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Abstract

We address the problem of distinguishing
cause from effect in bivariate setting. Based
on recent developments in nonlinear indepen-
dent component analysis (ICA), we train gen-
eral nonlinear causal models that are imple-
mented by neural networks and allow non-
additive noise. Further, we build an ensem-
ble framework, namely Causal Mosaic, which
models a causal pair by a mixture of nonlin-
ear models. We compare this method with
other recent methods on artificial and real
world benchmark datasets, and our method
shows state-of-the-art performance.

1 INTRODUCTION

Causal discovery (Spirtes and Zhang, 2016; Peters
et al., 2017) is a fundamental problem which attracts
increasing attention recently. The golden standard
of causal discovery is randomized controlled experi-
ments, but they often encounter ethical and practi-
cal issues. Thus, causal discovery from pure observa-
tional data provides an indispensable way to under-
stand our nature. Traditionally, causal discovery al-
gorithms learn the causal structure in the form of a
directed acyclic graphical (DAG) model, by searching
in the space of possible DAGs (Drton and Maathuis,
2017). Constraint-based search methods (e.g. FCI
(Spirtes et al., 2000)) use conditional independence
tests to determine the causal structure. Score-based
search methods, such as GES (Chickering, 2002), typ-
ically search for a graph that optimizes a penalized
likelihood score. However, the above methods are not
applicable to bivariate case and unable to fully deter-
mine edge directions in a DAG.
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In recent years, a line of research emerges that is par-
ticularly motivated to solve the problem of distinguish-
ing cause from effect in bivariate case, i.e. cause-effect
inference. All these methods exploit cause-effect asym-
metry to identify causal direction (Mooij et al., 2016).
One major approach is to restrict causal mechanism to
a certain class of “functional causal models” (FCMs)
(Hyvärinen and Zhang, 2016), and the causal direction
between C and E is identifiable if p(E|C) can be fit-
ted by this class, while the opposite direction, p(C|E),
cannot. Typical FCMs are LiNGAM (Shimizu et al.,
2006), ANM (Hoyer et al., 2009), PNL (Zhang and
Hyvärinen, 2009) and ANM-MM (Hu et al., 2018).
And all of them assume additive noise. Many other
methods loosely exploit the idea that the process gen-
erating cause distribution p(C) is in some way “in-
dependent” to the causal mechanism generating con-
ditional distribution p(E|C) (Janzing and Scholkopf,
2010). For example, IGCI (Janzing et al., 2012) uses
orthogonality in information space to express indepen-
dence between the two distributions. KCDC (Mitro-
vic et al., 2018) is based on the invariance of Kol-
mogorov complexity of conditional distribution. RECI
(Blöbaum et al., 2018) extends IGCI to the setting
with small noise, and proceeds by comparing the re-
gression errors in both possible directions.

We can observe the following limitations in the exist-
ing methods. First, FCMs put too strong restrictions
on the functional form of causal mechanism. Second,
other works tend to propose simple “principles” that
actually reflect the authors’ own intuitions on causal-
ity. Thus, most methods fail to achieve high accuracy
on real world data. Third, there are a few methods
(e.g. KCDC, CGNN (Goudet et al., 2018)) that use
more flexible models and achieve better performance,
but without theoretical justifications. Fourth, they as-
sume there exist no hidden confounders.

This work studies cause-effect inference and address
the first three1 limitations respectively as follows.

1To deal with confounders, we can combine our method
with graphical search methods. See Supplementary Mate-
rial.
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First, we train nonlinear causal models on cause-
effect pairs with (maybe partial) direction informa-
tion, based on a recent nonlinear ICA method imple-
mented by neural network, without strong restriction
on the functional relationship among the variables or
the noise structure. Second, the fact that each of the
many approaches to causality works to some limited
extent suggests us to take a “mosaic” view: causal sys-
tems are diverse and heterogeneous, so we should not
fit all the different systems at once; instead, study at a
time a small number of causal systems that share com-
mon aspects, and then build a whole picture. Specifi-
cally, we build an ensemble of nonlinear models, which
amounts to a Causal Mosaic: a causal pair’s mecha-
nism is treated as a mixture of similar mechanisms.
It is analogous to constructing a large piece of mosaic
from tesserae, which are small blocks of material used
in creating a mosaic. Finally, we provide theoretical
results on the conditions under which our method will
work.

