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A Additional Experiments

In this section, we present additional experiments on W-GAN architectures in practice.
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Figure 4: Estimation error of W-GAN, when the discriminator is parametrized by a neural network. The
optimization is unstable for the sigmoid network in some cases.

We train three Wasserstein GANs: a one-hidden-layer ReLU network, a two-hidden-layer ReLU network and a
one-hidden-layer sigmoid network. We use gradient penalty to enforce the Lipschitz constraint on the discrimi-
nator. The results are shown in Figure 4.

As mentioned in Section 5, statistical properties of different subsets of Lipschitz functions may be very different.
Here, we also observe the difference for networks with different activation functions. With ReLLU activation, the
solution of Wasserstein GAN is very close to sample average, whose error is plotted in Figure 4 for comparison.
The Wasserstein GAN with sigmoid activation is slightly more robust than that with ReLU network. But still,
the estimation error grows as the dimension increases.

B Technical Lemmas

Definition 1. The f-divergence with a restricted function class V is defined as
Dy(P||lQ) = sup Epg(V (X)) — Eqf"(9(V(X))).
€

Lemma 1 (Minimizer of Dy). Assume f is convexr and f(1) = 0, f and g satisfy Assumption 2, and the
discriminator class V satisfies Assumption 1. Then, for any distribution P and Q,

Dy(P||Q) = 0.
In addition,
Dy (P||P) = 0.
Proof. Since f* is the convex conjugate function of f, we have
f &)+ flz)=at =t cof(x).
In particular, since f(1) = 0, we have
f @)=t tedf(l).

According to Assumption 2, g(0) € 9f(1), thus
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For any P and Q, let the discriminator V(z) be the function x — 0 (by setting all weights to zeros), then
Epg(V (X)) — Eqf*(9(V(X))) = 0.
Hence, the supremum over V, namely Dy, is nonnegative.

To show Dy (P||P) = 0, it is sufficient to show that Dy (IP||P) < 0. Notice that for all ¢, we have
f(t) = supat — f(z)
>1-t— f(1)
=1t.
Hence,
Dy (P||P) = sup Epg(V(X)) — Erf*(9(V(X)))

< sup Epg(V (X)) — Epg(V (X))
Vey

which finishes the proof.

Lemma 2. For any distribution P1, Py and P3, we have
IDv((1 = €)Py + €P2|[P3) — Dy (P1]|Ps)| < 2keLy,

where L, is the Lipschitz constant of g in [—k, K].

Proof. First, notice that |V (z)| < [w||; < k. Expand Dy, we have

Dy ((1 — €)P1 + €P2||P3) — Dy(P1]|P3)] Z‘ (‘S}g’} Eq_op, +ep,9(V(X)) - EIng*(g(V(X))))

— (sup Ep, g(V(X)) — EIP‘gf*(9<V(X))>) ‘
Vvey

S sup ‘E(lfe)]P’ﬁ»eIng(V(X)) - E]P‘lg(V(X))‘

Vey
= ‘s/lg); |Ep,g(V(X)) — Ep, g(V(X))
<e sup [Be, [o(V/(X)) ~ 5(0)] ~ Bz, [f(V (X)) — 5(0)]
<e (sup [B=, [o(VC0) ~ (0] + sup B, [o(V () (0]

vey vey

<e (sup Ep, [9(V(X)) = g(0)] + sup Ep, [¢(V (X)) - g(O)I)
Vey vey

<eL, <sup Ep, |V(X)| + sup Ep, |V(X)|>
Vey Vey

<2keLg,

(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

(31)

where (25) uses the inequality [sup fi — sup fo| < sup|fi — f2|; (30) uses Lipschitz continuity of g on [—k, K]

(recall that g is twice continuously differentiable).

O

Lemma 3. Consider the discriminator function class in Assumption 1. For any distribution P, the i.i.d. samples

X1, Xo, - X, ~ P satisfy

% ! ; (V(X,)) — Brg(V(X))

log 1
<C (2,%[,9\/54—2/@[/91/ Ogn /5> ,

with probability at least 1 — & for some constant C, where L, is the Lipschitz constant of g in [—k, K].
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Proof. One can first verify the function class g o V satisfies the condition of bounded difference inequality, since

9(z) = g(y) < lg(r) = g(=r)| < 2xLy,

where we use the assumption on g that it is increasing and Lipschitz (since ¢ has continuous second order
derivative). The rest of the proof aims for proving the Rademacher complexity of g oV is bounded by kL, \/g .

