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Abstract

In this paper, we consider recommender sys-
tems with side information in the form of
graphs. Existing collaborative filtering algo-
rithms mainly utilize only immediate neigh-
borhood information and do not efficiently
take advantage of deeper neighborhoods be-
yond 1-2 hops. The main issue with exploiting
deeper graph information is the rapidly grow-
ing time and space complexity when incorpo-
rating information from these neighborhoods.
In this paper, we propose using Graph DNA,
a novel Deep Neighborhood Aware graph en-
coding algorithm, for exploiting multi-hop
neighborhood information. DNA encoding
computes approximate deep neighborhood in-
formation in linear time using Bloom filters,
and results in a per-node encoding whose
dimension is logarithmic in the number of
nodes in the graph. It can be used in con-
junction with both feature-based and graph-
regularization-based collaborative filtering al-
gorithms. Graph DNA has the advantages
of being memory and time efficient and pro-
viding additional regularization when com-
pared to directly using higher order graph
information. We provide theoretical perfor-
mance bounds for graph DNA encoding, and
experimentally show that graph DNA can be
used with 4 popular collaborative filtering
algorithms to consistently boost their perfor-
mances with little computational and memory
overhead.
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1 Introduction

Recommendation systems are increasingly prevalent
due to content delivery platforms, e-commerce web-
sites, and mobile apps Shani et al. ((2008)). Classical
collaborative filtering algorithms use matrix factoriza-
tion to identify latent features that describe the user
preferences and item meta-topics from partially ob-
served ratings Koren et al. ((2009)). In addition to
rating information, many real-world recommendation
datasets also have a wealth of side information in the
form of graphs, and incorporating this information
often leads to performance gains. For example, Rao
et al. ((2015)), Zhou et al. ((2012)) propose to add a
graph regularization to the matrix factorization for-
mulation to exploit additional graph structure; and
Liang et al. ((2016)) conduct a co-factorization of the
graph and rating matrix. However, each of these only
utilizes the immediate neighborhood information of
each node in the side information graph. More recently,
Berg et al. ((2017)) incorporated graph information
when learning features with a Graph Convolution Net-
work (GCN) based recommendation algorithm. GCNs
Kipf and Welling ((2016)) constitute flexible methods
for incorporating graph structure beyond first-order
neighborhoods, but their training complexity typically
scales rapidly with the depth, even with sub-sampling
techniques Chen et al. ((2018)). Intuitively, exploiting
higher-order neighborhood information could benefit
the generalization performance, especially when the
graph is sparse, which is usually the case in practice.
The main caveat of exploiting higher-order graph in-
formation is the high computational and memory cost
when computing higher-order neighbors since the num-
ber of t-hop neighbors typically grows exponentially
with t.

In this paper, we aim to utilize higher order graph
information without introducing much computational
and memory overhead. To achieve this goal, we pro-
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pose a Graph Deep Neighborhood Aware (Graph DNA)
encoding, which approximately captures the higher-
order neighborhood information of each node via Bloom
filters Bloom ((1970)). Bloom filters encode neigh-
borhood sets as c dimensional 0/1 vectors, where
c = O(log n) for a graph with n nodes, which approxi-
mately preserves membership information. This encod-
ing can then be combined with both graph regularized
or feature based collaborative filtering algorithms, with
little computational and memory overhead. In addi-
tion to computational speedups, we find that Graph
DNA achieves better performance over competitors,
which we hypothesize is due to the unique nature of
Graph DNA and its connection to the shortest path
length distance. We make this connection precise with
theoretical bounds in Section 2.2.

We show that our Graph DNA encoding can be used
with several collaborative filtering algorithms: graph-
regularized matrix factorization with explicit and im-
plicit feedback Rao et al. ((2015)), Zhou et al. ((2012)),
co-factoring Liang et al. ((2016)), and GCN-based rec-
ommendation systems Monti et al. ((2017)). In all the
cases we tested in this paper, Graph DNA can consis-
tently boost the performance of existing method while
having small time and memory overhead.

Related Work : Matrix factorization has been used
extensively in recommendation systems with both ex-
plicit Koren et al. ((2009)) and implicit Hu et al.
((2008)) feedback. Such methods compute low dimen-
sional user and item representations; their inner prod-
uct approximates the observed (or to be predicted)
entry in the target matrix. To incorporate graph side
information in these systems, Rao et al. ((2015)), Zhou
et al. ((2012)) used a graph Laplacian based regular-
ization framework that forces a pair of node represen-
tations to be similar if they are connected via an edge
in the graph. In Yu et al. ((2017)), this was extended
to the implicit feedback setting. Liang et al. ((2016))
proposed a method that incorporates first-order infor-
mation of the rating bipartite graph into the model
by considering item co-occurrences. More recently,
GC-MC Berg et al. ((2017)) used a GCN approach
performing convolutions on the main bipartite graph
by treating the first-order side graph information as
features, and Monti et al. ((2017)) proposed combining
GCNs and RNNs for the same task.

Methods that use higher order graph information are
typically based on taking random walks on the graphs
Gori et al. ((2007)). Jamali and Ester ((2009)) extended
this method to include graph side information in the
model. Finally, the PageRank Page et al. ((1999))
algorithm can be seen as computing the steady state
distribution of a Markov network, and similar methods
for recommender systems was proposed in Abbassi and

Mirrokni ((2007)), Xie et al. ((2015)).