The main contributions of this paper are : 1) two novel
cause-effect inference rules with identifiability proofs,
2) an ensemble framework that works for real world
datasets with only limited labeled pairs, 3) a neural
network structure designed for causal-effect inference,
and 4) state-of-the-art performance on a real-world
benchmark dataset.

Related work RCC (Lopez-Paz et al., 2015) and
its follow-up NCC (Lopez-Paz et al., 2017) also use
training data, but they require large numbers of la-
beled pairs and thus rely on synthetic pairs for train-
ing. There is work which takes related viewpoints:
KCDC uses majority voting, the simplest ensemble
method; ANM-MM treats mechanism as a mixture.
NonSENS (Monti et al., 2019) also employs the same
nonlinear ICA method as ours, but needs samples of
a casual system available over different environments,
which requires interventions or even experiments. We
should note that all the above methods neither take a
mosaic view explicitly nor use ensemble method as a
main building block.

2 PRELIMINARIES

2.1 Intuition

As mentioned, we encounter a large diversity of causal
relationships in nature. And causality might only be
studied and learned piecemeal. Our idea is to extract
the common mechanism shared by a small number of
causal systems. We should note that, systems that
seem to have different mechanisms can actually share
the same mechanism. When all we have at hand is ob-
servational data, the sample, it would be true that two
systems sharing the same mechanism, but by looking

at the samples, they seem very different, to the extent
that we would be tempted to model them by different
functional forms. As an example, we give some pairs
we used in experiment in Figure 1.
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Figure 1: Artificial causal pairs sharing same mechanism.
The pairs have significant diversity though still show some
regularity. Please refer to Section 5 for details.

In the following subsections, we first formally intro-
duce our problem setting, then show its connection to
nonlinear ICA, and finally review the nonlinear ICA
method which we exploit to learn shared mechanism.

2.2 Notation and Problem Setting

Generally, causal inference problems can be formalized
by Structural Causal Models (SCMs) (Pearl, 2009),
also known as Structural Equation Models (SEMs)
(Bollen, 1989). Let G = (V, E) denote a causal DAG,
where V is the vertex set and E is the edge set. Then,
the SCM of observed variables X = (Xv)v∈V and in-
dependent hidden variables E = (Ev)v∈V is given by
the set of equations 2:

Xv = fv(XpaG(v), Ev), v ∈ V (1)

fv represents the causal mechanism between effect Xv

and its direct causes (parents in the graph) XpaG(v).
And Ev models exogenous (external) influences on Xv

and is often treated as an unobserved noise.

E1 E2

X1 X2

E1 E2

X1 X2

Figure 2: Causal graphs of bivariate SCMs

In this work, we focus on bivariate cases, where there
are only two possibilities: either X1 or X2 is the direct
cause of the other, as shown in Figure 2. Their SCMs
are the following (2) for X1 → X2, and (3) for X2 →
X1. In cause-effect inference, our goal is to distinguish
between these two possibilities, that is, tell cause from
effect.

X1 = f1(E1), X2 = f2(X1, E2) (2)

X1 = f1(X2, E1), X2 = f2(E2) (3)

2As typical definition of SCM, we rule out feedback loops
(two-way causal influences) and confounders (hidden com-
mon causes) here.
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2.3 Nonlinear ICA and Causal Discovery

A straightforward definition of the generative model
for nonlinear ICA is that independent hidden variables
Z = (Z1, ..., Zn) are mixed by a differentiable and in-
vertible nonlinear function f , and produce observed
variables X = (X1, ..., Xn) = f(Z). The goal is to
recover the independent components Zi and the un-
mixing function g = f−1, only using observations of
X. The following definition formally states the con-
nection between SCM and nonlinear ICA:

Definition 1. An SCM (1) is analyzable if there ex-
ists a differentiable and invertible3 function f : Rn →
Rn, such that X = f(E).

Obviously, an analyzable SCM is a special case of non-
linear ICA’s generative model, with particular struc-
ture between the variables. For example, in bivari-
ate SCM (2), let f3(E1, E2) = f2(f1(E1), E2) and
f = (f1, f3), the SCM can be written as (X1, X2) =
f(E1, E2). Now if f is differentiable and invertible on
R2, the SCM is analyzable.

For analyzable SCM, if we can solve the corresponding
nonlinear ICA problem, we obtain the hidden variables
E = g(X). In bivariate case, given E1 and E2, under
causal Markov and faithfulness assumptions (Spirtes
and Zhang, 2016), we can conclude:

X1 → X2 if X1 |= E2,

X2 → X1 if X2 |= E1

(4)

This criteria was exploited by many classical methods,
e.g. LiNGAM and ANM, and can be easily understood
as the independence of noise and cause.