Since g is a Lipschitz function on [—&, ], by contraction lemma,
R(g(V)) < LGR(V).

In addition, we have

R(V) = E¢ sup
Vey

Z@

=E; sup Z@ij o(u; TX; +b;)

Wi, Ui ,b; i=1 j>1

1 n
=E¢ sup - ij Z{}U(u;Xi +b;)

wibi |10 5S1 =

Zsz (u' X; +b)

= kE¢ sup

<y /B
~ n

where &; are independent Rademacher random variables. We use Cauchy inequality in the second last step and
the last inequality is because the Rademacher complexity of {O'(UTIL' +b):ueRPbe IR} is O(\/g) (Gao et al.,
2019a). O

Lemma 4. Suppose F ={f € H: ||f|ln < 1} is the unit ball in the RKHS induced by a kernel k(-,-) satisfying
sup, k(xz,x) <1 (e.g. a Gaussian kernel). For any distribution P, the i.i.d. samples X1, Xo,--- X, ~ P satisfy

2 log2/6
Zf - Epf(X)| < N T

sup
feFr

§

with probability at least 1 — 9.

Proof. 1t is well known that the Rademacher complexity of F is upper bounded by ﬁ By standard concentration
inequality we can obtain the above result. O

Lemma 5. Consider the function class V defined in (20). For any distribution P, the ii.d. samples

X1, X5, X, ~ P satisfy
log <E log1/d
<ang<\/sogS +\/°g / )
n n

with probability at least 1 — §, where C' is an absolute constant.

sup Zg — Epg(V(2))

vey |

Proof. The proof follows the similar steps of Lemma 3, except that in the last step we have a better bound on
the function class F = {o(u'x +b) : u € R?, [|ullo < 25,b € R}.

We decompose F = FLUFU-- 'U]-"( AL where each F; denotes a subset of F with distinct sparsity pattern. It is
2s

not hard to see that each F; has Rademacher complexity % Thus for each fixed F;, we can use Rademacher
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complexity to prove

1 & S 1Og(ps)/5
ek E;f(XO—EPf(X) <c \/;+\/T

holds with probability at least 1 —4/ (2’; ) Using union bound over all F;, with probability at least 1 —¢, we have

n o\ n )
s log(@)zs/d
C \/7_1'_ =21 s/ '
n n
C(\/§+\/2slog?+log1/5)
n n
<c (\/QQsloges‘ﬁ"+\/10g1/5>7
n n

which finishes the proof. O

LS (X) - Bef(X)

n
i=1

sup
fer

IN

IN

Lemma 6. Let ® be the CDF of the standard Gaussian distribution. For any n € R, there uniquely exists a T,
such that

O(r—n)=(1—-e)®(7).

Moreover, (1(n) —n) (n — ¢! (2(1176))> > 0.

Proof. On the one hand,

On the other hand,

o ®(t—-n) o t—m) 1 _

Since both ®(¢t — n) and ®(¢) are continuous, 7 exists. Denote ty = %log(l —€) + 3n. It is easy to check that

T € (to, +00), in which the function ®(t — n) — (1 — €)®(¢) is monotonic. Thus 7 is unique.
Since 7 uniquely exists for every 7, 7(n) is a function of 7. Now we characterize the properties of 7(n).

Differentiate w.r.t. n on both sides of

we get
d o ) _
FEL G sy s i co
(1—€)p(n)

¢(r—n) = (L= e)d(r)’

where ¢ is the density of the standard Gaussian distribution. It can be verified that the denominator is strictly
positive. Thus 7(n) — 7 is an increasing function w.r.t. 7.
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One can verify that

=07 ()

satisfies (7 —n) = (1 — €)®(7), hence a root of 7(n) —n = 0. Since 7(n) — n is increasing, the root is unique,
which concludes the proof.

