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A Proof of Theorem 4.3, lower bound in Ω (dtmix).

Let us recall the construction of Wolfer and Kontorovich (2019). Taking 0 < ε ≤ 1/8 and d = 6k, k ≥ 2 fixed,
0 < η < 1/48 and τ ∈ {0, 1}d/3, we define the block matrix

Mη,τ =

(
Cη Rτ
Rᵀ
τ Lτ

)
,

where Cη ∈ Rd/3×d/3, Lτ ∈ R2d/3×2d/3, and Rτ ∈ Rd/3×2d/3 are given by

Lτ =
1

8
diag

(
7− 4τ1ε, 7 + 4τ1ε, . . . , 7− 4τd/3ε, 7 + 4τd/3ε

)
,

Cη =


3
4 − η

η
d/3−1 . . . η

d/3−1

η
d/3−1

3
4 − η

. . .
...

...
. . . . . . η

d/3−1
η

d/3−1 . . . η
d/3−1

3
4 − η

 ,

Rτ =
1

8


1 + 4τ1ε 1− 4τ1ε 0 . . . . . . . . . 0

0 0 1 + 4τ2ε 1− 4τ2ε 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . 0 1 + 4τd/3ε 1− 4τd/3ε

 .

Holding η fixed, define the collection

Hη =
{
Mη,τ : τ ∈ {0, 1}d/3

}
(A.1)

of ergodic and symmetric stochastic matrices. Suppose that X = (X1, . . . , Xm) ∼ (M ,µ), where M ∈ Hη, and
µ is the uniform distribution over the inner clique nodes, indexed by {1, . . . d/3}. Define the random variable
TCLIQ/2 to be the first time some half of the states in the inner clique were visited,

TCLIQ/2 = inf {t ≥ 1 : |{X1, . . . , Xt} ∩ [d/3]| = d/6} . (A.2)

Lemma B.5 lower bounds the half cover time:

m ≤ d

120η
=⇒ P

(
TCLIQ/2 > m

)
≥ 1

5
, (A.3)

while Wolfer and Kontorovich (2019, Lemma 6) establishes the key property that any element M of Hη satisfies

tmix(M) = Θ̃(1/η). (A.4)

Let us fix some i? ∈ [d], choose as reference M .
= Mη,0 and as an alternative hypothesis M .

= Mη,τ , with
τi = 1 {i = i?}. Take both chains to have the uniform distribution µ over the clique nodes as their initial one. It
is easily verified that

∣∣∣∣∣∣M −M
∣∣∣∣∣∣ = ε, so that

Rm ≥ inf
T

[
P0

(
T = 1|TCLIQ/2 > m

)
P0

(
TCLIQ/2 > m

)
+ P1

(
T = 0|TCLIQ/2 > m

)
P1

(
TCLIQ/2 > m

)]
. (A.5)

Further, for m < d
120η , we have

Rm ≥
1

5
inf
T

[
P0

(
T = 1|TCLIQ/2 > m

)
+ P1

(
T = 0|TCLIQ/2 > m

)]
. (A.6)

Since P (X|Y ) ≥ P (X|Y,Z)P (Z|Y ), we have

P0

(
T = 1|TCLIQ/2 > m

)
≥ P0

(
T = 1|TCLIQ/2 > m,Ni? = 0

)
P0

(
Ni? = 0|TCLIQ/2 > m

)
. (A.7)
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Additionally, the symmetry of our reference chain implies that P0

(
Ni? = 0|TCLIQ/2 > m

)
≥ 1/2. It follows, via

an analogous argument that P1

(
Ni? = 0|TCLIQ/2 > m

)
≥ 1/2, so that

Rm ≥
1

10
inf
T

[
P0

(
T = 1|TCLIQ/2 > m,Ni? = 0

)
+ P1

(
T = 0|TCLIQ/2 > m,Ni? = 0

)]
. (A.8)

By Le Cam’s theorem (Le Cam, 2012, Chapter 16, Section 4),

Rm ≥
1

10

[
1−

∥∥P0

(
X|TCLIQ/2 > m,Ni? = 0

)
−P1

(
X|TCLIQ/2 > m,Ni? = 0

)∥∥
TV

]
. (A.9)

Other than state i? and its connected outer nodes, the reference chain Mη,0 and the alternative chain Mη,τ

are identical. Conditional on Ni? = 0, the outer states connected to i? were never visited, since these are only
connected to the rest of the chain via i? and our choice of the initial distribution µ constrains the initial state to
the inner clique. Thus, the two distributions over sequences conditioned on Ni? = 0 are identical, causing the
term ‖P0 (·)−P1 (·)‖TV in (A.9) to vanish:

Rm ≥
1

10
, (A.10)

which proves a sample complexity lower bound of Ω̃(dtmix). Since our family of Markov chains has uniform
stationary distribution (π? = 1/d), this further proves that the dependence on π? in our bound is in general not
improvable. �

B Auxiliary lemmas

The following standard combinatorial fact will be useful.