For a complete list of related works of representation
learning on graphs, we refer the interested user to
Hamilton et al. ((2017b)). For the collaborative filter-
ing setting, Berg et al. ((2017)), Monti et al. ((2017))
use Graph Convolutional Neural Networks Defferrard
et al. ((2016)), but with some modifications. Stan-
dard GCN methods without substantial modifications
cannot be directly applied to collaborative filtering
rating datasets, including well-known approaches like
GCN Kipf and Welling ((2016)) and GraphSage Hamil-
ton et al. ((2017a)), because they are intended to solve
semi-supervised classification problem over graphs with
nodes’ features. PinSage Ying et al. ((2018)) is the
GraphSage extension to non-personalized graph-based
recommendation algorithm but not meant for collabo-
rative filtering problems. GC-MC Berg et al. ((2017))
extend GCN to collaborative filtering, albeit less scal-
able than Ying et al. ((2018)). Our Graph DNA scheme
can be used to obtain graph features in these exten-
sions. In contrast to the above-mentioned methods
involving GCNs, we do not use any loss function to
train our graph encoder. This property makes our
graph DNA suitable for both transductive as well as
inductive problems.

Bloom filters have been used in Machine Learning for
multi-label classification Cisse et al. ((2013)), and for
hashing deep neural network models representations
Courbariaux et al. ((2015)), Han et al. ((2015)), Shi
et al. ((2009)). However, to the best of our knowledge,
they have not been used to encode graphs, nor has this
encoding been applied to recommender systems. So it
would be interesting to extend our work to other rec-
ommender systems settings, such as Wu et al. ((2019a))
and Wu et al. ((2019b)).

2 Methodology

We consider the problem of recommender system with
a partially observed rating matrix R and a Graph that
encodes side information G. In this section, we will
introduce the Graph DNA algorithm for encoding deep
neighborhood information in G. In the next section, we
will show how this encoded information can be applied
to various graph based recommender systems.

2.1 Bloom Filter

The Bloom filter Bloom ((1970)) is a probabilistic
data structure designed to represent a set of elements.
Thanks to its space-efficiency and simplicity, Bloom
filters are applied in many real-world applications such
as database systems Borthakur et al. ((2011)), Chang
et al. ((2008)). A Bloom filter B consists of k indepen-
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dent hash functions ht(x) → {1, . . . , c}. The Bloom
filter B of size c can be represented as a length c bit-
array b. More details about Bloom filters can be found
in Broder and Mitzenmacher ((2004)). Here we high-
light a few desirable properties of Bloom filters essential
to our graph DNA encoding:

1. Space efficiency: classic Bloom filters use
1.44 log2(1/ε) of space per inserted key, where ε is
the false positive rate associated with this Bloom
filter.

2. Support for the union operation of two Bloom
filters: the Bloom filter for the union of two sets
can be obtained by performing bitwise ‘OR’ op-
erations on the underlying bit-arrays of the two
Bloom filters.

3. Size of the Bloom filter can be approximated by
the number of nonzeros in the underlying bit array:
in particular, given a Bloom filter representation
B(A) of a set A: the number of elements of A can
be estimated as |A| ≈ − c

k log
(

1− nnz(b)
c

)
, where

nnz(b) is the number of non-zero elements in array
b. As a result, the number of common nonzero
bits of B(A1) and B(A2) can be used as a proxy
for |A1 ∩A2|.

Algorithm 1 Graph DNA Encoding with Bloom Fil-
ters
Input: G: a graph of n nodes, c: the length of codes,

k: the number of hash functions, d: the number
of iterations, θ: tuning parameter to control the
number of elements hashed.

Output: B ∈ {0, 1}n×c: a boolean matrix to denote
the bipartite relationship between n nodes and c
bits.
• H ← {ht(·) : t = 1, . . . , k} . Pick k hash

functions
• for i = 1, . . . , n: . GraphBloom Initialization

- B0[i]← BloomFilter(c,H)
- B0[i].add(i)

• for s = 1, . . . , d: . d times neighborhood
propagations
- for i = 1, . . . , n:
* for j ∈ N1(i): . degree-1 neighbors
— if |Bs[i]| > θ: break;
— Bs[i].union(Bs−1[j])

• Bij ← Bd[i].b[j] ∀(i, j) ∈ [n]× [c]

2.2 Graph DNA Encoding Via Bloom Filters

Now we introduce our Graph DNA encoding. The
main idea is to encode the deep (multi-hop) neigh-
borhood aware embedding for each node in the graph
approximately using the Bloom filter, which helps avoid
performing computationally expensive graph adjacency

matrix multiplications. In Graph DNA, we have Bloom
filters B[i], i = 1, ..., n for the n graph nodes. All the
Bloom filters B[i] share the same k hash functions. The
role of B[i] is to store the deep neighborhood informa-
tion of the i-th node. Taking advantage of the union
operations of Bloom filters, one node’s neighborhood in-
formation can be propagated to its neighbors in an itera-
tive manner using gossip algorithms Shah et al. ((2009)).
Initially, each B[i] contains only the node itself. At
the s-th iteration, B[i] is updated by taking union
with node i’s immediate neighbors’ Bloom filters B[j].
By induction, we see that after the d iterations, B[i]
represents Nd(i) := {j : distanceG(i, j) ≤ d}, where
distanceG(i, j) is the shortest path distance between
nodes i and j in G. As the last step, we stack array
representations of all Bloom filters and form a sparse
matrix B ∈ {0, 1}n×c, where the i-th row of B is the
bit representation of B[i]. As a practical measure, to
prevent over-saturation of Bloom filters for popular
nodes in the graph, we add a hyper-parameter θ to
control the max saturation level allowed for Bloom
filters. This would also prevent hub nodes dominating
in graph DNA encoding. The pseudo-code for the pro-
posed encoding algorithm is given in Algorithm 1. We
use graph DNA-d to denote our obtained graph encod-
ing after applying Algorithm 1 with s looping from 1
to d. We also give a simple example to illustrate how
the graph DNA is encoded into Bloom filter represen-
tations in Figure 1. Our usage of Bloom filters is very
different from previous works in Pozo et al. ((2016)),
Serrà and Karatzoglou ((2017)), Shinde and Savant
((2016)), which use Bloom filter for standard hashing
and is unrelated to graph encoding.