O

C f-GAN

Theorem 1. Let 0 be the estimator defined in (10), where f and g satisfy Assumption 2 and V satisfies As-
sumption 1. Assuming that k < \/717 + e < ¢ for some sufficiently small constant ¢, then with probability at least

13,
16, — 6l| < \/5\/6+ log 1/, (11)
n n

Proof. We start with bounding the distance between N (6, I,) and N’ 0, I,,) in terms of Dy. With probability at
least 1 — 29, we have

Dy(N(0, L)|IN(8,1,)) <Dy((1 — N (8, 1,) + eH||N (9, 1,,)) + 2keL, (32)
<Dy(Qu||IN(8,1,)) + 2keL, + 25 L \/g—i— 2L, log 1/5 (33)
A D log 1/5
<Dy(Qn|IN(0,1,)) + 2keL, + 2L, . +2kL, - (34)
<Dy((1 — N(6, 1) + H||N (0, I,))) + 2reL, + 4,<;Lg\/§+ KL, lognl/‘s (35)
P log1/6
<Dy(N(0,1,)|IN(0,1,)) + 4keLy + 4k Ly . +4kL, (36)
<dkeL, + 4I€L9\/§ +4kL, lognl/ °, (37)

where (32) and (36) use Lemma 2; (33) and (35) use Lemma 3; (34) follows by the fact that § minimizes Dy;
(37) follows from Lemma 1. The bound holds for the supremum over V. In particular, it holds for any V € V.
Pick wy = K, u; = u with |jul| = 1 and by = —u "0, and let

Ve(t) = E.onon) g (to(z + &) — f(g(to(2)))],
then

log1/6

Yo a0y (R) S drely +4rLgy | £ + dnL,

holds for every u and x with probability at least 1 — 2. Since g and f* are twice continuously differentiable, )"
is continuous in [0, ] and [¢”'| can be bounded by some constant M (k). A key observation is that ¢¢(t)+ M (r)t?
is convex in [0, x]. Thus, by subgradient inequality,

e(k) + M(k)r* > K (0),
where we recall ¢¢(0) = 0 since ¢g(0) = f*(g(0)). This is because by Frechel inequality
@)+ (y) =2y &y e dfz)
and by Assumption 2 f(1) = 0 and ¢(0) € 9f(1).
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We have

¥e(0) = ¢'(0) (h(§) — h(0)),
where

h(€) = E.on,)lo(z +§)].

Since h is increasing and h'(0) is strictly positive, there exist constants ¢ > 0 and ¢’ > 0, such that any &
satisfying |h(§) — h(0)| < ¢’ has |h(§) — h(0)| > c€.

Thus
16— 6] = sup u" (8- )
flull=1
1
< su h(u' (8 — 6)) — h(0)
lull=1 € < )

< sup ——— -1 (0
= b e-g(0) Yuro-9)©)

# K K K:Q K
= R e o) (Fur0- () + M)/

1 P [log1/6
< —— | 4el 4] — +4L ——— 4+ M
= ¢ g'(0) ( €Lg + g\/;"’ g " + M(k)k |,

where the first inequality holds when /Z + € is sufficiently small such that ’h(uT(G —0)) - h(O)’ < . Note

that lim,_,o M (k)k = 0, since M (k) is monotonically decreasing w.r.t. k. We can pick « sufficiently small such
that

M(k)k < 4eL, + 4Lg\/§.
Thus
. log1/d
-0 S ey 2+ Y
n n
holds with probability at least 1 — 4. O

D MMD GAN

Theorem 2. Let T be the RKHS unit ball induced by the Gaussian kernel with bandwidth o. For the estimator
defined in (14), with probability at least 1 — 6,

. 1 2.0 (1 log1/6
_ < 2)3 — )1
16, — 0] <(2+07) (1—1—02) (\/ﬁ\/e—&—\/ - >

Proof. First, since every f € T has bounded range:
f@) = {fi kG2 < | flla kG @)l = VE(z,2) <1,

we can show that the contamination can only change the MMD distance by a constant factor of e:

MMD [(1 — €)Pg + €H, P] = qulf;E(l—e)Pwer(X) —Epf(X)
€

< sup Ep, f(X) — Epf(X) + €Enf(X) — €Ep, f(X)

feT
< sup (Ep, f(X) — Epf(X)) + esup (Euf(X) — Ep, f(X))
feT feT

< MMD [Py, P] + 2e,
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where PP is an arbitrary distribution. The reverse direction also holds by a similar argument. Follow the similar
steps in Theorem 1, using Lemma 4, we can show

4 log(2/0)
— Eon. < — o\
}S;légE]pef(X) E]pef(X)_2€+\/ﬁ+4 oy

holds with probability at least 1 —4d. Recall that the MMD between two distributions is the distance of the mean
embedding in a RKHS (Gretton et al., 2012)

sup Ep, f(X) — Ep, f(X) = [[up, — pp, 13-
feT

When Py and Py are both Gaussian distributions, the right hand side can be computed in a closed form:

