
Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering

6 Appendix

6.1 Proofs of Theorems 2 and 1

6.1.1 Negative Associativity of Bloom Filters

First, let us go over the definition of negative associativity.
Random variables, {qi}ci=1, are negatively associative (NA),
if for any functions f, g, both monotonically increasing or
decreasing, and disjoint sets I, J ⊂ {1, . . . , c},

E[f(qI)g(qJ)] ≤ E[f(qI)] · E[g(qJ)],

where qI , qJ are the variables restricted to these sets.
Lemma 1. (1) Let {q0,i}ci=1, {q1,i}ci=1 ⊂ {0, 1}c be two
independent random bitarrays that are both NA. Then q0|q1,
the elementwise ‘or’ operation, and q0&q1, the element-
wise ‘and’ operation, are both NA. So NA is closed under
elementwise ‘or’ and ‘and’ operations.

(2) Let qi be the ith bit in any Bloom filter of the set N with
independent hash functions, then the random bits, {qi}ci=1,
are NA.

Proof. (1) We show that NA is closed under both ele-
mentwise operations. First, note that the concatenation
{q0,1, . . . , q0,c, q1,1, . . . , q1,c is NA, by closure of NA under
independent union (Property P7 in Joag-Dev et al. ((1983))).
Then on the disjoint sets, {q0,i, q1,i}ci=1, apply the bit oper-
ation to produce the resulting array. Operation ‘or’ is mono-
tonically increasing because, q0,i|q1,i = 1{q0,i + q1,i > 0},
‘and’ is as well because q0,i&q1,i = 1{q0,i+q1,i > 1}. Finally
we conclude by closure of NA under monotonic increasing
functions on disjoint sets (Property P6 in Joag-Dev et al.
((1983))).

(2) Consider hash function j ∈ {1, . . . , k} for node v ∈ N .
Let Bjv be the c-bit Bloom filter bitarray for this vertex and
hash function only, then Bjv has only a single bit that is 1
and the rest are 0. By the 0-1 property for binary bits, we
know that Bjv has NA entries (Lemma 8 in Dubhashi and
Ranjan ((1998))), since

∑
iB

j
v,i = 1. Then the Bloom filter,

B, of N is B = |kj=1|v∈N(x)B
j
v—the ‘or’ operation applied

to all hashes and vertices, and we conclude by property
(1).

Proof of Theorem 2. Consider the partition of N(x)∪N(y)
into A1 = N(x)\N(y), A2 = N(y)\N(x), A3 = N(x) ∩
N(y). Let Bx, By be the Bloom filter bitarrays for
N(x), N(y) and let B1, B2, B3 be those for A1, A2, A3 re-
spectively.

Notice that Bx&By = B3|(B1&B2), where the bit opera-
tions are elementwise. If all hash functions are independent,
then B1, B2, B3 are independent. Notice that for a given
node and hash function the bit selected is random, but
unique, which means that the elements of the bitarrays
are not necessarily independent for any Bloom filter. How-
ever, the bitarray B3|(B1&B2) is negatively associative by
Lemma 1. Let qi = (B1,i&B2,i)|B3,i, then we have that,

Eqi = 1− (1− E[B1,i] · E[B2,i])(1− E[B3,i]).

The probability that bit i in one of the bitarrays is 0 is

1− E[Bj,i] =

(
1− 1

c

)k|Aj |
, j = 1, 2, 3.

This can give us an expression in terms of
c, k, |A1|, |A2|, |A3| for the expectation of Q =

∑c
i=1 qi.

We have that by Hoeffding’s inequality for negatively
associative random variables Dubhashi and Ranjan
((1998)),

P{Q ≥ (1 + δ)EQ} ≤
(

eδ

(1 + δ)(1+δ)

)EQ

,

P{Q ≤ (1− δ)EQ} ≤
(

e−δ

(1− δ)(1−δ)

)EQ

.

It remains to provide intelligible bounds on EQ. By the
inequalities 1− 1/x ≤ log x ≤ x− 1,

−k|A3|
c− 1

≤ log(1− E[B3,i]) ≤ −
k|A3|
c

Also,

E[B1,i]·E[B2,i] =

(
1−

(
1− 1

c

)k|A1|
)(

1−
(

1− 1

c

)k|A2|
)

so by the inequality,

log(1−(1−(1−x)a)(1−(1−x)b)) ≥ −abx2, a, b > 0, x ∈ [0, 1];

we have that

−k2 |A1||A2|
c2

≤ log(1− E[B1,i] · E[B2,i]) ≤ 0.

