Geoffrey Wolfer, Aryeh Kontorovich

A Proof of Theorem 4.3, lower bound in  (dtyix)-

Let us recall the construction of Wolfer and Kontorovich (2019). Taking 0 < e < 1/8 and d = 6k, k > 2 fixed,
0<mn<1/48 and T € {0, 1}d/3, we define the block matrix

C, R-
o= (3 %),

T

where C,, € RY/3x4/3 [, ¢ R24/3x2d/3 and R, € RY/3%24/3 are given by

1
L, = 3 diag (7 — 4mie, 7+ 4me, ..., T — 47 38, T+ 474)3¢)

3
17 d/:?—1 d/3—1
3
o = |am=T a7
7 ) _y
§/371
a/3—1 dj3—=1 4
1+4+4me 1 —4me 0 0
1 0 0 1+4me 1—4me O 0
Ry = . . . .
8 : : : : : : :
0 0 1—|—47’d/3€ 1—47’d/3€
Holding 7 fixed, define the collection
Hy = { M, 7€ {0,137} (A1)

of ergodic and symmetric stochastic matrices. Suppose that X = (X1,...,X,,) ~ (M, u), where M € H,, and
p is the uniform distribution over the inner clique nodes, indexed by {1,...d/3}. Define the random variable
Tcriq/2 to be the first time some half of the states in the inner clique were visited,

Tewqs = inf {t > 1:|{X1,..., X,} N [d/3]] = d/6}. (A.2)

Lemma B.5 lower bounds the half cover time:

: (A.3)

ot =

m< —— — P(TCLIQ/2 >m) Z

while Wolfer and Kontorovich (2019, Lemma 6) establishes the key property that any element M of H,, satisfies

tmix(M) = é(l/n) (A4>

Let us fix some 4, € [d], choose as reference M = M n,0 and as an alternative hypothesis M = M, ,, with
7; = 1{i = i, }. Take both chains to have the uniform distribution p over the clique nodes as their initial one. It
is easily verified that |HM - MH| = ¢, so that

Rm > 1171_f [PO (T = 1‘TCLIQ/2 > m) PO (TCLIQ/2 > m) + P1 (T = 0|TCLIQ/2 > m) P1 (TCLIQ/2 > m)] . (A5)

d

W’ we have

Further, for m <

1.
Rm Z g 1r71_f [PO (T = 1|TCLIQ/2 > m) + P1 (T = O|TCLIQ/2 > m)] . (A6)
Since P (X|Y) > P (XY, Z)P (Z]Y), we have

Py (T = 1|Teriq 2 > m) > Py (T = UTcriq/2 > m, Ny, = O) Py (Ni* = 0[TcrLiq2 > m) - (A7)
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Additionally, the symmetry of our reference chain implies that Py (Ni* = 0|Tcriq/2 > m) > 1/2. Tt follows, via
an analogous argument that P (NZ-* = 0Tcriq/2 > m) > 1/2, so that

1
R > o ir%f [Po (T = 1Tcriq/2 > m,N;, =0) + Py (T = 0[Tcriq2 > m, N;, =0)]. (A.8)

By Le Cam’s theorem (Le Cam, 2012, Chapter 16, Section 4),
1
R > i [1—||Po (X|Terigy2 > m, Ny, = 0) = Py (X |Terig2 > m, Ni, =0) ||, ] - (A.9)

Other than state 7, and its connected outer nodes, the reference chain M, o and the alternative chain M, .
are identical. Conditional on N;, = 0, the outer states connected to i, were never visited, since these are only
connected to the rest of the chain via i, and our choice of the initial distribution g constrains the initial state to
the inner clique. Thus, the two distributions over sequences conditioned on N;, = 0 are identical, causing the
term ||Po () — Py (+)||3y in (A.9) to vanish:

1

which proves a sample complexity lower bound of Q(dtmix). Since our family of Markov chains has uniform
stationary distribution (m, = 1/d), this further proves that the dependence on 7, in our bound is in general not
improvable. O

B Auxiliary lemmas

The following standard combinatorial fact will be useful.

Lemma B.1 Let (m,n) € N? such that m+1 > 2n. Then there are (mTLLH) ways of selecting n non-consecutive
integers from [m].

Lemma B.2 For any M € G, defined in (6.3), started with initial distribution p defined in (6.5),

(1—p)" ifn=20
P(m,n.p.) = Pagp Ny =n) = { pr(L=pa)™ =2 [(" ) = (270)p] if1 << 22
0 ifn > m

Proof: For any M € G, , we construct the following associated two-state Markov chain, with initial distribution
(1 —p,,p,), where all states i € [d] are merged into a single state, which we call d 4+ 1, while state d + 1 is kept
distinct. Observe that this two-state Markov chain is the same for all M € G, , regardless of 7, and that the
probability distribution of the number of visits to state d + 1, when sampling from M, is the same as when
sampling from this newly constructed chain.