2.3 Theoretical Guarantees

It is intuitive that the number of 1-bits in common
between two Bloom filters should be closely related
to the size of the intersection of their neighborhoods.
However, there may also be false positives in the bit-
representations. We control the size of such false pos-
itives and the number of common bits in Theorem 1,
which only applies to Bloom filters without the max
saturation threshold θ.

Theorem 1. Suppose that the Bloom filters have c bits
and the k hash functions are independent for all nodes.
Consider two nodes i, j = 1, . . . , n, their d-hop neigh-
borhoods Nd(i),Nd(j), and their d-depth Bloom filters
B[i],B[j], respectively. Let Qi,j be the number of com-
mon 1-bits in the Bloom filters of i, j (i.e. 〈B[i],B[j]〉).
There exists universal constants C0, C1, such that for



Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering

any γ > 0, with probability 1− γ,

Qi,j ≤
(

1 +
1

C0
ln
C1

γ

)
(1)

·
(
k2 |Nd(i)4Nd(j)|2

4c
+
ck|Nd(i) ∩Nd(j)|

c− 1

)
,

where Nd(i)4Nd(j) denotes the symmetric difference.
Furthermore, for any δ ∈ (0, 1) there exists a constant
α > 0 such that if cα > k|Nd(i) ∩Nd(j)| then

P{Qi,j > (1− δ)k|Nd(i) ∩Nd(j)|} ≥ (2)

1− e− 1
3 (1−δ)δ2k|Nd(i)∩Nd(j)|.

This theorem is a corollary of the more precise Theorem
2, which we state below. Proofs for both Theorems
1 and 2 are provided in the Appendix. In order to
establish results of Theorem 2, we provide Lemma 1
in the Appendix, which demonstrates that the bits of
Bloom filters are negatively associated (basic properties
of negative associativity can be found in Dubhashi
and Ranjan ((1998)), Joag-Dev et al. ((1983))), and
this property is preserved under bitwise ‘or’ and ‘and’
operations on independent Bloom filters. As a result,
Qi,j enjoys Chernov-Hoeffding bounds, and the result
of Theorem 1 follows by analyzing its expectation.

Remark 1. When the neighborhoods have no in-
tersection, |Nd(i) ∩ Nd(j)| = 0 then we have that
Qi,j = OP (k2|Nd(i) ∪ Nd(j)|2/c) which is approach-
ing 0 when k|Nd(i) ∪ Nd(j)| = o(

√
c) (the number of

bits in the Bloom filters are taken to be large enough)
by (1).

Remark 2. Generally, (2) states that when the num-
ber of hashed functions for the intersection is large,
k|Nd(i) ∩ Nd(j)| → ∞, but dominated by the number
of bits, k|Nd(i) ∪ Nd(j)| = o(c), then we have that
lim(Qi,j/(k|Nd(i) ∩Nd(j)|)) ≥ 1 almost surely. For
fixed neighborhood sizes, we can take c ∝ log n and k ∝
log log n, and obtain that Qi,j/k = OP (|Nd(i)∩Nd(j)|)
by (1) and Qi,j/k = ΩP (|Nd(i) ∩Nd(j)|) by (2).

We now provide the result that will help is prove The-
orem 1

Theorem 2. Let Bx, By be the length c Bloom fil-
ter bitarrays for N(x), N(y) with independent hash
functions for all elements of N(x) ∪ N(y) and let
|N(x)4N(y)| be their symmetric difference. Let Q
be the number of common 1-bits in Bx, By. Then,

P{Q ≥ (1 + δ)EQ} ≤
(

eδ

(1 + δ)(1+δ)

)EQ

,

P{Q ≤ (1− δ)EQ} ≤
(

e−δ

(1− δ)(1−δ)

)EQ

,

and Γ0 ≤ EQ ≤ Γ1 where

Γ0 = c

(
1− exp

{
−k |N(x) ∩N(y)|

c

})
,

Γ1 = c

(
1− exp

{
−k2 |N(x)4N(y)|2

4c2
− k|N(x) ∩N(y)|

c− 1

})
.

Graph DNA encodes deep neighborhood information
such that for any two nodes whose shortest path length
distance is at most 2d, we only need to run Algorithm 1
for d iterations. For example, in Figure 2, nodes x
and y are 6 hops away on the shortest path, but they
will start to share their bits’ representations after 3
iterations because the node z’s information can be
propagated to node x and y after exactly 3 iterations.
Theorem 1 and the remarks that follow it demonstrate
that by increasing the number of hash functions and
the number of bits in the Bloom filter, the number
of common 1-bits in these Bloom filters becomes an
accurate surrogate for |Nd(x) ∩Nd(y)|.

The n × c Bloom filter matrix B can also be viewed
as the adjacency matrix of a bipartite graph between
the n nodes in the original graph and c meta nodes of
Bloom filters. In this way, nodes x and y have a bit in
common in their Bloom filter representations if they are
both connected to at least one meta node in B. This
property saves memory and time required for graph
encoding, allowing us to use B instead of the adjacency
matrix G in graph Laplacian regularization methods
Rao et al. ((2015)), and to use B as side features in
graph convolutional network based geometric matrix
factorization algorithm Berg et al. ((2017)), Monti et al.
((2017)) with little computational and memory over-
head. We elaborate on this in the following section.