Furthermore, notice that the LHS is minimized when |A1| =
|A2| = |N(x)4N(y)|/2,

−k2 |A1||A2|
c2

≥ −k2 |N(x)4N(y)|2

4c2
.

We then have that

log(c− EQ)

= log c+ log(1− E[B1,i] · E[B2,i]) + log(1− E[B3,i])

≤ log c− k|N(x) ∩N(y)|
c

and

log(c−EQ) ≥ log c− k2 |N(x)4N(y)|2

4c2
− k|N(x) ∩N(y)|

c− 1
.

Proof of Theorem 1. We can see that there exist C0, C1

such that for any δ ≥ 0,(
eδ

(1 + δ)(1+δ)

)EQ

≤ C1e
−C0δEQ.

Then we have that with probability 1− γ,

Q ≤
(

1 +
1

C0
log

C1

γ

)
EQ ≤

(
1 +

1

C0
log

C1

γ

)
Γ1.

Note that because 1− e−x ≤ x,

Γ1 ≤ k2 |N(x)4N(y)|2

4c
+
ck|N(x) ∩N(y)|

c− 1
.

Liwei Wu, Hsiang-Fu Yu, Nikhil Rao

Moreover, for δ ∈ (0, 1),(
e−δ

(1− δ)(1−δ)

)EQ

≤ e−
δ2

3
EQ ≤ e−

δ2

3
Γ0 .

Hence,

P{Q ≤ (1− δ)Γ0} ≤ e−
δ2

3
Γ0 .

Suppose that for some α ∈ (0, 1), αc > k|N(x)∩N(y)| then
we have that

Γ0 ≥
(1− e−α)

α
k|N(x) ∩N(y)|.

The function (1−e−α)/α is decreasing and the limit as α→
0 is 1. Thus, for any δ ∈ (0, 1), there exists an α ≥ 0 such
that if αc > k|N(x)∩N(y)| then Γ0 ≥ (1−δ)k|N(x)∩N(y)|.
If this is the case then

P{Q ≤ (1− δ)k|N(x) ∩N(y)|} ≤ e−
1
3

(1−δ)δ2k|N(x)∩N(y)|.

Algorithm 2 A Standard Bloom Filter
class BloomFilter:
def constructor(self, c, {ht(·) : t = 1, . . . , k}):
self.b[i] = 0 ∀i = 1, . . . , c
self.ht = ht ∀i = 1, . . . , k

def add(self, x):
self.b[self.ht(x)] = 1 ∀t = 1, . . . , k

def union(self, bf):
self.b[i]← self.b[i] | bf.b[i] ∀i = 1, . . . , c

def size(self):
return

⌈
− c
k log

(
1− nnz(self.b)

c

)⌉

6.2 Simulation Study

In the simulation we carried out, we set the number of
users n = 10, 000 and the number of items m = 2, 000.
We uniformly sample 5% for training and 2% for testing
out of the total nm ratings. We choose T = 3 so the
graph contains at most 6-hop information among n users.
We use rank r = 50 for both user and item embeddings.
We set influence weight w = 0.6, i.e. in each propagation
step, 60% of one user’s preference is decided by its friends
(i.e. neighbors in the friendship graph). We set p = 0.001,
which is the probability for each of the possible edges being
chosen in Erdõs-Rényi graph G. A small edge probability p,
influence weight w < 1.0, and a not too-large T is needed,
because we don’t want that all users become more or less
the same after T propagation steps.

6.3 Metrics

We omit the definitions of RMSE, Precision@k, NDCG@k,
MAP as those can be easily found online. HLU: Half-Life

Utility Breese et al. ((1998)), Shani et al. ((2008)) is defined
as:

HLU =
1

n

n∑
i=1

HLUi, (6)

where n is the number of users and HLUi is given by:

HLUi =

k∑
l=1

max(RiΠil − d, 0)

2(j−1)/(α−1)
, (7)

where RiΠil follows previous definition, d is the neural vote
(usually the rating average), and α is the viewing halflife.
The halflife is the number of the item on the list such that
there is a 50-50 chance the user will review that item Breese
et al. ((1998)).