2.4 Learning Shared Mechanism by TCL

Lately, Time-Contrastive Learning (TCL) (Hyvärinen
and Morioka, 2016) provided the first general identifi-
ability result for nonlinear ICA. The method depends
on learning the different distributions of time series
through time, and hence the name. After artificially
dividing time series into segments, it trains a classi-
fication task to tell which segment each sample point
belongs to. As indicated in Hyvärinen et al. (2019), the
segment index could be treated as an auxiliary variable
u, which only needs to satisfy that hidden components
Z are independent of each other given u.

With the intuition that different causal pairs in real
world can share the same mechanism, we can derive
a method for learning the shared mechanism by TCL.
We just need to feed TCL with pairs sharing mech-
anism, and replace segment index with pair index as

3This does not imply such a strong restriction as it
would seem. See Supplementary Material.

auxiliary variable. Here, we restate the theory under
our own setting:

Theorem 1 (Hyvärinen and Morioka (2016)). As-
sume the following:

A1. We observe causal pairs X (P ) := {Xp}Pp=1 which
satisfy the same analyzable SCM Xp = f(Ep), and the
hidden variables Ei,p, i = 1, 2 are of exponential family
distribution pEi,p(e) = exp[Ti(e)ηi(p)−A(ηi(p))] where
Ti(e) is the sufficient statistic.

A2. The matrix L, with elements [L]p,i = ηi(p) −
ηi(1), p = 1, ..., P , i = 1, 2, has full column rank 2.

A3. We train a feature extractor h : R2 → R2 with
universal approximation capability, followed by a final
softmax layer to classify all sample points of the pairs,
with pair index used as class label.

Then, in the limit of infinite data, for each p, T(Ep) :=
(T1(E1,p), T2(E2,p))

T = Ah(Xp;θ) + b where A,b
are unknown constants, and A is invertible.

In practice, a multilayer perceptron (MLP) is used as
the feature extractor. The theorem implies that the
identification (recovery) of T(Ep) can be achieved by
first performing TCL, and then linear ICA on h(Xp).
Denoting the composition of h and linear ICA as
hICA, we have T(Ep) = hICA(Xp). In this sense,
we say that h is successfully learned and the nonlinear
ICA of Xp is realized by hICA. Here we learn the
shared mechanism f (or precisely its inverse) as part
of h, along with T.

While we can recover only the sufficient statistics
Ti(Ei,p), not Ei,p, they are sufficient for building a
method for cause-effect inference; Ti(Ei,p) generally
has the same independence relationships with other
variables as Ei,p. In practice, under the assumption
that there exist direct causal effects, we can just com-
pare values of an independence measure, as we will
detail in Section 3.

Unlike the time contrast exploited in the original TCL,
the contrast here is among the pairs. But, by conven-
tion, we will still use the word “TCL” when referring
to the method trained on causal pairs, which not nec-
essarily satisfy A1 and A2 of Theorem 1. By a slight
abuse of terminology, the produced h, which may not
be successfully learned, is also called TCL in this pa-
per.

3 THEORETICAL RESULTS

3.1 Separation of Training and Testing

It should be clear from Section 2 that we want to learn
casual mechanism via TCL. However, readers might
notice that, to successfully learn TCL, we at least need
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to know that the pairs indeed share causal mecha-
nism! To address the above dilemma, our idea is to
learn causal mechanism from some training pairs that
we have good causal knowledge (e.g. we might know
their SCMs and causal directions), and then predict
the causal directions for unseen pairs. The following
corollary of Theorem 1 makes this separation possible:

Corollary 1 (Transferability of TCL). Assume:

A1. Pairs X tr(P ) satisfy A1 and A2 of Theorem 1.

A2. A pair Xte satisfy A1 of Theorem 1, with the
same f and T as X tr(P ), but different parameter ηi.

A3. Let RX denote the support of a random variable
X. We have REte

i
⊆ ∪Pp=1REtr

i,p
, i = 1, 2.

A4. We learn a feature extractor h on X tr(P ) as in
A3 of Theorem 1 and have T(Etr

p ) = Ah(Xtr
p ) + b.

Then, we have T(Ete) = Ah(Xte) + b = hICA(Xte).