3 Collaborative Filtering with Graph
DNA

Suppose we are given the sparse rating matrix R ∈
Rn×m with n users and m items, and a graph G ∈
Rn×n encoding relationships between users. For sim-
plicity, we do not assume a graph on the m items,
though including it should be straightforward.

3.1 Graph Regularized Matrix Factorization

Explicit Feedback : The objective function of
Graph Regularized Matrix Factorization (GRMF) Cai
et al. ((2011)), Rao et al. ((2015)), Zhou et al. ((2012))
is:

min
U,V

∑
(i,j)∈Ω

(
Ri,j − u>i vj

)2
+
λ

2
(‖U‖2F + ‖V ‖2F ) (3)

+ µ tr(U>Lap(G)U)
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Figure 1: Illustration of Algorithm 1: the graph DNA encoding procedure. The curly brackets at each node
indicate the nodes encoded at a particular step. At d = 0 each node’s Bloom filter only encodes itself, and
multi-hop neighbors are included as d increases.

Figure 2: Illustration of our proposed DNA encoding
method (DNA-3), with the corresponding bipartite
graph representation.

where U ∈ Rn×r, V ∈ Rm×r are the embeddings associ-
ated with users and items respectively, n is the number
of users and m is the number of items, R ∈ Rn×m
is the sparse rating matrix, tr() is the trace operator,
λ, µ are tuning coefficients, and Lap(·) is the graph
Laplacian operator.

The last term is called graph regularization, which tries
to enforce similar nodes (measured by edge weights in
G) to have similar embeddings. One naive way Cao
et al. ((2015)) to extend this to higher-order graph reg-
ularization is to replace the graph G with

∑K
i=1 wi ·Gi

and then use the graph Laplacian of
∑K
i=1 wi · Gi to

replace G in (3). Computing Gi for even small i is com-
putationally infeasible for most real-world applications,
and we will soon lose the sparsity of the graph, lead-
ing to memory issues. Sampling or thresholding could
mitigate the problem but suffers from performance
degradation.

In contrast, our graph DNA obtained from Algorithm 1
does not suffer from any of these issues. Theorem 1
implies that the space complexity of our method is only
of order O(n log n) for a graph with n nodes, instead
of O(n2). The reduced number of non-zero elements
using graph DNA leads to a significant speed-up in
many cases.

We can easily use graph DNA in GRMF as follows: we
treat the c bits as c new pseudo-nodes and add them
to the original graph G. We then have n+ c nodes in
a modified graph Ġ:

Ġ =

[
G ∈ Rn×n B ∈ Rn×c
B> ∈ Rc×n 0 ∈ Rc×c

]
. (4)

To account for the c new nodes, we expand U ∈ Rn×r
to U̇ ∈ R(n+c)×r by appending parameters for the
meta-nodes. The objective function for GRMF with
Graph DNA with be the same as (3) except replacing
U and G with U̇ and Ġ. At the prediction stage, we
discard the meta-node embeddings.

Implicit Feedback : For implicit feedback data,
when R is a 0/1 matrix, weighted matrix factoriza-
tion is a widely used algorithm Hsieh et al. ((2015)),
Hu et al. ((2008)). The only difference is that the
loss function in (3) is replaced by

∑
(i,j):Rij=1(Rij −

uTi vj)
2 +

∑
(i,j):Rij=0 ρ(Rij − uTi vj)2 where ρ < 1 is

a hyper-parameter reflecting the confidence of zero
entries. In this case, we can apply the Graph DNA
encoding as before trivially.

3.2 Co-Factorization with Graph Information

Co-Factorization of Rating and Graph Information
(Co-Factor) Liang et al. ((2016)), Singh and Gordon
((2008)) is ideologically very different from GRMF
and GRWMF, because it does not use graph infor-
mation as regularization term. Instead it treats the
graph adjacency matrix as another rating matrix, shar-
ing one-sided latent factors with the original rating
matrix. Co-Factor minimizes the following objective
function: minU,V

∑
(i,j)∈ΩR

(
Ri,j − u>i vj

)2
+ λ

2 (‖U‖2F +

‖V ‖2F +‖V ′‖2F )+
∑

(i,j)∈ΩG

(
Gi,j − u>i v′j

)2
, where U ∈

Rn×r, V ∈ Rm×r, V ′ ∈ Rn×r. We can extend Co-
Factor to incorporate our DNA-d by replacing G with
B in the equation above, where B ∈ Rn×c is the Bloom
filter bipartite graph adjacency matrix of n real-user
nodes and c pseudo-user nodes, similar to B as in (4).
We call the extension Co-Factor_DNA-d.

3.3 Graph Convolutional Matrix Completion

Graph Convolutional Matrix Completion (GC-MC) is
a graph convolutional network (GCN) based geometric
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matrix completion method Berg et al. ((2017)). In
Berg et al. ((2017)), the rating matrix R is treated as
adjacency matrix in GCN while side information G is
treated as feature matrix for nodes — each user has an
n-dimensional 0/1 feature that corresponds to a column
of G. The GCN model then performs convolutions of
these features on the bipartite rating graph. Convolu-
tions of these features are performed on the bipartite
rating graph. We find in our experiments that using
these one-hot encodings of the graph as feature is an
inferior choice both in terms of performance and speed.
To capture higher order side graph information, it is
better to use G + αG2 for some constant α and this
alternate choice usually gives smaller generalization
error than the original GC-MC method. However, it
is hard to explicitly calculate G+ αG2 and store the
entire matrix for a large graph for the same reason
described in Section 3.1. Again, we can use graph
DNA to efficiently encode and store the higher order
information before feeding it into GC-MC. We show in
our experiments that this outperforms current state-
of-the-art GCN methods Berg et al. ((2017)), Monti
et al. ((2017)) as well as GC-MC with graph encod-
ing methods that require training, such as Node2vec
Grover and Leskovec ((2016)) and Deepwalk Perozzi
et al. ((2014)). Our encoding scheme does not require
training and therefore is a lot faster than previous
encoding methods. More details are discussed in the
experiment section 4.3.