Algorithm 3 Simulation of Synthetic Data
Input: n users, m items, rank r, influence weight w,

T propagation steps
Output: Rtr ∈ Rn×m, Rte ∈ Rn×m, G ∈ Rn×n
1: Randomly initialize U ∈ Rn×r, V ∈ Rm×r from

standard normal distribution
2: Generate a random undirected Erdõs-Rényi graph
G with each edge being chosen with probability p

3: for t = 1, ..., T do
4: for i = 1, ..., n do
5: Ũi = w ·

∑
j:(i,j)∈G Uj + (1− w) · Ui

6: Set U = Ũ
7: Generate rating matrix R = UV T

8: Random sample observed user/item indices in train-
ing and test data: Ωtr,Ωte

9: Obtain Rtr = Ωtr ◦R,Rte = Ωte ◦R
10: return rating matrices Rtr, Rte, user graph G

6.4 Graph Regularized Weighted Matrix
Factorization for Implicit feedback

We use the rank r = 10, negatives’ weight ρ = 0.01 and
measure the prediction performance with metrics MAP,
HLU, Precision@k and NDCG@k (see definitions of metrics
in Appendix 6.3).

We follow the similar procedure to what is done be-
fore in GRMF and co-factor: we run all combinations
of tuning parameters of λl ∈ {0.01, 0.1, 1, 10, 100} and
λg ∈ {0.01, 0.1, 1, 10, 100} for each method on validation
data for fixed number 40 epochs and choose the best com-
bination as the parameters to use on test data. We then
report the best prediction results during first 40 epochs on
test data with the chosen parameter combination.

6.5 Reproducibility

To reproduce results reported in the paper, one need to
download data (douban and flixster) and third-party C++
Matrix Factorization library from the link https://www.
csie.ntu.edu.tw/~cjlin/papers/ocmf-side/. One can
simply follow README there to compile the codes in Mat-
lab and run one-class matrix factorization library in different
modes (both explicit feedback and implicit feedback works).

https://www.csie.ntu.edu.tw/~cjlin/papers/ocmf-side/
https://www.csie.ntu.edu.tw/~cjlin/papers/ocmf-side/

Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering

Figure 4: Compare Training Speed of GRMF, with and without Graph DNA.

Table 6: Compare Bloom filters of different depths and sizes an on Synthesis Dataset. Note that the number of
bits of Bloom filter is decided by Bloom filter’s maximum capacity and tolerable error rate (i.e. false positive
error, we use 0.2 as default).

methods max capacity c bits nnz ratio RMSE (×10−3) % Relative Graph Gain

GRMF_G2 - - - 2.6543 59.5903
GRMF_DNA-1 20 135 0.217 2.4303 163.8734
GRMF_DNA-1 50 336 0.093 2.4795 140.9683
GRMF_DNA-2 20 135 0.880 2.4921 135.1024
GRMF_DNA-2 50 336 0.608 2.4937 134.3575
GRMF_DNA-2 100 672 0.381 2.4510 154.2365
GRMF_DNA-2 200 1,341 0.215 2.4541 152.7933
GRMF_DNA-3 200 1,341 0.874 2.4667 146.9274
GRMF_DNA-3 600 4,020 0.525 2.4572 151.3500
GRMF_DNA-3 1,000 6,702 0.364 2.4392 159.7299
GRMF_DNA-3 1,500 10,050 0.262 2.4247 166.4804
GRMF_DNA-4 2,000 13,401 0.743 2.5532 106.6573
GRMF_DNA-4 4,000 26,799 0.499 2.4466 156.2849

Table 7: Compare nnz of different methods on Douban and Flixster datasets. GRMF_G4 and GRMF_DNA-2
are using the same 4-hop information in the graph but in different ways. Note that we do not exclude potential
overlapping among columns.
Dataset methods Rtr G G2 G3 G4 B total nnz

Douban

MF 9,803,098 - - - - - 9,803,098
GRMF_G 9,803,098 1,711,780 - - - - 11,514,878
GRMF_G2 9,803,098 1,711,780 106,767,776 - - - 118,282,654
GRMF_G3 9,803,098 1,711,780 106,767,776 2,313,572,544 - - 2,431,855,198
GRMF_G4 9,803,098 1,711,780 106,767,776 2,313,572,544 8,720,553,105 - 11,152,408,303
GRMF_DNA-1 9,803,098 0 - - - 8,834,740 18,637,838
GRMF_DNA-2 9,803,098 1,711,780 - - - 142,897,900 154,412,778
GRMF_DNA-3 9,803,098 1,711,780 - - - 928,159,604 939,674,482

