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1 Proofs

Corollary 1

Proof. From A4, and substitute Xtr
p = f(Etr

p ), we have

T(Etr
p )T = Ah(f(Etr

p )) + b.

From A3, we know each Xte’s support is con-
tained in the support of h. Thus, we can replace
Etrp with Ete and the equality still holds, we get:
T(Ete) = Ah(f(Ete)) + b = Ah(Xte) + b.

Theorem 2

Proof. Without loss of generality, assume after align-
ment cause variable for each training pair is input to
h as the first argument. By A2 and Theorem 1, we
will successfully learn h (Algorithm 1, line 1,2).

By A2 and Corollary 1, if the cause variable of Xte is
input to hICA as the first argument, then its non-
linear ICA is realized (Algorithm 1, line 3,4). De-
note the respective input permutation as αr, then
Cαr(1) |= Cαr(2). While for the other input direction
α1−r, by A1, Cα1−r(1) 6 |= Cα1−r(2)

Thus, we have dindep(Cαr
) > dindep(Cα1−r

), and
α∗ = αr.

Theorem 3

Proof. Similarly to the proof of Theorem 2, we know
there is one and only one input direction αr where
nonlinear ICA is realized. We have T(Ete) =
(Cα(1), Cα(2))

T
αr

where α is the unknown output per-
mutation.

By A1 (which also implies rule (4)), we have
Xte
c |= C3−c,αr

where c is the cause index, but Xte
i 6 |=

Cj,α for all other i, j, α. Thus, (i∗, j∗, α∗) = (c, 3 −
c, αr)

Proposition 1

Proof. From Definition 1, we write X = f(E) and de-
note g = f -1. And we have the relation of Jacobians

Jg = J-1
f , and:

J-1
f =

(
df1
dE1

0
∂f2
∂X1

∂f1
∂E1

∂f2
∂E2

)−1

=

(
( df1dE1

)−1 0

−( ∂f2∂E2
)−1 ∂f2∂X1

df1
dE1

( df1dE1
)−1 ( ∂f2∂E2

)−1

)

By comparing the 1st row of Jg and J-1
f , we have

∂g1
∂X2

= 0 which indicates g1 is not a function of X2,

and dg1
dX1

= ( df1dE1
)−1 which, by inverse function theo-

rem, implies f1 is invertible and g1 = f−11 .

2 Combining graphical search
methods

There are already some studies that successfully com-
bine cause-effect inference methods with graphical
search methods; for example, cause-effect inference
methods can be directly employed to infer the undi-
rected edges output by search methods (Monti et al.,
2019; Zhang and Hyvärinen, 2009), and overlapping
datasets can be integrated using bivariate causal dis-
covery to give more precise output class (Dhir and Lee,
2020). Our method can easily be applied in the same
way to help multivariate causal discovery under con-
founding.

3 Invertibility requirement in
Definition 1

Our method is still valid if there exists a transfor-
mation τ (E) := (τ1(E1), τ2(E2)) such that the trans-
formed SCM satisfies the assumptions of Theorem 1
(e.g., X = F(τ (E)) and F is invertible). By Theo-
rem 1, the TCL followed by linear ICA can success-
fully output the sufficient statistics of τi(Ei), which
plays the same role as Ei when testing independence.
Note that now the mixing function f = F ◦ τ can be
non-invertible. We believe that the existence of such
τ should prevail in practice, and the results on real
world benchmark datasets suggest this. We can go a
step further to say τ (E) are the exogenous variables,
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since, by definition, exogenous variables are unknown
and the only requirement is that they are independent
of each other.

Another note is that, Definition 1 does not mean that
the function relating X1 and X2 should be invertible.
Quite oppositely, take analyzable SCM (1), f2 is a
function from R2 to R, which is always non-invertible.
Moreover, even if E2 = e2 is given, the deterministic
relation X2 = fe22 (X1) := f2(X1, e2) could still be non-
invertible.