Intuitively, after we successfully learned TCL h, we
can re-use it to analyze other unseen pairs that have
the same SCM and sufficient statistics as the training
pairs. We should note that, as in transfer learning,
training and testing pairs do not have the same dis-
tribution, and hence the name of this corollary. From
now on, we will also refer to the learning of TCL and
analysis of new pairs on it as training and testing, re-
spectively.

3.2 Inference Methods and Identifiability

We first present a general procedure (Algorithm 1) as
the common basis, before detailing the two inference
rules (inferule) with their identifiability results (and
also Directiontr and align). In the following, α0 =
(1, 2) and α1 = (2, 1) denotes the two permutations on
{1, 2}, and αi(X) := (Xαi(1), Xαi(2)).

Algorithm 1: Inferring causal direction

input : X tr(P ), Xte, Directiontr, align, inferule
output: Causete

1 Align training set, exploiting Directiontr:

X al(P ) = align(X tr(P ), Directiontr)
2 Learn TCL h on X al(P )
3 foreach α = α0, α1 do
4 (C1, C2)Tα = hICA(αi(X

te))
5 Run inference rule:

Causete = inferule(Cα0 ,Cα1 ,X
te)

With T(Ete) recovered, we can find ways to infer a
causal direction for Xte. To find the asymmetry be-
tween the two possible causal directions, we use the
fact that, when testing, if we flip input direction to
hICA and try nonlinear ICA for each (line 3,4 Algo-
rithm 1), there will be one and only one trial that is
realized by the hICA. This information will be ex-

ploited in inferule (line 5 Algorithm 1).

A remaining issue is that, to apply Theorem 1 and
in turn Corollary 1, we need to at least partially know
the directions of training pairs. More precisely, X tr(P )
must be aligned, as in the following definition. (This
is implied by ∀p (Xp = f(Ep)) in A1 of Theorem 1.)

Definition 2. Causal pairs X al(P ) := {Xp}Pp=1 are
aligned if ∀p (X1,p → X2,p) or ∀p (X2,p → X1,p).

In the first inference rule, it is assumed that we know
the causal direction for each of the training pairs so
that they can be trivially aligned. For a test pair,
a realized (successful) nonlinear ICA among the two
trials should output independent components, and this
in turn tells us the direction of the pair, because we
know which input of h corresponds to the cause. This
leads to the following theorem:

Theorem 2 (Identifiability by independence of hid-
den components). In Algorithm 1, let:

Directiontr = {cp}Pp=1 where cp ∈ {1, 2} is the cause
index: Xtr

cp,p → Xtr
3−cp,p,

align = {Xtr
cp,p, X

tr
3−cp,p}

P
p=1,

inferule = α∗(1), α∗ = argmax
α∈{α0,α1}

dindep(Cα) where

dindep measures degree of independence.

And assume:

A1. Causal Markov assumption and causal faithful-
ness assumption hold for data generating SCMs and
analysis procedure except4 for a realized nonlinear
ICA.

A2. X tr(P ) and Xte satisfy A1–A3 of Corollary 1.

Then, the inferule defined above ( inferule1 after-
wards) identifies the true cause variable.

The second inference rule only assumes we know how
to align the training pairs. In fact, under certain prac-
tical scenarios, we know the training pairs are aligned;
for example, 1) pairs from multiple environments (per
environment per pair), as in many domain adaptation
problems and in Monti et al. (2019), and 2) pairs from
stratified sampling (per sample per pair).

The inferule determines the realized trial and iden-
tifies causal directions, without the directions of train-
ing pairs. We examine the independence of the pair
{Tj(Etej ), Xte

i }, as in the relation (4). Note, how-
ever, that as described in Monti et al. (2019), the
outputs of a realized nonlinear ICA are equivalent
to hidden variables only up to a permutation, i.e.
T(Ete) = (Cα(1), Cα(2))

T , with α unknown. This re-
quires us to evaluate the degree of independence for

4See Supplementary Materials on this.
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four pairs at each trial, as in the following theorem:

Theorem 3 (Identifiability by independence of
noise and cause). In Algorithm 1, let:

Directiontr = {ip}Pp=1 where ip ∈ {1, 2} such that
∀p (Xip,p → X3−ip,p) or ∀p (X3−ip,p → Xip,p)

align = {Xtr
ip,p

, Xtr
3−ip,p}

P
p=1,

inferule = i∗, (i∗, ., .) = argmax
i,j,α

dindep(Xte
i , Cj,α).

And assume the same as Theorem 2.