4 Experiments

We show that our Graph DNA encoding technique
can improve the performance of 4 popular graph-based
recommendation algorithms: graph-regularized matrix
factorization, co-factorization, weighted matrix factor-
ization, and GCN-based graph convolution matrix fac-
torization. All experiments except GCN are conducted
on a server with Intel Xeon E5-2699 v3 @ 2.30GHz CPU
and 256G RAM. The GCN experiments are conducted
on Google Cloud with Nvidia V100 GPU.

4.1 Simulation Study

We first simulate a user/item rating dataset with user
graph as side information, generate its graph DNA,
and use it on a downstream task: matrix factorization.

We randomly generate user and item embeddings from
standard Gaussian distributions, and construct an
Erdős-Rényi Random graph of users. User embed-
dings are generated using Algorithm 3 in Appendix:
at each propagation step, each user’s embedding is
updated by an average of its current embedding and
its neighbors’ embeddings. Based on user and item
embeddings after T = 3 iterations of propagation, we

generate the underlying ratings for each user-item pairs
according to the inner product of their embeddings,
and then sample a small portion of the dense rating
matrix as training and test sets.

We implement our graph DNA encoding algorithm in
python using a scalable python library Almeida et al.
((2007)) to generate Bloom filter matrix B. We adapt
the GRMF C++ code to solve the objective function of
GRMF_DNA-K with our Bloom filter enhanced graph
Ġ. We compare the following variants:

1. MF: classical matrix factorization only with `2
regularization without graph information.

2. GRMF_Gd: GRMF with `2 regularization and
using G, G2, . . . , Gd Cao et al. ((2015)).

3. GRMF_DNA-d: GRMF with `2 but using our
proposed graph DNA-d.

We report the prediction performance with Root Mean
Squared Error (RMSE) on test data. All results are
reported on the test set, with all relevant hyperparam-
eters tuned on a held-out validation set. To accurately
measure how large the relative gain is from using deeper
information, we introduce a new metric called Relative
Graph Gain (RGG) for using information X, which is
defined as:

RGG(X)% = (5)(
RMSE without Graph− RMSE with X
RMSE without Graph− RMSE with G

− 1

)
× 100,

where RMSE is measured for the same method with
different graph information. This metric would be 0
if only first order graph information is utilized and is
only defined when the denominator is positive.

In Table 1, we can easily see that using a deeper neigh-
borhood helps the recommendation performances on
this synthetic dataset. Graph DNA-3’s gain is 166%
larger than that of using first-order graph G. We can
see an increase in performance gain for an increase in
depth d when d ≤ 3. This is expected because we set
T = 3 during our creation of this dataset.

4.2 Graph Regularized Matrix Factorization
for Explicit Feedback

Next, we show that graph DNA can improve the per-
formance of GRMF for explicit feedback. We conduct
experiments on two real datasets: Douban Ma et al.
((2011)) and Flixster Zafarani and Liu ((2009)). Both
datasets contain explicit feedback with ratings from 1
to 5. There are 129,490 users, 58,541 items in Douban.
There are 147,612 users, 48,794 items in Flixster. Both
datasets have a graph defined on the respective sets of
users.

We pre-processed Douban and Flixster following the
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same procedure in Rao et al. ((2015)), Wu et al.
((2017)). The experimental setups and comparisons
are almost identical to the synthetic data experiment
(see details in section 4.1). Due to the exponentially
growing non-zero elements in the graph as we go deeper
(see Table 7), we are unable to run full GRMF_G4 and
GRMF_G5 for these datasets. In fact, GRMF_G3

itself is too slow so we thresholded G3 by only consid-
ering entries whose values are equal to or larger than
4. For the Bloom filter, we set a false positive rate of
0.1 and use capacity of 500 for Bloom filters, resulting
in c = 4, 796.

We can see from Table 1 that deeper graph information
always helps. For Douban, graph DNA-3 is most effec-
tive, giving a relative graph gain of 82.79% compared
to only 2% gain when using G2 or G3 naively. Inter-
estingly for Flixster, using G2 is better than using G3.
However, Graph DNA-3 and DNA-4 yield 10x and 15x
performance improvements respectively, lending cre-
dence to the implicit regularization property of graph
DNA. For a fixed size Bloom filter, the computational
complexity of graph DNA scales linearly with depth
d, as compared to exponentially for GRMF_Gd. We
measure the speed in Table 2. The memory cost is only
a fraction of n2 after hashing. Such low memory and
computational complexity allow us to scale to larger d,
compared to baseline methods.

4.3 Co-Factorization with Graph for Explicit
Feedback

We show our graph DNA can improve Co-Factor Liang
et al. ((2016)), Singh and Gordon ((2008)) as well. The
results are in Table 1. We find that applying DNA-3 to
the Co-Factor method improves performance on both
the datasets, more so for Flixster. This is consistent
with our observations for GRMF in Table 1: deep graph
information is more helpful for Flixster than Douban.
Applying Graph DNA to Co-Factor is detailed in the
Appendix.

4.4 Graph Regularized Weighted Matrix
Factorization for Implicit Feedback

We follow the same procedure as in Wu et al. ((2018))
to set ratings of 4 and above to 1, and the rest to 0.
We compare the baseline graph based weighted matrix
factorization Hsieh et al. ((2015)), Hu et al. ((2008))
with our proposed weighted matrix factorization with
DNA-3. We do not compare with Bayesian personalized
ranking Rendle et al. ((2009)) and the recently proposed
SQL-rank Wu et al. ((2018)) as they cannot easily
utilize graph information.