4 Nonlinear ICA violates causal
faithfulness assumption

Causal Markov and faithfulness assumptions are com-
mon in causal discovery literature, and we also require
them in our theorem. However, we should note that
causal faithfulness assumption is violated for a real-
ized bivariate nonlinear ICA, because X1 6 |= X2 and
the nonlinear ICA procedure necessarily has one of the
following graphical models:

X1 X2

C1 C2

X1 X2

C1 C2

X1 X2

C1 C2

Figure 1: Graphs of nonlinear ICA procedure.

None of them induce C1 |= C2 under causal faithfulness
assumption.

5 Choice of independence test

HSIC is a widely used independence test in causal dis-
covery literature, but it has several drawbacks. First,
its test statistic is not normalized for different testing
pairs, and thus not comparable1. Second, although p-
value of the test is comparable, it does not directly
measure the degree of independence. Most impor-
tantly, as mentioned in Mooij et al. (2016, sec. 2.2),
standard threshold of the test would be too tight for
our purpose. This is because in causal discovery we
often want to test the independence between an ob-
served variable and an estimation from observed data,
and there always exists small dependence with finite
sample and other real world limitations. For the same
reason, the flexibility of HSIC to detect dependence
can do harm, not benefit, to causal discovery.

Unlike HSIC2, dCor value is always in [0, 1], and equals

1If we use the default Gaussian kernel and median
heuristic for kernel bandwidth (Gretton et al., 2005). And
this is also the most common way it is used in bivariate
causal discovery (Mooij et al., 2016; Hu et al., 2018)

2We noticed that distance covariance is an instance of

to 0 if and only if the pair under test are independent.
Thus, the value 1 - dCor works as a comparable degree
of independence. As a bonus, dCor is much faster than
HSIC when testing independence between univariate
real-valued variables, particularly when sample size is
large 3.

Hence, we suggest dCor rather than HSIC as the de-
fault choice to measure degree of independence for
cause-effect inference, and try HSIC when you can af-
ford the time, both for tuning and running.

6 Caveats on structural MLP

1) While one might think that we need to make MLP1
invertible since g1 is invertible, we should not impose
it; the sufficient statistics T are also learned as part
of MLP, and they are in general non-invertible. 2)
The structural MLP works only when there is a direct
causal effect, as required by SCM (2). 3) Since node i1
corresponds to the cause, we need to input the cause
variable to i1 for training the asymmetric MLP prop-
erly. This requires knowledge on the causal directions
of training pairs, and thus, we can only apply it with
inferule1.

7 Details and notes for artificial
experiments

Training and testing data As mentioned, under
multi-environment setting, the pairs are for both train-
ing and testing. Under multi-pair setting, these same
pairs are again used for testing. But for training, we
generate another set of pairs with random parameters,
while the mixing functions and pair number for each
mixing function are the same as testing pairs. For each
pair, we always generate 512 data points.

Hyperparameters For the MLP in TCL, we use
the same number of layers as data-generating MLP,
and each hidden layer has same number of units (4
or 40 in the experiments) with the maxout activa-
tion. The two output units have the absolute value
function as activation. For the asymmetric MLP (Fig-
ure 3, right), we use same width for both sub-MLPs,
and keep the sum of the widths the same as fully-
connected MLP. Note that the asymmetric MLP has
much less parameters than the fully-connected one,
since the sub-MLPs are disconnected. We use Momen-
tum optimizer with momentum 0.9 and initial learning
rate 0.01, and the batch size is 32.

HSIC for certain choice of kernels (Sejdinovic et al., 2013).
But again, this is not default for HSIC.

3We use Huo and Székely (2016) for dCor and
Zhang et al. (2018) for HSIC, the implementation
can be found at https://github.com/vnmabus/dcor and
https://github.com/oxmlcs/kerpy, respectively.
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MLP width The experimental results show that we
need large enough MLP to fit more pairs. Note in
particular that the MLP of width 4 performs almost
always worse than that of width 40. If we use asym-
metric MLP, this tendency is more drastic since it has
much less parameters. When the MLP width is 4, the
accuracy often decreases w.r.t the number of training
pairs. When the MLP width is 40, the accuracy usu-
ally increases w.r.t the number of training pairs, but
when the pair size is larger than 30, it increases slowly
or even slightly drops.

