1h in place of Assumps. 3b, le, and 1f, respectively.

I1.1.2 Proof of (33a) and (33b): Proximity of PI‘OXACVZIO,PI‘OXACVZI}HO, and CV

This proofs follow exactly as in follows directly from the proof contained in Apps. B.1.4 and B.1.5 if we substitute
(32a) and (32b) for (16a) and (16b) respectively.

J Proof of Thm. 11: ProxACVY-ProxACV assessment error

We will prove the following more detailed statement from which Thm. 11 immediately follows.

Theorem 30 (ProxACV"”-ProxACYV assessment error). If Assump. 1c holds for A C [0, 00] with 0 € A, then,
for each X € A,

APToT. Sproxr vy Zi,A Mlopll Va2 zi,A A
Hﬁi JJ(/\)_BZ ()\)”2 < IVEL(=zi, B llop IV g€(2:,8(N) |2 (34)

2 2
C’"Ln

If, in addition, Assump. 2 holds for A and each (s,r) € {(1,2),(2,2),(3,2)}, then

|ProxACV"(\) — ProxACV()\)| < w7z Bio + gt BS o + B ,. (35)

ndcd

J.1  Proof of (34): Proximity of ProxACV" and ProxACV estimators
The concavity of the minimum eigenvalue, Jensen’s inequality, and Assump. 1c with 0 € A imply that
mineig(H,) = mineig(-2; 1 " Hy;) > 2L 5" mineig(He ;) > e

for H, = V%E(Pn,ﬁ()\)) and Hy; = V3{(P,, 4, B(N)). Moreover, Assump. 1c with 0 € A implies y = ¢, strong
convexity for s (Pr iy s s B (\)); since 7 is convex, we further have u strong convexity and hence v(r) = ur?

gradient growth for ZQ(]P7L7_»L‘7 A B(N) + Ar() for each A € A. Hence, we may apply the Proximal Newton
Comparison Lemma 20 to obtain

187 () = 5 Nllz < IVELPA, BON) = VELPari, BN Nopll B (N) = BV 12
L IV3 i, B lopl1BZ(A) = BV 2.

/\

\ /\

To complete the bound, we note that S(\) = proxA (B — Z;V/;E(Pn, B(N))) and use the 1-Lipschitzness of
the prox operator to conclude that

1% () = BV Nl2 < [ (V5E(Pa, BN) = Val(Prp-is B2 < 5t [V 5€(z1, BO) 2. (36)
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J.2 Proof of (35): Proximity of ProxACV" and ProxACV

Fix any A € A. To control the discrepancy between ProxACV()\) and ProxACV"()\), we first rewrite the
difference using Taylor’s theorem with Lagrange remainder:

ProxACV()\) — ProxACVY()\) = %Zj Az, BP“’"(A)) — 0z, BT ()
= & Zina(Vallz, (), A5 () = 570 ()
+ 5 V3=, 3)[B5 ™ (V) — B (V)#2
for some ; € {tB*(\) + (1 — £)B7(\) : t € [0,1]}. We next use the mean-value theorem to expand each
function (Vgl(z,-), B(A) — B (X)) around the full-data estimator B()):
ProxACV(\) — ProxACVY(X) = L 371 (Vsl(zi, S(N), A5 (V) — B (V)
+ 3 V3=, 565 (V) — BT ()]0
+ (VB (zir 50) (B-4(0) = B, B%™ (V) = B ()

for some s; € {tB(\) + (1 —£)B° " (\) : ¢ € [0,1]}. Finally, we invoke Cauchy-Schwarz, the definition of the
operator norm, the estimator proximity results (15) and (34), and Assump. 2 to obtain