HMP’Q - IU‘P(;”?H = EI,I’N]P’Q [/c(x,x')] - ZEIN]P’Q,GE’NIP@ [k((E,IL'/)] + EI,CC/NP@ [k(l’,l’l)
T

zTx Tz
= 2E.n(0,21,) [exp <_ 252 )] —2E, _N(o-é21,) [eXp <_ 252 )]

Y o e

Assuming that 1 and e are sufficiently small thus ||up, — e, |3 is sufficiently small, such that

1 5 2
- S - <
1 exp( 2(2_|_02)||9 o ) <

then by the inequality %m <1—exp(—2x),

DN | =

160> 1 o2
I LA (S [y (m—" /] L)
2 22307 STy ld -l

Combining all of the above, we have proven that

16— 6] <22+ 02\/1 —exp <—||é - e||2>

1
2(2+02)

p
2 1
<2v/2+ 02 <1+ UZ) iz, — tp,

2\ % 4 log(2/4)
< 2 J— —_— _
<2v2+4o0 <1+02> <26+\/ﬁ+4 o ;

holds with probability at least 1 — 4. U
Corollary 1. Let F be the RKHS unit ball induced by the Gaussian kernel with bandwidth o = \/p, then with

probability at least 1 — 0,
- 1 [log1/6
gl < — ) 1

Proof. We optimize the bound in Theorem 2 by choosing appropriate bandwidth ¢ according to the dimension
p. Consider the coefficient (2 + 02)(1 + %)% in Theorem 2. It achieves its minimum value at ¢ = /p, which

turns out to be (2 + p)(1 + %)% < 2ep < p. Plugging in the choice of o finishes the proof. O

Theorem 3. Consider the population limit ofé giwen by MMD-GAN. For any o > 0, there always exists a
contaminated distribution Q such that

16— 6]l Z v/pe. (16)



On Minimax Optimality of GANs for Robust Mean Estimation

Proof. Consider a Dirac contamination H = 4.

f = minimize MMD?[(1 — €)Py + €5, . (38)

neRP

Since MMD between mixture of Gaussian has a closed form solution, it is easy to show that (38) is equivalent to

ya ~
L 10 —nll” 2+0%)? 16— l|>
—(1- — — .
mlyIllelrﬁlplze (1 —€)exp < 22+ 07) \13,2) P 20+ 07)
Although we have a closed form solution for MMD, the objective function is still nonconvex w.r.t. . However, a
key observation is that the global minimizer must lie in the line segment between 6 and 6. If not, a projection onto

this line segment has strictly smaller objective value. This observation allows us to parametrize n = 6 + t(9~ —0),
where 0 < ¢ < 1.

i 10 -01° 2\ _, (2+0%\* 16617, e
minimize (1 —€)exp ( 221 02)t ‘\1y2) &P 20+ 07 t—1)°).

We first prove the following claim.

Claim: for any o > 0, as long as || — 0||> = p(1 + ¢2) log ﬁgz, then t* > e.
If the claim holds, then
16 — 61 = [In* — o]
= "6 0]

> 6\/]?(1 +02)log
> ey/plog2,

2402
1402

2+ o2
1402

where the last inequality is because (1 + ¢2) log > log 2, which finishes the proof. The rest of the proof is

dedicated to proving the claim.
It is sufficient to prove the gradient w.r.t. ¢ is negative in [0, €], which is equivalent to prove

16 =611 5\ 116 — 6|2 2402\ % 16 — 6] 2\ 16— 62
1- - ¢ t< WO 2 ) POy
( E)eXp< 22+0 | 2xer = \ixr) gyt Y e Y

holds for any ¢t < e. Taking logarithm on both sides, it is equivalent to show

€ 1—t  (p 2+0% 106 » 1168 2
1 1 Py 2 f—1)? >
og — +log—— + (£ + )0g1+02+2(2+02) 21 om0 (39)

for any 0 <t <e. It is easy to see that for ¢ < €, we have

€ 1-t¢
+ log

1 > 0.
Ogl 2

— €

Further,

2402 |0 0> 0 — 0|
(2 er) g2 SO0 o IO,
2 1+02 22402 2(1+402)

is a quadratic function w.r.t. ¢, and is monotonic increasing when 0 < ¢ < 1. Thus its minimum value is achieved
at t = 0, which is