Training pair number We observe better perfor-
mance as the pair size grows (under the MLP width
40). Under the multi-pair setting, this implies that
TCL learns more thoroughly the shared mechanism.
Under multi-environment setting, we have one more
reason: majority voting performs better with more
voters (pairs).

Transferability To confirm the transferability of
TCL, we also try inferring directions for individual
pairs without voting under multi-environment setting
(Figure 4, dashed lines). The results from the two
settings are similar, meaning the transferability. The
slight drop of performance under multi-pair setting
should come from the two input trials needed.

8 Experiments without assuming
direct causal effect

We also experiment without assuming direct causal
effect necessarily exists, and allow “inconclusive” out-
puts when the assumption is possibly violated. The
purpose here is mainly to conform the problem men-
tioned in S.3 above, and to show how our method can
address it to a large extent. When applying the in-
ference rules, now we need to set a threshold or alpha
value for the independence tests. For clearer compar-
isons, we apply Theorem 3 and also use HSIC, though
Theorem 2 or other independence tests can also be
applied. Then our method only differs with NonSENS
by inferring for each environment and then majority
voting.
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Figure 2: Performance without assuming direct causal ef-
fect. 1st/2nd row is results on direct casual data/purely
confounded data respectively.

Similarly to Monti et al. (2019), we evaluate on two
datasets: 1) all pairs are direct causal (1st row). 2) all
pairs are purely confounded (simply use a fully con-
nected MLP) (2nd row). On direct causal pairs, we can
see NonSENS’ accuracy decreases drastically w.r.t pair
number and is nearly always below 10% when MLP
width is 4. On the other hand, on purely confounded
pairs, it always reports 100% inconclusive.

Here the results conform that the default alpha value
(0.05) for independence test is way too tight. Specifi-
cally, the problem here is that, with more pairs (which
means more sample points for NonSENS), HSIC is
more sensitive to small dependence between estimated
noise and observed cause. This means we must train
TCL very optimally to avoid the unwanted depen-
dence.

Our method performs much better than NonSENS, es-
pecially with large pair number. The reason is that, it
is easier to get rid of unwanted dependence by looking
at each environment, since if any one of the environ-
ments shows dependence, then the pooled data tested
in NonSENS will be dependent.

9 Alternative ensemble scorings

Without loss of generality, assume X1 is input to the
same node when calculating wns,1, as cause variable is
when training. Then we have Directionns = I(wns,1 >
wns,2) − I(wns,1 < wns,2) where indicator function I
maps true/false to 1/0.

Now the ensemble score in Algorithm 4 line 10 be-
comes:

Scores =
∑

n∈TSRs

wns,1wnI(wns,1 > wns,2)

−
∑

n∈TSRs

wns,2wnI(wns,1 < wns,2)
(1)

But since I(wns,1 > wns,2) and I(wns,1 < wns,2) just
reflect the relative value of wns,1 and wns,2, the follow-
ing simplification is reasonable:

Scores =
∑

n∈TSRs

wn(wns,1 − wns,2) (2)

And on the same line of reasoning, we can alternatively
disregard wns,1, wns,2 and have:

Scores =
∑

n∈TSRs

wnI(wns,1 > wns,2)

−
∑

n∈TSRs

wnI(wns,1 < wns,2)

=
∑

n∈TSRs

wnDirectionns

(3)
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This is just the weighted average of prediction by each
hn. And finally, since hn with small wn is unlikely
to produce large wns,i, we can further disregard wn in
(2). This gives:

Scores =
∑

n∈TSRs

(wns,1 − wns,2) (4)

We compared these scoring equations and found the
last one is stably the best.
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