Flixster

MF 3,619,304 - - - - - 3,619,304
GRMF_G 3,619,304 2,538,746 - - - - 6,158,050
GRMF_G2 3,619,304 2,538,746 130,303,379 - - - 136,461,429
GRMF_G3 3,619,304 2,538,746 130,303,379 2,793,542,551 - - 3,060,307,359
GRMF_G4 3,619,304 2,538,746 130,303,379 2,793,542,551 12,691,844,513 - 15,752,151,872
GRMF_DNA-1 3,619,304 0 - - - 12,664,952 16,284,256
GRMF_DNA-2 3,619,304 2,538,746 - - - 181,892,883 188,050,933
GRMF_DNA-3 3,619,304 2,538,746 - - - 1,185,535,529 1,191,693,579

Liwei Wu, Hsiang-Fu Yu, Nikhil Rao

The advantage of using this library is that the codes sup-
port multi-threading and runs quite fast with very efficient
memory space allocations. It also supports with graph or
other side information. All three methods’ baseline can be
simply run with the tuning parameters we reported in the
Table 9, 10, 11 in Appendix.

To reproduce results of our DNA methods, one need to
generate Bloom filter matrix B following Algorithm 1. We
will provide our python codes implementing Algorithm 1
and Matlab codes converting into the formats the library
requires.

For baselines and our DNA methods, We perform
a parameter sweep for λl ∈ {0.01, 0.1, 1, 10, 100}
and λg ∈ {0.01, 0.1, 1, 10, 100} as well as for
α ∈ {0.0001, 0.001, 0.01, 0.1, 0.3, 0.7, 1}, for
β ∈ {0.005, 0.01, 0.03, 0.05, 0.1} when needed. We
run all combinations of tuning parameters for each method
on validation set for 40 epochs and choose the best
combination as the parameters to use on test data. We
then report the best test RMSE in first 40 epochs on test
data with the chosen parameter combination. We provide
all the chosen combinations of tuning parameters that
achieves reported optimal results in results tables in the
Table 9, 10, 11 in Appendix. One just need to exactly
follow our procedures in Section 3 to construct new Ġ, U̇
to replace the G,U in baseline methods before feeding into
Matlab.

As to simulation study, we will also provide python
codes to repeat our Algorithm 3 to generate synthe-
sis dataset. One can easily simulate the data be-
fore converting into Matlab data format and running
the codes as before. The optimal parameters can be
found in Table 8. For all the methods, we select the
best parameters λl and λg from {0.01, 0.1, 1, 10, 100}.
For method GRMF_G2, we tune an additional pa-
rameter α ∈ {0.0001, 0.001, 0.01, 0.1, 0.3, 0.7, 1}. For
the thrid-order method GRMF_G3, we tune β ∈
{0.005, 0.01, 0.03, 0.05, 0.1} in addition to λl, λG, α. Due
to the speed constraint, we are not able to tune a broader
range of choices for α and β as it is too time-consuming
to do so especially for douban and flixster datasets. For
example, it takes takes about 3 weeks using 16-cores CPU
to tune both α, β on flixster dataset. We run each method
with every possible parameter combination for fixed 80
epochs on the same training data, tune the best parameter
combination based on a small predefined validation data
and report the best RMSE results on test data with the
best tuning parameters during the first 80 epochs. Note
that only on the small synthesis dataset, we calculate full
G3 and report the results. On real datasets, there is no
way to calculate full G4 to utilize the complete 4-hop infor-
mation, because one can easily spot in Table 7 the number
of non-zero elements (nnz) is growing exponentially when
the hop increases by 1, which makes it impossible for one
to utilize complete 3-hop and 4-hop information.

In Table 9, one can compare magnitude of optimal α and
β to have a good idea of whether G or G2 is more useful.
G represents shallow graph information and G2 represents
deep graph information. If one already run GRMF_G2, one
can then use this as a preliminary test to decide whether
to go deep with DNA-3 (d = 3) to capture deep graph
information or simply go ahead with DNA-1 (d = 1) to fully
utilize shallow information. For douban dataset, we have
α = 0.05 > 0.0005 = β, which implies shallow information

is important and we should fully utilize it. It explains why
DNA-1 is performing well both in terms of performance
and speed on douban dataset. It is worth noting that
GRMF_DNA-1’s Bloom filter matrix B contains much
more nnz than that of G in Table 7 though 20% less than
that of G2. On the other hand, for flixster dataset, we have
α = 0.01 < 0.1 = β, which implies in this dataset deeper
information is more important and we should go deeper.
That explains why here GRMF_DNA-3 (6-hop) achieves
about 10 times more gain than using 1-hop GRMF_G.