[ProxACV(\) — ProxACV"(\)| < £ 377 [[Vsl(zi, BOV)lI2]18% ™ (V) = B (V)|
+ 31IV30(z0,80) lop |87 (V) = BE ™ (V)13
+ IV3E(zi, 80) lop | B-4(A) = BV 21187 (N) = B%P (V)2
< i & S IVEE(zs BO)lopl IV 5€(z1, BOV)II3
+ gt & Lt V320 3) lop I VE(zi: BONNZ IV 5€(z0, BOV)II3
+n3lc3 L V3 3 lop V3 22, BO) lop | V 5€(25 BOV)II3
< oz B€2+2n404 BS, +

nc2

e Bs o
K Proof of Thm. 12: ProxACV-CYV selection error

The first claim follows immediately from the following more detailed version of Thm. 12.

Theorem 31 (Weak ProxACYV proximity implies B proximity). Suppose Assumps. 1c¢ and 3¢ hold for some
A C[0,00] and each (s,r) € {(0,2),(1,2)}. Then, for all N, € A with N < )\,

1B = BV < Cran (2222 4 Bz | ProxACV()) - ProxACV(X)), (37)

where Cy \ y = =557

Proof Fix any XM, A € A with ) < A. We begin by writing the difference in estimator training losses as a
difference in Prox ACYV values plus a series of error terms:

(P, B(N) — (P, B(N)) = ProxACV()\) — ProxACV(\) + AT, — AT, — ATy (38)
for
ATy 2 ProxACV()\) — ProxACV()) + ProxACV()) — ProxACV(\)
ProxACV(\) 2 ((P,, B(N) + £ X1y (Vsl(zi, B, A% (V) = B(N)
ATy 2 L3700 (Val(zi, BON) = Villzi, BIX)), B (V) = BOV)
ATy £ L300 (Vsl(zi, BN)), B (A) = BN — (B (V) = BX))).

We will frequently use the bound (36) which follows from Assump. lc and implies
18N = B (Vllz < %=1V 5(zi, BOV) |2
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for each i € [n].
To bound ATy, we first employ Taylor’s Theorem with Lagrange remainder,
ProxACV(\) — ProxACV(A) = & 577 V20(z, 5) [B(\) — B(N)]©2

for some s; € £; = {tB(\) + (1 — t)B;(\) : t € [0,1]}. Next we apply the definition of the operator norm, the
bound (36), and Assump. 2 with (s,7) = (1, 2)

[ProxACV(A) - ProxACV(\)| < g Y11, V3£, )llopl| B (V) = BOVIB
< 330 V3G ) lon (7 211V 50 BOIB)
S,le%gnt,z

Since an identical bound holds for X', we have
AT) < 4B,

To bound AT, and ATs, we apply Cauchy-Schwarz, the triangle inequality, the bound (36), the arithmetic-
geometric mean inequality, and Assump. 2 with (s,r) = (0,2) to find

ATo| = 212 7 (Tb(z:, BO)) = Tallzs, BN)), B (V) = BV
< 55185 = BV (IV5£Cz1, BOV) 2 + 1 9560Cz2 BOV)) 12
< IS0 LIVt BOD 2 (V583 BOD 2 + 1V 5000, BO) 12
LS 3Vt BB + 3Tt BB < 2252 and

AT3| < 5 300, \\Vﬂﬁ(ziyﬁ(k’))ﬂz(Hﬁf’ZOX( ) = B2 + 185 (V) — (/\’)Hz)
2 Bo.»

< LY 22 IVstz BN (V681 BN + 1V 580z, Bz < 222

Cm

IN

The advertised result (37) now follows by combining Lemma 27 with the loss difference decomposition (38) and
the component ATy, ATy, and AT3 bounds. O

The second claim in Thm. 12 follows from Thm. 31 and the following lemma.