1

Px

Let m > 1. The case where n = 0 is trivial as it corresponds to n failures to reach the state d 4+ 1, and there is
only one such path. When n > ’”;‘1, there is no path of length m that contains n visits to state d + 1, as any
visit to this state almost surely cannot be directly followed by another visit to this same state. It remains to
analyze the final case where 1 <n < mTH Take (x1,...,2Zm) to be a sample path in which the state d + 1 was

visited n times. We consider two sub-cases.

The last state in the sample path is d + 1: In the case where z,, = d + 1, note that also necessarily
Tm—1 =d+ 1. The n — 1 previous visits to state d + 1 were followed by a probability 1 transition to state d + 1,
and the remaining transitions have value 1 — p,, so that P (X = &) = p?~ 11"~ 1(1 — p, )™~ (»=D-(n=D=1; —
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p?(1 — p, )™= 27+ Since the last two states in the sequence are fixed and known, z,,, = d+ 1, x,,_1 = d + 1,

counting the number of such paths amounts to counting the number of subsets of m — 2 of size n — 1 such that no
two elements are consecutive, i.e. ((’"*2>;£’;*1>+1) = ("77) (Lemma B.1).

The last state in the sample path is d + 1: By reasoning similar to above, such paths have probability
p?(1 — p,)™ 2", To count such paths, consider all possible subsets of m of size n such that no two elements are
consecutive, and subtract the count of paths in the other case where the last state was d + 1. There are then
(m—n+1) o (m—n) _ (m;n) such paths.

n n—1

It follows that

m-—=n —2n m-=n\ , m—2n
Plmnps) = (D)ot (M

e (v |

Lemma B.3 Let M, M, € G, , defined in (6.3), and start both chains with initial distribution p defined in
(6.5). For arbitrary (m,n) € N? such that m +1> 2n, let Ngy1 = Yoy 1{X; = d + 1} be the number of visits
to state (d+1). Then, for trajectories X = (X1,...,Xm) sampled from either chain, we have

IPar, (X | Naw1 < 1) — Par, (X | Nag1 < 0|1y B2)
< [IPar, (X [ Napr =n) = Parg, (X | Nayr = n)lqy -

Proof: Partitioning over all possible number of visits to d + 1 for M,

Py (X | Nagi <n) =Y Par, (X | Nagr <0, Nagpa = k) Pagy (Napa = k | Nagr < n)
k=0

= PM1 (X|Nd+1:k)PMl (Nd+1:k|Nd+1§n)
0

(B.3)

=1
Nagp1 <n| Nay1 = k) Par, (Nay1 = k)
Par, (Nay1 <n)

< P
=Y Par, (X | Naw1 = k) a
k=0

From Lemma B.2, we have

Par, (Nat1 = k) =P, (Nag1 = k) = P(m, k, p,)

Par, (Nay1 <n) = Par, (Nay1 <n) =Y P(m,s,p,),
s=0

and subsequently,

[Par, (X | Nap1 <n) —Pag, (X [ Nay1 <)y

> (P (X | Nass =) = Pa, (X | Nasa =) )
k=0

P(m, k,p,)
ZZ:O P<m7 S,p*)

TV
(m, k, ps) (B.5)
0 P(ma Sap*)

- P
<Y IPar, (X [ Nagyr = k) = Pag, (X | Nag1 = k)|lpy 5

< peimax |Par, (X | Ngp1 = k) = Par, (X | Nay1 = k)|l1y

< [IPar, (X [ Napr =n) = Par, (X | Nags = n)lqy -
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The following lemma shows that for the family G,, of chains constructed in (6.3), conditioned on the number of
visits to state d + 1, it is possible to control the total variation between two trajectories drawn from two chains of
the class in terms of the total variation between product distributions.

Lemma B.4 Let M, ,M,, < G,, defined in (6.3), both started with initial distribution p defined in (6.5).
Then, for 1 <n < mTH,

|Par,, (X|Nag1 =n) = Par,, (X[Nap1 =n)|5, < [[nF" = 05"y - (B.6)

Proof: Total variation and #; norm are equal up to a conventional factor of 2,

— 3 Par,, (X =@|Naps = n) — Par,, (X = @|Nayr = n)|: (B.7)
z=(T1,...,Tm)E[d+1]™

Notice now that

P]w"1 (Nd+1 = TL|X = :B) P]w"1 (X = CIJ)
P, (Nit1 =n)