Then, the inferule defined above ( inferule2 after-
wards) identifies true cause variable.

Since we can use the causal directions to recover
an aligned training set, so in Theorem 2, letting
inferule = inferule2, the true causal index can also
be identified. However, as we will see in the exper-
iments, inferule1 will outperform inferule2 if the
former is applicable in practice.

Finally, we will employ distance correlation (dCor)
(Székely et al., 2007) as our main choice of dindep

(See Supplementary Material for details).

3.3 Structural MLP

We discuss an MLP structure to improve TCL’s perfor-
mance on bivariate analyzable SCMs. We first study
the form of the inverse SCM, since this is what the
MLP should learn.

Proposition 1 (Inverse of bivariate analyzable SCM).
For any analyzable SCM as shown in (2), denote the
whole system X = f(E), if the Jacobian matrix of f is
invertible, then f1 is invertible.

Denote g1 = f−11 , then E1 = g1(X1). And we have
E2 = g2(X1, X2) in general. This implies the inverse
SCM has the graph as shown in Figure 3 (left):

g2g1

X1 X2

E1 E2

MLP2MLP1

i1 i2

o1 o2

Figure 3: Inverse bivariate analyzable SCM (left) and the
indicated MLP structure (right).

Building an MLP for TCL with this asymmetric struc-
ture will help TCL learn the inverse SCM. This can
be easily implemented as shown in Figure 3 (right):
we build an MLP with one output node for g1 and
g2 respectively, and then concatenate the outputs to-
gether. Please see Supplementary Material for caveats
on building and using this asymmetric structure.

4 ASSEMBLING CAUSAL MOSAIC

In the following, we will refer to training pairs that
satisfy A1 (same SCM and exponential family) and A2
(enough variability among parameters) of Theorem 1
as tessera pairs, because they form the small portion of
causal pairs that can be easily modeled together, and
thus a small block of the whole mosaic. Also, we will
refer to a TCL learned on tessera pairs as a tessera.

We have so far assumed that we have tessera pairs, un-
der the ideal situation that we have well-studied sys-
tems. However, for many real world applications, it
is unlikely that most training pairs amount to tessera
pairs. Our idea for handling real world problems is
to train many TCLs on random selections of pairs,
and then choose from these TCLs the (imperfect)
tesserae that are trained on approximate tessera pairs,
in the sense that they have similar SCMs and are ap-
proximately in the same family. We further develop
an ensemble method to effectively exploit imperfect
tesserae.

In this section, Let S be the set of all labeled causal
pairs we have at hand, and cs be the true cause index
for s ∈ S.

4.1 Preparing Materials

As in Algorithm 2, by training a large number (N)
of TCLs on randomly chosen pairs, we hope some of
these TCLs amount to tesserae. To ensure TCL is
trained properly on each set of pairs, we train MLP M
times with different hyperparameters (See experiment
for details).

Algorithm 2: Random training of TCLs

input : S, M,N
output: {(hn, Tn)}Nn=1

1 foreach n in 1,...,N do
2 Randomly choose training pairs Tn ⊂ S
3 Split the sample points of each training pair by

half, and build training set Tr and testing set
Te

4 foreach m in 1,...,M do
5 Randomly choose a set of hyperparameters

and train TCL on Tr
6 Evaluate classification accuracy (Caccm) for

pair index on Te.
7 Use the trained TCL with the highest Caccm

for this set of training pair, denote it hn

4.2 Choosing Tesserae

Because our goal is to infer causal directions, we choose
TCLs that perform well on this task. First, we can
use each TCL to infer the causal directions of its own
training pairs (Algorithm 3, line 2,3), and choose TCLs
that produce accuracy higher than a threshold ThreT .
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Second, for each TCL, we also input unseen validation
pairs and infer their directions, and we choose TCLs
that produce accuracy higher than ThreV . The good
training accuracy indicates the success of training and
TCL indeed learned to infer causal directions. The
good validation accuracy shows that the learning gen-
eralizes to unseen pairs.

To efficiently use S for training and validation, and
still be able to test on all the pairs in S, we use the
idea of leave-one-out cross validation (LOOCV). That
is, each pair l not used in training a TCL is left out
once when validating that TCL (line 5,6). As we can
see, every pair in S is not used as a training pair or
validating pair for its tessera (line 10,11). On the other
hand, in training (Tn) and validation ((S \ Tn) \ {l}),
every trained TCL exploits all the pairs except the left
out one l.