Lemma B.1 Let (m,n) ∈ N2 such that m+ 1 ≥ 2n. Then there are
(
m−n+1

n

)
ways of selecting n non-consecutive

integers from [m].

Lemma B.2 For any M ∈ Gp? defined in (6.3), started with initial distribution p defined in (6.5),

P (m,n, p?)
.
= PM ,p (Nd+1 = n) =


(1− p?)n if n = 0

pn? (1− p?)m−2n
[(
m−n+1

n

)
−
(
m−n
n−1

)
p?

]
if 1 ≤ n ≤ m+1

2

0 if n > m+1
2

.

Proof: For anyM ∈ Gp? , we construct the following associated two-state Markov chain, with initial distribution
(1− p?,p?), where all states i ∈ [d] are merged into a single state, which we call d+ 1, while state d+ 1 is kept
distinct. Observe that this two-state Markov chain is the same for all M ∈ Gp? , regardless of η, and that the
probability distribution of the number of visits to state d + 1, when sampling from M , is the same as when
sampling from this newly constructed chain.

d+ 1 d+ 10

1

1− p?
p?

Let m ≥ 1. The case where n = 0 is trivial as it corresponds to n failures to reach the state d+ 1, and there is
only one such path. When n > m+1

2 , there is no path of length m that contains n visits to state d+ 1, as any
visit to this state almost surely cannot be directly followed by another visit to this same state. It remains to
analyze the final case where 1 ≤ n ≤ m+1

2 . Take (x1, . . . , xm) to be a sample path in which the state d+ 1 was
visited n times. We consider two sub-cases.

The last state in the sample path is d + 1: In the case where xm = d + 1, note that also necessarily
xm−1 = d+ 1. The n− 1 previous visits to state d+ 1 were followed by a probability 1 transition to state d+ 1,
and the remaining transitions have value 1 − p?, so that P (X = x) = pn−1

? 1n−1(1 − p?)m−(n−1)−(n−1)−1p? =
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pn? (1 − p?)m−2n+1. Since the last two states in the sequence are fixed and known, xm = d + 1, xm−1 = d+ 1,
counting the number of such paths amounts to counting the number of subsets of m− 2 of size n− 1 such that no
two elements are consecutive, i.e.

(
(m−2)−(n−1)+1

n−1

)
=
(
m−n
n−1

)
(Lemma B.1).

The last state in the sample path is d+ 1: By reasoning similar to above, such paths have probability
pn? (1− p?)m−2n. To count such paths, consider all possible subsets of m of size n such that no two elements are
consecutive, and subtract the count of paths in the other case where the last state was d+ 1. There are then(
m−n+1

n

)
−
(
m−n
n−1

)
=
(
m−n
n

)
such paths.

It follows that

P (m,n, p?) =

(
m− n
n− 1

)
pn? (1− p?)m−2n+1 +

(
m− n
n

)
pn? (1− p?)m−2n

= pn? (1− p?)m−2n

[(
m− n+ 1

n

)
−
(
m− n
n− 1

)
p?

]
.

(B.1)

�

Lemma B.3 Let M1,M2 ∈ Gp? , defined in (6.3), and start both chains with initial distribution p defined in
(6.5). For arbitrary (m,n) ∈ N2 such that m+ 1 ≥ 2n, let Nd+1 =

∑m
t=1 1 {Xt = d+ 1} be the number of visits

to state (d+ 1). Then, for trajectories X = (X1, . . . , Xm) sampled from either chain, we have

‖PM1
(X | Nd+1 ≤ n)−PM2

(X | Nd+1 ≤ n)‖TV
≤ ‖PM1

(X | Nd+1 = n)−PM2
(X | Nd+1 = n)‖TV .

(B.2)

Proof: Partitioning over all possible number of visits to d+ 1 for M1,

PM1
(X | Nd+1 ≤ n) =

∞∑
k=0

PM1
(X | Nd+1 ≤ n,Nd+1 = k)PM1

(Nd+1 = k | Nd+1 ≤ n)

=

n∑
k=0

PM1 (X | Nd+1 = k)PM1 (Nd+1 = k | Nd+1 ≤ n)

=

n∑
k=0

PM1
(X | Nd+1 = k)

=1︷ ︸︸ ︷
PM1 (Nd+1 ≤ n | Nd+1 = k)PM1 (Nd+1 = k)

PM1
(Nd+1 ≤ n)

(B.3)

From Lemma B.2, we have

PM1 (Nd+1 = k) = PM2 (Nd+1 = k) = P (m, k, p?)