Lemma 32. If Assumps. 1lc, 2, and 3¢ hold for some A C [0,00] and each (s,r) € {(0,3),(1,3),(1,4)}. If
AProxacyv € argminyc, ProxACV () and Agv € argminy,c, CV()), then

¢
Bis
nc4

Cy 3B1 4)
4n2c8)

14
0 < ProxACV(\cv) — ProxACV(Aacv) < 55 (25 +

= p2 CS

+

Proof Since A\cv minimizes CV and Aproxacv minimizes ProxACYV,

0 < ProxACV(Acv) — ProxACV (Aproxacv)
§ PI‘OXACV()\C\/) — PI‘OXACV()\proxACV) + CV()\ProxACV) - CV()\cv)

The result now follows from two applications of Thm. 10. O

L Proof of Prop. 13: O(1/y/n) error bound is tight
For each i € [n], define z; = z — %zi. For the target objective,

ProxACV(\) = CV()\) = 15" L(3,()\) —z)? forall A€ [0,00],

n
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and a straightforward calculation shows

z—X ifz> A\ Zi— X ifz; >\
BN =Lz+) ifz<-X and BN =Lz +\ ifz<-)\
0 otherwise 0 otherwise

for each i € [n]. Hence, for each i, 5;(0) = %,

—%zi if 0> 2z —"T'Hzi if 0> 2z
Bi(Z2) =<Kz +z if2nz<z, and p(2)—2z,={zi—z+2z if2nz<z.
0 otherwise -2z otherwise

Let Cy ={icn]: %<0}, Co={ic[n]: 2 >2/2n=2nz}and C3 = {i € [n] : z; € C; UCy}. We have
selected our dataset so that Cs is empty. Therefore

2PI‘OXACV(2) = %Ziec’l (n;;l Z T 21605 Zz - (n+1 Zz 1 z ( + %)% Zi€C3 Zz2

Meanwhile,

2ProxACV(0) = 2 37" (z; — 2)?
=15 (- (1+1/n)2)?+ (1+1/n)*(z — 2)?
_ #22—1— (n+1) 1 Zz ) 12 (n+1)222

nz
= *“;zl“ (14 2)z2

Hence,

2ProxACV(0) — 2ProxACV(z) = (2 + L)LY [ 22— (1+2)22= (2 + L))o — (1+ 2)2 = 3.

M Additional Experiment Details

M.1 ProxACV versus ACV and ACVV

This section provides additional experimental details for the experiment of Sec. 5.1. In this experiment, we use
the exact experimental setup and code of [Stephenson and Broderick, 2019, App. F] with a modified number of
datapoints (n = 150). Specifically, we employ an ¢; regularized logistic regression objective with 150 feature
coefficients plus an intercept coefficient. The data matrix of covariates is generated with i.i.d. N(0,1) entries, and
binary labels for each datapoint are generated independently from a logistic regression model with ground truth
B* having its first five entries drawn i.i.d. N(0,1) and the rest set to zero. We solve the proximal Newton steps
for ProxACV using FISTA Beck and Teboulle [2009)].

We compare with the non-smooth ACV and ACV' extensions studied by [Obuchi and Kabashima, 2016, 2018,
Rad and Maleki, 2019, Stephenson and Broderick, 2019, Wang et al., 2018] and defined by restricting 5_;(\) and
BH(N\) to have support only on S = support(5(\)) and setting

B =B+ 17 [Val(z:, BV

BN =B+ 1) V(= BOV)),
where X% denotes the submatrix of X with column indices in S, where H, and H, ; are given by (14) and (13),

respectively.

M.2 ProxACV Speed-up

This section provides additional experimental details for the experiment of Sec. 5.2. For this experiment, we
employed the standard graphical Lasso objective,

m(Py, B,\) = —logdet 8+ tr(8S) + A 37—, 1Bkl
m(Pyi,8,\) = —logdet 8+ tr(8S_;) + A7 1 1Bl
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where 3 is now a positive-definite matrix in RP*P S = ﬁ Yo (zi— ) (2 -, 5 = ﬁ Zj#(zj —p—i)(zj—
p_g) ", for p = %Z;;l 2, and p_; = ﬁ i %