Algorithm 3: Selecting TCLs

input : S, ThreT, ThreV, {(hn, Tn)}Nn=1

output: {TSRs : s ∈ S}
1 foreach n in 1,...,N do

// Training accuracy Taccn for hn on Tn

2 foreach t in Tn do
3 Use hICAn, run line 3–5 of Algorithm 1 on

t, get inferred direction ĉt
4 Taccn = |{t : ĉt = ct}|/|Tn|

// LOOCV

5 foreach l in S \ Tn do
6 As line 2–4, get validation accuracy for hn

on (S \ Tn) \ {l}, denote it as V accn(l)
// Select TCLs by accuracy thresholds

7 foreach s in S do
8 Initialize tessera index set for s: TSRs = ∅
9 foreach n in 1,...,N do

10 if s 6∈ Tn and Taccn > ThreT and
V accn(s) > ThreV then

11 Add n to TSRs

By the identifiability theorems, if TCL hn has high
training accuracy, it is likely that the training pairs
Tn are approximate tessera pairs (required by A1 &
A2 of Theorem 1). Similarly, if hn gives high vali-
dation accuracy, the evidence for tessera pairs Tn is
strengthened (required by A1 of Corollary 1), and fur-
ther it is likely that pairs Tn are similar to many of
pairs in S \ Tn (required by A2 of Corollary 1).

4.3 From Tesserae to Causal Mosaic

We employ an ensemble method for making effec-
tive use of each imperfect tessera, and construct a
whole piece of mosaic, in the same way as we will ob-
tain a strong classifier from weaker ones by ensemble
methods. Put simply, for each testing pair, ensem-
ble method will take the causal direction predicted by
tesserae, and produce a final, weighted average. We
introduce two levels of weighting as follows.

First, as Algorithm 4, line 3, we weight a TCL hn by
the average dindep(hICAn(.)) for the training pairs
Tn. This is to address the problem that, even if we
have selected TCLs as in Algorithm 3, it is very pos-
sible that the chosen tesserae would not be perfect,
e.g., the mechanisms of training pairs are not exactly
the same. Thus, we use this weight to measure how
well Tn fit together (by Theorem 1, if we get more in-
dependent components, A1 & A2 are more likely to
hold), and in turn how likely the causal direction will
be correctly inferred if we use this hn.

Second, we weight by the dindep(hICAn(.)) for a par-
ticular testing pair s. Again, even if wn is large, it is
possible that s and Tn do not satisfy A2 of Corollary
1, so we need to weight each tessera for each testing
pair. Similarly to the reasoning for wn, if we get inde-
pendent components for s, A2 of Corollary 1 is likely
to hold. Note that, as in Algorithm 1, in theory only
realized nonlinear ICA outputs independent compo-
nents, so we weight by the larger dindep of the two
trials (line 4–7). We multiply the two weights as the
final pair-specified weight.

Algorithm 4: Ensemble method

input : S, {TSRs : s ∈ S}, {(hn, Tn)}Nn=1

output: {Directions : s ∈ S}
1 foreach s in S do
2 foreach n in TSRs do
3 wn =

∑
t∈Tn

(dindep(hICAn(t)))/|Tn|
4 foreach i = 0, 1 do
5 Cαi = hICAn(αi(s))
6 wns,i+1 = dindep(Cαi)
7 wns = max(wns,1, wns,2)
8 ĉs = inferule(Cα0 ,Cα1 ,s)
9 Directionns = 1 if ĉs = 1, −1 if ĉs = 2

10 Calculate weighted prediction
Scores =

∑
n∈TSRs

wnwnsDirectionns

11 Directions =


X1 → X2 Scores > 0

X2 → X1 Scores < 0

? Scores = 0

5 EXPERIMENTS

5.1 Artificial Data

We compare NonSENS to variations of our method
with different inference rules, independence measures,
and MLP types on artificial data. To see the compar-
isons with other recent methods on similar artificial
data, we refer readers to Monti et al. (2019).

Multi-environment setting This is the setting
under which NonSENS works. Mathematically, our
tessera pairs {Xtr

p } are equivalent to the samples
X en := {Xen

p } of a same causal system under P dif-
ferent “environments” in their interpretation. That is,
they define different environments by different param-
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eter η of hidden variables, and ∀p(Xen
p = f(Een

p )) is
by definition satisfied. Moreover, there is no separate
testing pairs here. Our goal is to distinguish between
two possibilities, ∀p (Xen

1,p → Xen
2,p) or ∀p (Xen

2,p →
Xen

1,p), for X en themselves (note the pairs (environ-

ments) are aligned), rather than 2P possibilities for
individual pairs X (P ).