The results are summarized in Table 3 with experi-
mental details in the Appendix. Again, using DNA-

Figure 3: Compare Training Speed of GRMF, with and
without Graph DNA.

3 achieves better prediction results over the baseline
in terms of every single metric on both Douban and
Flixster datasets.

4.5 Graph Convolutional Matrix
Factorization

We can use graph DNA instead to efficiently encode
and store the higher order information before feeding
it into GC-MC.

We use the same split of three real-world datasets and
follow the exact procedures as in Berg et al. ((2017)),
Monti et al. ((2017)). We tuned hyperparameters using
a validation dataset and obtain the best test results
found within 200 epochs using optimal parameters.
We repeated the experiments 6 times and report the
mean and standard deviation of test RMSE. After
some tuning, we use the capacity of 10 Bloom filters for
Douban and 60 for Flixster, as the latter has a much
denser second-order graph. With a false positive rate
of 0.1, this implies that we use 96-bits Bloom filters for
Douban and 960 bits for Flixster. We use the resulting
bloom filter bitarrays as the node features, and pass
that as the input to GC-MC. Using Graph DNA-2, the
input feature dimensions are thus reduced from 3000
to 96 and 960, which leads to a significant speed-up.
The original GC-MC method did not scale up well
beyond 3000 by 3000 rating matrices with the user and
the item side graphs as it requires using normalized
adjacency matrix as user/item features. PinSage Ying
et al. ((2018)), while scalable, does not utilize the
user/item side graphs. Furthermore, it is not feasible
to have O(n) dimensional features for the nodes, where
n is the number of nodes in side graphs. In contrast, our
method only requires O(log(n)) dimensional features.
We can see from Table 4 that we outperform both GCN-
based methods Berg et al. ((2017)) and Monti et al.
((2017)) in terms of performance by a large margin.

Note that another potential way to improve over
GC-MC is to use other graph encoding schemes like
Node2Vec Grover and Leskovec ((2016)) and DeepWalk
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Table 1: Comparison of Graph Regularized Matrix Factorization Variants for Explicit Feedback on Synthetic,
Douban and Flixster data. We use rank r = 10. RGG is the Relative Graph Gain defined in (5).

Synthetic Douban Flixster

Dataset RMSE (×10−1) % RGG RMSE (×10−1) % RGG RMSE (×10−1) % RGG

MF 2.9971 - 7.3107 - 8.8111 -
GRMF_G 2.7823 0 7.2398 0 8.8049 0
GRMF_G2 2.6543 59.5903 7.2381 2.3977 8.7849 322.5806
GRMF_G3 2.5687 99.4413 7.2432 -4.7954 8.7932 188.7097
GRMF_G4 2.5562 105.2607 - - - -
GRMF_G5 2.4853 138.2682 - - - -
GRMF_G6 2.4852 138.3147 - - - -

GRMF_DNA-1 2.4303 163.8734 7.2191 29.1960 8.8013 58.0645
GRMF_DNA-2 2.4510 154.2365 7.2359 5.5007 8.8007 67.7419
GRMF_DNA-3 2.4247 166.4804 7.1811 82.7927 8.7383 1074.1935
GRMF_DNA-4 2.4466 156.2849 7.1971 60.2257 8.7122 1495.1613

Co-Factor_G - - 7.2743 0 8.7957 0
Co-Factor_DNA-3 - - 7.2623 32.9670 8.7354 391.5584

Table 2: Graph DNA (Algorithm 1) Encoding Speed. We set number c = 500 and implement Graph DNA using
single-core python. We can scale up linearly in terms of depth d for a fixed c.

Graph Statistics Graph DNA Encoding Time (secs)

Dataset Number of Nodes Graph Density DNA-1 DNA-2 DNA-3 DNA-4

Douban 129,490 0.0102% 132.2717 266.3740 403.9747 580.1547
Flixster 147,612 0.0117% 157.3103 317.7706 482.0360 686.8048

Table 3: Comparison of GRWMF Variants for Im-
plicit Feedback on Douban and Flixster datasets.
P stands for precision and N stands for NDCG.
We use rank r = 10 and all results are in %.
Dataset Methods MAP HLU P@1 P@5 N@1 N@5

Douban GRWMF_G 8.340 13.033 14.944 10.371 14.944 12.564
GRWMF_DNA-3 8.400 13.110 14.991 10.397 14.991 12.619

Flixster GRWMF_G 10.889 14.909 12.303 7.9927 12.303 12.734
GRWMF_DNA-3 11.612 15.687 12.644 8.1583 12.644 13.399

Table 4: Comparison of GCN Methods for Ex-
plicit Feedback on Douban, Flixster and Yahoo
Music datasets (3000 by 3000 as in Berg et al.
((2017)), Monti et al. ((2017))). All the methods
except GC-MC utilize side graph information.
Dataset Methods Test RMSE (×10−1) % RGG

Douban SRGCNN (reported by Berg et al. ((2017))) - -
GC-MC 7.3109 ± 0.0150 -
GC-MC_G 7.3698 ± 0.0737 N/A
GC-MC_G2 7.3123 ± 0.0139 N/A
GC-MC_Node2vec 7.3666 ± 0.0218 N/A
GC-MC_Deepwalk 7.3394 ± 0.0343 N/A
GC-MC_DNA-2 7.3117 ± 0.0129 N/A