PM1 (Nd+1 ≤ n) = PM2 (Nd+1 ≤ n) =

n∑
s=0

P (m, s, p?),
(B.4)

and subsequently,

‖PM1
(X | Nd+1 ≤ n)−PM2

(X | Nd+1 ≤ n)‖TV

=

∥∥∥∥∥
n∑
k=0

(
PM1

(X | Nd+1 = k)−PM2
(X | Nd+1 = k)

)
P (m, k, p?)∑n
s=0 P (m, s, p?)

∥∥∥∥∥
TV

≤
n∑
k=0

‖PM1
(X | Nd+1 = k)−PM2

(X | Nd+1 = k)‖TV
P (m, k, p?)∑n
s=0 P (m, s, p?)

≤ max
k∈{0,...,n}

‖PM1 (X | Nd+1 = k)−PM2 (X | Nd+1 = k)‖TV

≤ ‖PM1
(X | Nd+1 = n)−PM2

(X | Nd+1 = n)‖TV .

(B.5)

�
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The following lemma shows that for the family Gp? of chains constructed in (6.3), conditioned on the number of
visits to state d+ 1, it is possible to control the total variation between two trajectories drawn from two chains of
the class in terms of the total variation between product distributions.

Lemma B.4 Let Mη1
,Mη2

∈ Gp? defined in (6.3), both started with initial distribution p defined in (6.5).
Then, for 1 ≤ n ≤ m+1

2 ,

∥∥PMη1
(X|Nd+1 = n)−PMη2

(X|Nd+1 = n)
∥∥
TV
≤
∥∥η⊗n1 − η⊗n2

∥∥
TV
. (B.6)

Proof: Total variation and `1 norm are equal up to a conventional factor of 2,

2
∥∥PMη1

(X|Nd+1 = n)−PMη2
(X|Nd+1 = n)

∥∥
TV

=
∑

x=(x1,...,xm)∈[d+1]m

∣∣PMη1
(X = x|Nd+1 = n)−PMη2

(X = x|Nd+1 = n)
∣∣. (B.7)

Notice now that

PMη1
(X = x|Nd+1 = n) =

PMη1
(Nd+1 = n|X = x)PMη1

(X = x)

PMη1
(Nd+1 = n)

=
1 {nd+1 = n}PMη1

(X = x)

PMη1
(Nd+1 = n)

,

(B.8)

and similarly for Mη2
, so that

2
∥∥PMη1

(X|Nd+1 = n)−PMη2
(X|Nd+1 = n)

∥∥
TV

=
∑

x∈[d+1]m

∣∣∣∣∣1 {nd+1 = n}PMη1
(X = x)

PMη1
(Nd+1 = n)

−
1 {nd+1 = n}PMη2

(X = x)

PMη2
(Nd+1 = n)

∣∣∣∣∣ . (B.9)

Invoking Lemma B.2, write

P (m,n, p?) = PMη1
(Nd+1 = n) = PMη2

(Nd+1 = n) .

For 1 ≤ n ≤ m+1
2 ,

2
∥∥PMη1

(X|Nd+1 = n)−PMη2
(X|Nd+1 = n)

∥∥
TV

=
1

P (m,n, p?)

∑
x∈[d+1]m

1 {nd+1 = n}
∣∣PMη1

(X = x)−PMη2
(X = x)

∣∣
=

1

P (m,n, p?)

( ∑
x∈[d+1]m

nd+1=n
xm=d+1

∣∣PMη1
(X = x)−PMη2

(X = x)
∣∣

+
∑

x∈[d+1]m

nd+1=n
xm 6=d+1

∣∣PMη1
(X = x)−PMη2

(X = x)
∣∣).

(B.10)
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Recall that it is impossible to visit state d+ 1 twice in a row. Computing the first sum,∑
x∈[d+1]m

nd+1=n
xm=d+1

∣∣PMη1
(X = x)−PMη2

(X = x)
∣∣

=
∑

S=(s1,...,sn)
S⊂[m]
sn=m

i 6=j =⇒ |si−sj |>1

∑
(xs1 ,...,xsn−1

)∈[d+1]n−1

dm−2n+1pn?

(
1− p?
d

)m−2n+1
∣∣∣∣∣
n−1∏
k=1

η1(xsk)−
n−1∏
k=1

η2(xsk)

∣∣∣∣∣

=

(
(m− 2)− (n− 1) + 1

n− 1

)
pn? (1− p?)m−2n+1

∑
(xs1

,...,xsn−1
)∈[d]n−1

∣∣∣∣∣
n−1∏
k=1

η1(xsk)−
n−1∏
k=1

η2(xsk)

∣∣∣∣∣
=

(
m− n
n− 1

)
pn? (1− p?)m−2n+1

2
∥∥η⊗n−1

1 − η⊗n−1
2

∥∥
TV
,

(B.11)

where the second inequality is from Lemma B.1. Similarly for the second sum,∑
x∈[d+1]m

nd+1=n
xm 6=d+1

∣∣PMη1
(X = x)−PMη2

(X = x)
∣∣

=
∑

S=(s1,...,sn)
S⊂[m]
sn 6=m

i 6=j =⇒ |si−sj |>1

∑
(xs1

,...,xsn )∈[d+1]n

dm−2npn?