Our Algorithm 1 can reduce to this setting, as shown
in Algorithm 5. Both training and testing pairs are
X en themselves. Note that Directiontr, align and
the input permutation (Algorithm 1, line 3,4) are not
needed, since X en is already aligned. We apply a sim-
plified version of inferule2 to infer direction for each
environment without input permutation, but still need
to deal with the output permutation.

Finally, we use majority voting to combine the results
of all environments and give the final decision, and
this is an important difference between our method
and NonSENS under this setting. NonSENS treats
the samples of environments as coming from a mixture,
runs dindep on pooled sample and output, and gives
cen = i∗, (i∗, j∗) = argmaxi,j dindep({Xen

i,p}, {Cj,p})5.
In practice, as we will see, majority voting often out-
performs NonSENS since it uses information from each
environment and thus is more robust.

Algorithm 5: Algorithm 1 on multi-env. setting

input : X en
output: cen

1 Learn TCL h on X en
2 C = hICA(X en)
3 foreach Xen

p in X en, Cp in C do
4 cp = i∗, (i∗, j∗) = argmax

i,j
dindep(Xen

i,p, Cj,p)

// Majority voting

5 cen = argmax
i
|{cp : cp = i}|

Multi-pair setting If we know the directions of
training pairs, we separate training and testing,
and both Theorem 2 (inferule1) and Theorem 3
(inferule2) can apply. Here, we infer the direction
for each individual testing pair. NonSENS cannot ap-
ply here, so we compare different variations of our
method. We name this multi-pair setting, to contrast
the multi-environment setting, although the main dif-
ference is the direction information of training pairs
(our method can also infer for each environment as in
Algorithm 5, line 3,4).

Data generation As in Hyvärinen and Morioka
(2016) and Monti et al. (2019), we use 5-layer ran-
domly initialized MLPs as mixing functions, with
leaky ReLU activation and 2 units in each layer to

5Originally, NonSENS uses independence tests with a
threshold. We write it here using dindep for easy compar-
ison, because we will use this modified rule for NonSENS
in experiment.

ensure invertibility. To simulate the independent re-
lationships of a direct causal graph, we use a lower-
triangle weight matrix for each layer of the MLP. We
use Laplace distribution for both hidden components,
and their variance parameters are i.i.d. generated
across different pairs. Multi-environment setting can
be easily simulated by aligning all the pairs and then
perform nonlinear ICA.

We generate 100 mixing functions and same number
of training/testing pairs for each mixing function. To
observe how the pair number affect results, we try 5
different number ranging from 10 to 50. Please see
Supplementary Material for more details.

Hyperparameters To make fair comparisons, for
both our method and NonSENS, we keep all the hy-
perparameters the same, including the parameters for
training and independent tests. Please see Supplemen-
tary Material for details.

Assuming direct causal effect Our method and
NonSENS6 formally requires direct causal effects exist
between pairs, and this is our main experiment setting.
Please see Supplementary Material for the experiment
without this assumption.
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Figure 4: Performance assuming direct causal effect.
“width” means MLP width. In the legend, “dCor/pHSIC”
indicates the independence measure, and “asym.” means
asymmetric MLP in TCL. Dashed lines are intended to
show transferability of TCL, see Supplementary Material.

As shown in Figure 4, in multi-environment setting,
our method outperforms NonSENS, particularly when
the pair number is large. The decreasing performance
of NonSENS is consistent with the results when not as-
suming pure causal effects and is due to the unwanted
dependence between estimated noise and the cause, as
explained in detail in Supplementary Material.

In multi-pair setting, inferule1 is applicable and per-
forms much better than inferule2. The main reason
is that the independence between two output compo-
nents is much easier to realize than the independence

6We cannot reproduce the likelihood ratio based Non-
SENS proposed for this setting. Instead, we use a slightly
modified version of NonSENS originally proposed for may-
not-direct-causal setting, see the previous footnote.
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between estimated noise and observed cause. And
this is in turn because of the direct dependence be-
tween observed variables and outputs (see Figure 1 in
Supplementary Material). Note that Theorem 2 re-
quired known causal directions of training pairs, and
thus cannot be used in multi-environment setting.