Flixster SRGCNN (reported by Berg et al. ((2017))) 9.2600 -
GC-MC 9.2614 ± 0.0578 -
GC-MC_G 9.2374 ± 0.1045 0
GC-MC_G2 8.9344 ± 0.0333 1262.4999
GC-MC_Node2vec 12.0370 ± 1.9474 N/A
GC-MC_Deepwalk 9.0507 ± 0.1692 777.9167
GC-MC_DNA-2 8.9536 ± 0.0770 1182.4999

Yahoo Music SRGCNN (reported by Berg et al. ((2017))) - -
GC-MC 22.6697 ± 0.3530 -
GC-MC_G 21.3672 ± 0.4190 0
GC-MC_G2 20.2189 ± 0.8664 88.1612
GC-MC_Node2vec 19.8901 ± 0.7948 113.4050
GC-MC_Deepwalk 20.1603 ± 0.9342 92.6603
GC-MC_DNA-2 19.3879 ± 0.2874 151.9616

Perozzi et al. ((2014)) to encode the user-user graph
into node features. One clear drawback is that those
graph embedding methods are time-consuming. Us-
ing the official Node2vec implementation, excluding
reading and writing, it takes 416.13 seconds to encode
the 3K by 3K subsampled Yahoo-Music item graph
and obtain resulting 760-d node embeddings. For our
method, it only takes 7.55 seconds to obtain the same
760-d features. Similarly, it takes over 15 mins to run
the official C++ codes for DeepWalk Perozzi et al.
((2014)) using the same parameters as Node2Vec to
encode the graph. In fact, fast encoding via hashing
and bitwise-or that does not require training is one of
the main advantages of our method.

Furthermore, even without considering the time over-
head, we found our graph DNA encoding outperforms
Node2Vec and DeepWalk in terms of test RMSE. De-
tails can be found in Table 4. This could be due to
that encoding higher-order information is more impor-
tant for graph-regularized recommendation tasks, and
graph DNA is a better and more direct way to encode
higher order information compared with Node2Vec and
DeepWalk.

Speed Comparisons Next, we compare the speed-
ups obtained by graph DNA-d with GRMF Gd (a naive
way to encode higher order information by computing
powers of G). Figure 3 suggests that graph DNA-1
(which encodes hop-2 information) scales better than
directly computing G2 in GRMF.

Exploring Effects of Rank Finally, we investigate
whether the proposed DNA coding can achieve con-
sistent improvements when varying the rank in the
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Table 5: Comparison of GRMF Methods of different
ranks for Explicit Feedback on Flixster Dataset.

Rank methods test RMSE (×10−1) % gain

10 GRMF_G2 8.7849 -
GRMF_DNA-3 8.7383 0.8262

20 GRMF_G2 8.9179 -
GRMF_DNA-3 8.7565 1.8098

30 GRMF_G2 9.0865 -
GRMF_DNA-3 8.9255 1.7719

GRMF algorithm. In Table 5, we compare the proposed
GRMF_DNA-3 with GRMF_G2, which achieves the
best RMSE without using DNA coding in the previous
tables. The results clearly show that the improvement
of the proposed DNA coding is consistent over different
ranks and works even better when rank is larger.

5 Conclusion
In this paper, we proposed Graph DNA, a deep neigh-
borhood aware encoding scheme for collaborative fil-
tering with graph information. We make use of Bloom
filters to incorporate higher order graph information,
without the need to explicitly minimize a loss func-
tion. The resulting encoding is extremely space and
computationally efficient, and lends itself well to mul-
tiple algorithms that make use of graph information,
including Graph Convolutional Networks. Experiments
show that Graph DNA encoding outperforms several
baseline methods on multiple datasets in both speed
and performance.

Acknowledgement This work is partially sup-
ported by NSF via IIS 1901527.

References

Z. Abbassi and V. S. Mirrokni. A recommender system
based on local random walks and spectral methods. In
Proceedings of the 9th WebKDD and 1st SNA-KDD
2007 workshop on Web mining and social network
analysis, pages 102–108. ACM, 2007.

P. S. Almeida, C. Baquero, N. Preguiça, and
D. Hutchison. Scalable bloom filters. Information
Processing Letters, 101(6):255–261, 2007.

R. v. d. Berg, T. N. Kipf, and M. Welling. Graph
convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkarup-
pan, N. Spiegelberg, H. Kuang, K. Ranganathan,
D. Molkov, A. Menon, S. Rash, et al. Apache hadoop
goes realtime at facebook. In Proceedings of the 2011

ACM SIGMOD International Conference on Manage-
ment of data, pages 1071–1080. ACM, 2011.

J. S. Breese, D. Heckerman, and C. Kadie. Empiri-
cal analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, pages 43–52.
Morgan Kaufmann Publishers Inc., 1998.

A. Broder and M. Mitzenmacher. Network applica-
tions of bloom filters: A survey. Internet mathematics,
1(4):485–509, 2004.

D. Cai, X. He, J. Han, and T. S. Huang. Graph
regularized nonnegative matrix factorization for data
representation. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 33(8):1548–1560, 2011.

S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph
representations with global structural information. In
Proceedings of the 24th ACM international on con-
ference on information and knowledge management,
pages 891–900. ACM, 2015.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

J. Chen, J. Zhu, and L. Song. Stochastic training of
graph convolutional networks with variance reduction.
In International Conference on Machine Learning,
pages 941–949, 2018.

M. M. Cisse, N. Usunier, T. Artieres, and P. Gallinari.
Robust bloom filters for large multilabel classification
tasks. In Advances in Neural Information Processing
Systems, pages 1851–1859, 2013.

M. Courbariaux, Y. Bengio, and J.-P. David. Bina-
ryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neu-
ral information processing systems, pages 3123–3131,
2015.