P 2402  |0-90|? D 24+0%2 p. 2+02
b 1)1 - :(7 1)1 ~ by
(2+ 812 21107 \2 )BT 2 2%,

>0

i

where the first inequality is because the specific choice of 6 in the claim. Thus the left hand side of (39) is
positive, which finishes the proof. O
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E Wasserstein GAN

Theorem 4. Consider W-GAN with p = 1. Let the contamination distribution H = 6;. Suppose € is sufficiently
small, then |0 — 0| < e. Further, there exists a contamination distribution such that |0 — 0] > e.

Proof. Without loss of generality, we assume that § = 0 and § > 0. Recall that the Wasserstein distance with
Euclidean distance as ground cost in one dimension has a closed-form expression (Peyré et al., 2019) as follows:

minimize /+oo '<I>(t —) = (1 — (1) — 1,4 dt, (40)

neR o

where @ is the CDF of the standard Gaussian distribution. It is clear that the minimizer n* > 0.

Let L be the objective in (40) and let g = ®~! (ﬁ) We show that if > 79 then ‘é—% > 0, hence the

solution n* < ng. By Lemma 6, if n > 19, then 7(n) > n, where 7(n) (uniquely) satisfies ®(7 —n) = (1 — €)@ (7).
Given a fixed n > 19, we discuss two cases.

Case 1: 0 < 7(n)

Decompose (40) into two terms:
é +oo
L:/ +[ ’@(tfn)f(l—e)@(t)—elpé‘ dt
—o0 0 -
7

+oo
= /_ (=@t —n)+ (1 —e)®(t)) dt —i—/‘§ (=2t —n)+ (1 —€e)P(t) +¢) dt.

Taking the derivative of the objective function w.r.t. n, we get

drL o +o0
d—n—/_ooqb(t—n)dt—i—/é ot —n)dt > 0,

where ¢ is the density of the standard Gaussian distribution.
Case 2: 6 > 7(n)

Decompose (40) into three terms:

(n) 0 +00
L:/ +/ +[ ‘@(t—n)—(l—e)@(t)—elt>9~‘ dt
—o0 7(n) 0 -

0

+oo
:/ —<I>(t—n)+(1—e)<b(t)dt+/ <I>(t—a7)—(1—e)<1>(t)dt+[ —B(t—n)+ (1 — )B(t) + edt.
—co 0

T

Taking the derivative of the objective function w.r.t. i, we get

~(n) i oo
dL—/ o(t — ) dt — ¢<t—n)dt+/é o(t — ) dt

d77 —o0o 7(n)
T(n)—n +oo
> / 6(t) dt — / 6(t) dt
—oo T(n)—n
>0,

where we recall that 7(n) —n > 0.

To sum up, in both cases fl—ﬁ is positive, thus any 1 > 7y cannot be the solution to (40). Lastly, we roughly

estimate 7.

()
lim Mo _ lim 20 -¢) i 1

1 T
e—0 € e—>06_e—>0¢(q)1<2(11)>'2:\/;.
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Therefore, when € is sufficiently small, n* behaves like a linear function of e, i.e. |é -0 <ny Se

For the lower bound, consider a contamination d; with 6 — +oo. We prove that any n < 7o, cannot be the
solution either. Decompose L into three terms:

rm) 0
L:/ +/ +x ‘@(tfn)f(lfe)@(t)felwé dt.
N RS -

Taking the derivative of the objective function w.r.t. n, we get

a i 00
d—n—/ ot—myat— [ ot—mdr+ [ ot—ma

—o0 ™(m)
T(n)—n 0 577] 400
= t)dt — t)dt — t)dt + t—mn)dt.
[ ema [ ewa [T owars [ e

As 6 goes to infinity, the forth term goes to zero, and the third term will become larger than the first term (recall
that 7(n) —n < 0 since n < 1g). Thus

dL 0
lim 7:7/ B(t)dt < 0,
f—+o0 dn T(n)—n

which indicates that any 7 < 7o cannot be the solution, i.e. |§ — ] > no > e.