P]\/[,'71 (X = 33|Nd+1 = n) =

B.8
o 1 {nd+1 = n} PMm (X = SE) ( )
Par, (Nay1=n) ’
and similarly for M, , so that
2 ||PM711 (XlNd+1 - TL) B PMTIQ (XlNdJrl = n)HTV
_ Z 1{nay1 =n}Pn, (X =x) 1 {nay1 =n}Pun,, (X =) (B.9)
z€[d+1]™ P, (Na+1 =n) Par, (Na+1 =n)
Invoking Lemma B.2, write
P(m,n,p*) = 1:)1\/[771 (Nd+1 = n) = 1)1\4172 (Nd+1 = ’I’L) .
For1<n< TH,
2||Pat,, (X|Nap1 =n) = Par,, (X|Nap1 =n)||,,
1
== 1 = P X=x)—-P X =
P(man7p*) me[dz—‘rl]’” {nd+1 n}| Mnl ( w) MnQ ( w)|
1
- - |Par, (X =) —Pp,, (X =)
P(m,n,py) <we[d¥1]m K 2 (B.10)
Ng+4+1=n
T =d+1

+ Z Par,, (X =2) - Par,, (X::L')|>

ze[d+1]™
Ndg4+1=n
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Recall that it is impossible to visit state d + 1 twice in a row. Computing the first sum,

> [Pam,, (X =2)-Pu,, (X = 2)

weldr1]™
Ndg4+1="n
Tym=d+1
1 —p m—2n+1 |n—1 n—1
S I e ) | IR ) £
S=(s1,0,8n)  (Toyre, | )E[d+1]n~1 k=1 k=1
gc_[%] (B.11)

i#) = |si—s;|>1

= ((m -2 ;Enl_ D+ 1)171’ (1—p,)m2Ht >

(T yoes,, _y JE[AP1

TT 7(ee) — [T 7o)
k=1

k=1

= (M)

where the second inequality is from Lemma B.1. Similarly for the second sum,

Y |Pum, (X =2)-Pun,, (X =2)

xzE[d+1]™
Nngy1="n
T F#d+1

_ m—2n, n ]‘_p* meen
> > ()

S=(s1,.--,5n) (.’,851,..47!)25n)€[d+1]"
SC[m
pap (B.12)

i#j = ‘Sifs]“>1

()3

Ty yensTsy )E[™
= (P 0

n
H "71 xsk - H n2(x5k)
k=1

k=1

Hence,

2||Pat,, (X[Nay1 =n) — P, (X|Nay1 = n)||;,, POm,n,ps)

= (= (0T e e g (7))

(B.13)
n m—2n m—n m—-n
< 2p " = 0§l py 1 —p)" I:(n_l)(l—p*)—i—( . )}
=2 Hn?n - nngTv P(m,n,p,) (Lemma B.1).
O

Lemma B.5 (Cover time) For M € H, [defined in (A.1)], the “half cover time” random variable Tcryq /2
[defined in (A.2)] satisfies

d
—— = P (Touge >m) >

m < 207 (B.14)

cn\'—*

Proof: The proof pursues a strategy similar to Wolfer and Kontorovich (2019), which is adapted to “half” rather
than “full” coverings. Let M € H, and M| € Mg/3 be such that M consists only in the inner clique of M,
and each outer rim state got absorbed into its unique inner clique neighbor:

1—n u Y

M] — d/37]71 1 -n

d/g—l d/g—l L-
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By construction, it is clear that Tcyiq 2 is almost surely greater than the half cover time of M. The latter

corresponds to a generalized coupon half collection time Ugovgr/2 = 1+ Zfi ?_1 U; where U; is the time increment

between the ith and the (i + 1)th unique visited state. Formally, if X is a random walk according to M (started
from any state), then U; = min{t > 1: X; # X;} and for ¢ > 1,

Uy=min{t >1: X, ¢ {X1,.... Xy, ,}} — Ui_1. (B.15)

1—1
The random variables Uy, Us, ..., Ug/6-1 are independent and U; ~ Geometric (77 — ( M), whence

/3
(i—1)n
1‘(”‘ E )

L d3 T
Bl = n(d/3 —i+1)’ Var [ G-\’ (5:16)
(“ R )
and
2 .2
E [UCOVER/2] >1+ d7/73(0d/3 - Jd/ﬁ)a Var [UCOVER/2] < (d77/23)6, (B.17)

where o4 = Zle %, and 7 = 3.1416.... Since In(d+1) < 04 < 1+ Ind, and for d = 6k, k > 2, we have
04— 0q/2 > In 2 it follows that

E [Ucover/2] = Zh;Q, Var [Ucover 2] < zz; (B.18)
Invoking the Paley-Zygmund inequality with 6 =1 — 6‘{?52, yields
-1
P (Ucover/2 > OE [Ucover/2]) > (1 + Var [Ucover, 2 ) > 17 (B.19)
(1= 0)*(E [Usovery2]) 5
so that for m < ﬁ we have P (TCLIQ/Q > m) > % O