M. Defferrard, X. Bresson, and P. Vandergheynst.
Convolutional neural networks on graphs with fast
localized spectral filtering. In Advances in Neural In-
formation Processing Systems, pages 3844–3852, 2016.

D. Dubhashi and D. Ranjan. Balls and bins: A study
in negative dependence. Random Structures & Algo-
rithms, 13(2):99–124, 1998.

M. Gori, A. Pucci, V. Roma, and I. Siena. Itemrank:
A random-walk based scoring algorithm for recom-
mender engines. In IJCAI, volume 7, pages 2766–2771,
2007.



Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering

A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864. ACM, 2016.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive
representation learning on large graphs. In Advances
in Neural Information Processing Systems, pages 1024–
1034, 2017a.

W. L. Hamilton, R. Ying, and J. Leskovec. Represen-
tation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584, 2017b.

S. Han, H. Mao, and W. J. Dally. Deep compres-
sion: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

C.-J. Hsieh, N. Natarajan, and I. Dhillon. Pu learning
for matrix completion. In International Conference
on Machine Learning, pages 2445–2453, 2015.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative fil-
tering for implicit feedback datasets. In Data Mining,
2008. ICDM’08. Eighth IEEE International Confer-
ence on, pages 263–272. Ieee, 2008.

M. Jamali and M. Ester. Trustwalker: a random
walk model for combining trust-based and item-based
recommendation. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 397–406. ACM, 2009.

K. Joag-Dev, F. Proschan, et al. Negative association
of random variables with applications. The Annals of
Statistics, 11(1):286–295, 1983.

T. N. Kipf and M. Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Y. Koren, R. Bell, and C. Volinsky. Matrix factoriza-
tion techniques for recommender systems. Computer,
(8):30–37, 2009.

D. Liang, J. Altosaar, L. Charlin, and D. M. Blei. Fac-
torization meets the item embedding: Regularizing
matrix factorization with item co-occurrence. In Pro-
ceedings of the 10th ACM conference on recommender
systems, pages 59–66. ACM, 2016.

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
Proceedings of the fourth ACM international confer-
ence on Web search and data mining, pages 287–296.
ACM, 2011.

F. Monti, M. Bronstein, and X. Bresson. Geometric
matrix completion with recurrent multi-graph neural
networks. In Advances in Neural Information Process-
ing Systems, pages 3697–3707, 2017.

L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: On-
line learning of social representations. In Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710.
ACM, 2014.

M. Pozo, R. Chiky, F. Meziane, and E. Métais. An
item/user representation for recommender systems
based on bloom filters. In 2016 IEEE Tenth Interna-
tional Conference on Research Challenges in Informa-
tion Science (RCIS), pages 1–12. IEEE, 2016.

N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon.
Collaborative filtering with graph information: Con-
sistency and scalable methods. In Advances in neu-
ral information processing systems, pages 2107–2115,
2015.

S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized rank-
ing from implicit feedback. In Proceedings of the
twenty-fifth conference on uncertainty in artificial in-
telligence, pages 452–461. AUAI Press, 2009.

J. Serrà and A. Karatzoglou. Getting deep recom-
menders fit: Bloom embeddings for sparse binary in-
put/output networks. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, pages
279–287. ACM, 2017.

D. Shah et al. Gossip algorithms. Foundations and
Trends R© in Networking, 3(1):1–125, 2009.

G. Shani, M. Chickering, and C. Meek. Mining recom-
mendations from the web. In Proceedings of the 2008
ACM conference on Recommender systems, pages 35–
42. ACM, 2008.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola,
and S. Vishwanathan. Hash kernels for structured
data. Journal of Machine Learning Research, 10(Nov):
2615–2637, 2009.

A. Shinde and I. Savant. User based collaborative
filtering using bloom filter with mapreduce. In Pro-
ceedings of International Conference on ICT for Sus-
tainable Development, pages 115–123. Springer, 2016.

A. P. Singh and G. J. Gordon. Relational learning
via collective matrix factorization. In Proceedings of



Liwei Wu, Hsiang-Fu Yu, Nikhil Rao

the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 650–658.
ACM, 2008.

L. Wu, C.-J. Hsieh, and J. Sharpnack. Large-scale col-
laborative ranking in near-linear time. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 515–
524. ACM, 2017.

L. Wu, C.-J. Hsieh, and J. Sharpnack. Sql-rank: A
listwise approach to collaborative ranking. In Proceed-
ings of Machine Learning Research (35th International
Conference on Machine Learning), volume 80, 2018.

L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack. Temporal
collaborative ranking via personalized transformer.
arXiv preprint arXiv:1908.05435, 2019a.

L. Wu, S. Li, C.-J. Hsieh, and J. L. Sharpnack.
Stochastic shared embeddings: Data-driven regular-
ization of embedding layers. In Advances in Neural
Information Processing Systems, pages 24–34, 2019b.

W. Xie, D. Bindel, A. Demers, and J. Gehrke. Edge-
weighted personalized pagerank: breaking a decade-
old performance barrier. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1325–1334.
ACM, 2015.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec. Graph convolutional neu-
ral networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 974–983. ACM, 2018.

H.-F. Yu, H.-Y. Huang, I. S. Dhillon, and C.-J. Lin.
A unified algorithm for one-class structured matrix
factorization with side information. In AAAI, pages
2845–2851, 2017.

R. Zafarani and H. Liu. Social computing data repos-
itory at ASU, 2009. URL http://socialcomputing.
asu.edu.

T. Zhou, H. Shan, A. Banerjee, and G. Sapiro. Ker-
nelized probabilistic matrix factorization: Exploiting
graphs and side information. In Proceedings of the
2012 SIAM international Conference on Data mining,
pages 403–414. SIAM, 2012.

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