Moreover, when the MLP width is 40, inferule1

achieves near-optimal results when applied with asym-
metry MLP. This is also the best result we have ob-
tained with artificial data. While the asymmetry MLP
with width 4 performs worse than the fully-connected
one, this is due to the limited fitting capacity (see Sup-
plementary Material for details).

When inferring by Theorem 3, we try both dCor and
the p-value of HSIC (Gretton et al., 2005) as dindep.
dCor constantly outperforms HSIC (See Supplemen-
tary Material for details).

5.2 Real World Dataset

Tuebingen cause-effect pairs (TCEP) dataset (Mooij
et al. (2016), dataset version December 2017) is a
commonly used benchmark for cause-effect inference
tasks. Causal Mosaic can be suitably applied here be-
cause of the very diverse scenarios of the pairs. Each
pair is assigned a weight in order to account for the
possible correlation with other pairs that are selected
from the same multivariate scenario. Currently, the
dataset contains 108 real-world cause-effect pairs with
true causal directions labeled by human experts. We
exclude 6 multivariate pairs in our evaluation.

Implementation We use Theorem 2 with asymmet-
ric MLP since it already shows much better results on
artificial data. Unlike on artificial data with Laplace
hidden variables, we use maxout activation for the out-
put layer. Since the sample sizes of TCEP pairs range
wildly from a hundred to several thousands, we fix
this imbalance in classification by under-sampling us-
ing imbalanced-learn package (Lemâıtre et al., 2017).
When implementing Algorithm 4 line 10, we use a sim-
plified version Scores =

∑
n∈TSRs

(wns,1−wns,2), since
this works the best. See Supplementary Material for
details.

Hyperparameters We train TCL on 300 (N) sets
of randomly picked pairs, which are of size ranging
from 4 to 32. For selecting TCLs, we randomly search
100 pairs of accuracy thresholds (ThreT, ThreV ) in
[65%, 75%]2 and rule out too large thresholds that give
0 or only 1 tessera for more than 10 TCEP pairs. We
train 10 (M) TCLs on each pair set and choose the
best, and the following hyperparameters are randomly
searched from uniform distributions: depth and width
of MLP, learning rate, decay factor, max step (decay
step is 10% of max step), momentum, and batch size.

Among them, the depth of MLP larger than 10 might
lead to divergence in training, but the ranges of other
parameters seem to have few impacts if we do not use
some extreme values. To save training time, we change
the ranges of MLP width and max. step according to
training pair number (small width and step for small
pair number).

Table 1: Accuracy (%) on TCEP. “A/B” means
with/without applying pair weight.

ANM IGCI RECI NCC OURS

52.5/52.0 60.4/60.8 70.5/62.8 51.8/56.9 81.5±4.1/83.3±5.2

We compare our method to ANM, IGCI, RECI
and NCC, using implementations from CDT pack-
age (Kalainathan and Goudet, 2019). The results are
shown in Table 1. We report the median and std-error
of accuracies of our method calculated on all the 83
pairs of thresholds. And this already shows state-of-
the-art performance. The best result on all thresh-
olds is 86.3% without pair weight and might overfit
TCEP dataset. For NCC, we infer each pair by train-
ing the method on rest of the pairs. The accuracy is
much worse than the reported 79% in Lopez-Paz et al.
(2017), the most possible reason is that NCC requires
much more training data (320,000 artificial pairs in the
original paper). The performance of ANM is worse
than reported in Mooij et al. (2016), possibly because
of the different implementation of independence test.

6 CONCLUSION

In this work, we proposed a highly flexible cause-effect
inference method that learns a mixture of general
nonlinear causal models, with proof of identifiability.
We exploited TCL to extract the common mechanism
shared by different causal pairs, and transferred the
causal knowledge to unseen pairs. More specifically,
our method learns how to distinguish cause from ef-
fect, from some training pairs, and predicts the causal
direction on testing pairs. We gave two inference rules
with identifiability proofs and an ensemble framework
that works on real world cause-effect pairs with limited
labeled causal directions. We compared our method to
recent methods on artificial and real world benchmark
datasets, and it showed state-of-the-art results.

Hence, we justified the “mosaic” perspective of causal
discovery, which proposes to learn causality piecemeal,
and then build a whole picture by the pieces. Here,
shared mechanism learned by TCL forms a tessera
of the whole causal mosaic, and many tesserae are
learned and further combined into a whole picture by
ensemble method. We believe this new perspective
would promote other novel methods for bivariate and
also more general causal discovery problems.
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