F Adaptation

Theorem 5. Assuming that k < \/g + € < ¢ for some sufficiently small constant c, with probability at least
1 — 4, the estimator defined in (20) satisfies

R log <& log1/§
16, — 6] < %veﬂ/ﬂ. (21)
n n

Proof. The proof follows the same idea in the proof of Theorem 1. The only difference is that in the sparse
setting, we can use Lemma 5 to get a better sample complexity.

First, by Lemma 5 and following similar steps to the proof of Theorem 1, we can show that

R log €& log1/6
Dy(N(0.1,). N0 1) % wely + 5Ly | 5 4 iy 5V

holds with probability at least 1 —§. Next, we can prove the following improved bound of the Euclidean distance
in a similar way to Theorem 1:
ul (9 — é)

< DV(N(H’ Ip)’N(é)Ip)

ep
Se—i—\/Slogs +\/log1/5’
n n

whenever x and € + 4/ % is sufficiently small, which finishes the proof. O

16— 6] < sup
lullo<2s

Theorem 6. Let © = {0 € R? : ||0]|o < s} and Py = N(0,1,). There exist absolute constants ¢ and cz, such

that for any estimator 0,
A slogep/s
sup sup Q[ |0 —6] > a1 ——— Vel | >eco
6€0 QEQy n
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Proof. When € = 0, it is well known that there exist absolute constants ¢; and co such that

i . 9 slogep/s

infsup Py ( |0 — 0| > ¢c1- ———— | > ca.

0 0eo n
In addition, the modulus of continuity for sparse Gaussian mean estimation is

OJ(E, @) = sup {”91 — 92H2 : TV(N(91, Ip),N(927 Ip)) S %—6’91’ 92 S @}
>

Thus, by Chen et al. (2018, Theorem 5.1)

. A slogep/s
inf sup E(l_e)pe_i_EQHHfGHQ Zi/ Vw(e, O)
6 0€0,Q n

>slogep/5

2
< Ve
n

O

Theorem 7. Let 0,, be the estimator defined in (22). Assuming that k < \/g—i— € < c¢ for some sufficiently small
constant c, then with probability at least 1 — ¢,

. log 1
|on—e||sfve+\/°g/5.
n n

Proof. Follow in the similar argument as the proof of Theorem 1, we can show that

D log1/d
sup En(o:)9(V(X)) = Eyrg 5[ (9(V(X))) S 4rely + 4/-’»Lg\/; +4kLgy/ gn/

holds with probability at least 1 — 2. Pick wq = &, w; = 0 for j > 1, u; = \/u:ﬁ’ where ||u]| = 1, and

by = —ulTé We have
sup E.on0,:)9 </<;0 (1uT (:cé))) *ExNN(é i)f*og (FEO' ( ! ul (:Eé)))
lull=1 ’ VuTZu ' VuTXu
1 - uTSu
= sup E,. Ko z+99)>EN ffog|ko| ——=
||u\|£1 N ODF ( ( \/m( ) =N (D) VuTSu

log1/0
Cdnel, + nLyy )L+ anLy 128
n n

Define

1 A . VauTs
0l0) = Bewions (19 (= J=0-0)) )~ B o0 (m (H» |

Then with probability at least 1 — 24, we have

log1/d
bt o-d) (1) §4/€6Lg+4/€Lg\/§ +4kLyy gn/ .

By subgradient inequality of v¢(t) + M (k)r?, we have

pe(k) + M(k)K* > K (0),
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where M (k) is the bound on the second order derivative of ¢ in [0, k] and 1¢(0) = 0 by a similar argument as
the proof of Theorem 1. Next, we upper bound ||§ — 6| using ¢¢(0). A simple observation is that

=3

EZNN(O,l)U(Z) = Ez~N(0,1)U ( uTZuz =

Thus (recall that f*(g(0)) =1)

1 VuTSu
“(0)=E,. ’Oa(z—l—)—EZN "(0)o | —==%
¢§( ) N(O,l)g< ) \/mg N(O,l)g( ) \/m
1

= Ez~N(0,1) {QI(O)U (Z + m§> - Ez~N(071)9/(0)0(Z)} )

which is exactly ¢ . (0) defined in the proof of Theorem 1. Thus, following the same argument, we have

VuTl su
||9 9|| e+\/7 /10g1/6
VuTSu ™

whenever £ S /2 + € and /2 + € is sufficiently small. Finally, notice that v'u " Yu is upper bounded by some
constant since ¥ has bounded spectral norm, which finishes the proof. O
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