6.6 Code

Part of our code is already made available on Github.

Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering

Table 8: Compare Matrix Factorization for Explicit Feedback on Synthesis Dataset. The synthesis dataset has
10, 000 users and 2, 000 items with user friendship graph of size 10, 000×10, 000. Note that the graph only contains
at most 6-hop valid information. GRMF_G6 means GRMF with G+ α ·G2 + β ·G3 + γ ·G4 + ε ·G5 + ω ·G6.
GRMF_DNA-d means depth d is used.

methods test RMSE (×10−3) λl λg α β γ ε ω % gain over baseline

MF 2.9971 0.01 - - - - - - -
GRMF_G 2.7823 0.01 0.01 - - - - - 7.16693
GRMF_G2 2.6543 0.01 0.01 0.3 - - - - 11.43772
GRMF_G3 2.5687 0.01 0.01 0.01 0.05 - - - 14.29382
GRMF_G4 2.5562 0.01 0.01 0.01 0.05 0.1 - - 14.71088
GRMF_G5 2.4853 0.01 0.01 0.01 0.05 0.1 0.1 - 17.07651
GRMF_G6 2.4852 0.01 0.01 0.01 0.05 0.1 0.1 0.01 17.07984
GRMF_DNA-1 2.4303 0.01 0.01 - - - - - 18.91161
GRMF_DNA-2 2.4510 0.01 0.01 - - - - - 18.22095
GRMF_DNA-3 2.4247 0.01 0.01 - - - - - 19.09846
GRMF_DNA-4 2.4466 0.01 0.01 - - - - - 18.36776

Table 9: Compare Matrix Factorization methods for Explicit Feedback on Douban and Flixster data. We use
rank r = 10.

Dataset methods test RMSE (×10−1) λl λg α β % gain over baseline

Douban

MF 7.3107 1 - - - -
GRMF_G 7.2398 0.1 100 - - 0.9698
GRMF_G2 7.2381 0.1 100 0.001 - 0.9930
GRMF_G3 (full) 7.2432 0.1 100 0.05 0.0005 0.9350
GRMF_G3 (thresholded) 7.2382 0.1 100 0.05 0.0005 0.9917
GRMF_DNA-1 7.2191 0.1 100 - - 1.2689
GRMF_DNA-2 7.2359 1 10 - - 1.0232
GRMF_DNA-3 7.2095 0.01 100 - - 1.3843

Flixster

MF 8.8111 0.1 1 - - -
GRMF_G 8.8049 0.01 1 - - 0.0704
GRMF_G2 8.7849 0.01 1 0.05 - 0.2974
GRMF_G3 (full) 8.7932 0.1 1 0.01 0.1 0.2032
GRMF_G3 (thresholded) 8.7920 0.01 1 0.01 0.1 0.2168
GRMF_DNA-1 8.8013 0.01 1 - - 0.1112
GRMF_DNA-2 8.8007 0.1 1 - - 0.1180
GRMF_DNA-3 8.7453 0.1 100 - - 0.7468

Table 10: Compare Co-factor Methods for Explicit Feedback on Douban and Flixster Datasets. We use rank
r = 10 for both methods.

Dataset methods test RMSE (×10−1) λl % gain over baseline

Douban co-factor_G 7.2743 1 -
co-factor_DNA-3 7.2674 1 0.5923

Flixster co-factor_G 8.7957 0.01 -
co-factor_DNA-3 8.7354 0.01 0.8591

Table 11: Compare Weighted Matrix Factorization with Graph for Implicit Feedback on Douban and Flixster
Datasets. We use rank r = 10 for both methods and all metric results are in %.

Dataset Methods MAP HLU P@1 P@5 NDCG@1 NDCG@5 λl λg

Douban WMF_G 8.340 13.033 14.944 10.371 14.944 12.564 0.01 10
WMF_DNA-3 8.400 13.110 14.991 10.397 14.991 12.619 1 1

Flixster WMF_G 10.889 14.909 12.303 7.9927 12.303 12.734 10 0.1
WMF_DNA-3 11.612 15.687 12.644 8.1583 12.644 13.399 1 1