(
1− p?
d

)m−2n
∣∣∣∣∣
n∏
k=1

η1(xsk)−
n∏
k=1

η2(xsk)

∣∣∣∣∣

=

((
m− n+ 1

n

)
−
(
m− n
n− 1

))
pn? (1− p?)m−2n

∑
(xs1

,...,xsn )∈[d]n

∣∣∣∣∣
n∏
k=1

η1(xsk)−
n∏
k=1

η2(xsk)

∣∣∣∣∣
=

(
m− n
n

)
pn? (1− p?)m−2n

2
∥∥η⊗n1 − η⊗n2

∥∥
TV
.

(B.12)

Hence,

2
∥∥PMη1

(X|Nd+1 = n)−PMη2
(X|Nd+1 = n)

∥∥
TV
P (m,n, p?)

= 2pn? (1− p?)m−2n

[(
m− n
n− 1

)
(1− p?)

∥∥η⊗n−1
1 − η⊗n−1

2

∥∥
TV

+

(
m− n
n

)∥∥η⊗n1 − η⊗n2

∥∥
TV

]
≤ 2pn?

∥∥η⊗n1 − η⊗n2

∥∥
TV

(1− p?)m−2n

[(
m− n
n− 1

)
(1− p?) +

(
m− n
n

)]
= 2

∥∥η⊗n1 − η⊗n2

∥∥
TV
P (m,n, p?) (Lemma B.1).

(B.13)

�

Lemma B.5 (Cover time) For M ∈ Hη [defined in (A.1)], the “half cover time” random variable TCLIQ/2
[defined in (A.2)] satisfies

m ≤ d

120η
=⇒ P

(
TCLIQ/2 > m

)
≥ 1

5
. (B.14)

Proof: The proof pursues a strategy similar to Wolfer and Kontorovich (2019), which is adapted to “half” rather
than “full” coverings. Let M ∈ Hη and M I ∈ Md/3 be such that M I consists only in the inner clique of M ,
and each outer rim state got absorbed into its unique inner clique neighbor:

M I =


1− η η

d/3−1 . . . η
d/3−1

η
d/3−1 1− η

. . .
...

...
. . . . . . η

d/3−1
η

d/3−1 . . . η
d/3−1 1− η

 .
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By construction, it is clear that TCLIQ/2 is almost surely greater than the half cover time of M I . The latter
corresponds to a generalized coupon half collection time UCOVER/2 = 1+

∑d/6−1
i=1 Ui where Ui is the time increment

between the ith and the (i+ 1)th unique visited state. Formally, if X is a random walk according to M I (started
from any state), then U1 = min{t > 1 : Xt 6= X1} and for i > 1,

Ui = min{t > 1 : Xt /∈ {X1, . . . , XUi−1
}} − Ui−1. (B.15)

The random variables U1, U2, . . . , Ud/6−1 are independent and Ui ∼ Geometric

(
η −

(i− 1)η

d/3

)
, whence

E [Ui] =
d/3

η(d/3− i+ 1)
, Var [Ui] =

1−

(
η −

(i− 1)η

d/3

)
(
η −

(i− 1)η

d/3

)2 (B.16)

and

E
[
UCOVER/2

]
≥ 1 +

d/3

η
(σd/3 − σd/6), Var

[
UCOVER/2

]
≤

(d/3)2

η2

π2

6
, (B.17)

where σd =
∑d
i=1

1
i , and π = 3.1416 . . . . Since ln (d+ 1) ≤ σd ≤ 1 + ln d, and for d = 6k, k ≥ 2, we have

σd − σd/2 ≥ ln 2 it follows that

E
[
UCOVER/2

]
≥
d

η

ln 2

3
, Var

[
UCOVER/2

]
≤
d2

η2

π2

54
. (B.18)

Invoking the Paley-Zygmund inequality with θ = 1−
√

15
6 ln 2 , yields

P
(
UCOVER/2 > θE

[
UCOVER/2

])
≥

(
1 +

Var
[
UCOVER/2

]
(1− θ)2(E

[
UCOVER/2

]
)2

)−1

≥ 1

5
, (B.19)

so that for m ≤ d
120η we have P

(
TCLIQ/2 > m

)
≥ 1

5 . �


