Supplementary Material

Supplementary material for the paper: ”Linear Convergence of Adaptive Stochastic Gradient Descent”.

This appendix is organized as follows:

e Appendix [A} Proof of Theorem [I]in the Stochastic Setting

Appendix [B} Proof of Theorem [2] and [in the batch Setting

Appendix [C} Proof of Lemmas in Stage I

Appendix [D} Proof of Lemmas in Stage II

Appendix [E} More Numerical Experiments

A Proof of Theorem [1|in the Stochastic Setting

From Lemma let C = nL, after N > 1 *L2 b —|— 2 steps, if ming<;<y—1||@i — x*||* > €, then with high

aye
probability 1 — exp(— WQ—"/)W)’ by > nL. Then, there exists a first index kg < N, s.t. by, > nL but
bk0,1 < 77L.

If kg > 1, then

2
s =21 = ll@ng 141 = @ + g7 —|Grpmraa]* = 5 {ry -1t = &, Gy 141)
ko—+l ko+1
’L 2

< Nlwrg-100 = @ 4 (o =)@y 140 = 2", Gy 141)

ko+1 Ko+l (1)
< @rg-141 — &%) - b L (@ro—141 — ", Gro—141)

ko—+l
< @hg—141 —2*||* — o (@ho—141 = 7, Go-141)

max

where the last second inequality is from the condition by, > nL. The last inequality holds since b, 4+ < bmax and
ferg 11 (z) is convex, which implies (xg,—14+1 — *, Gry—141 — Vfgkoflﬂ(:c*)) >0, P(Vfgkoflﬂ (z*) =0)=1Dby

Assumption |(A4)]

Take expectation regarding to &x,—141, and use the fact that when j > ko, b; > L, when [> 1 and 0 < e <
0
£ <1, then we can get
Ee,, oo ll@rors — 2| < |@kg—140 — *|* — (@po—141 — 2", VF(Thy-141))
max
S(l—bW7ﬂWm—Hd—$ﬂF
max
l
Mk, -1 — |
< J10=5 e, 2)
l * (|12 2 02
H Y(leo — 2™ +n (10g(b7)+1)
3=0 max 0
272
< (Jlzo — 2*||* + n* (log(2) T) exp(—3——)
0 max

where the second inequality is from the strong convexity of F(z), i.e. (x —y,VF(x) — VF(y)) > ullz — yl|?
and VF(z*) = 0. From Lemma we can give an upper bound for bmax = max;>obr,41 =

2
C + £(|lg — 2*|2 + 12(log G5 +1)) = 1L + (o — 2" |2 + 7 (log L~ +1)).

Then, take the iterated expectation and use Markov in inequality, with high probability 1 — dy,

2 1 2 2 n*L? pl
* *
ko1 — 27| < == (llwo — 2" [|" +n”(log Z5— + 1)) exp(—=—)
h 0 max
nL+L (o~ |1*+7 (log TE+1)) llzo—a"[*+1P(log LE2+1) o N
Then, after M > m u log > b iterations, with high probability more
2
than 1 — §, — eXp(—267)
(Ny(1=7)+9)

[@horns — *||* <€
Otherwise, if kg = 0, i.e. by > nL, then we use the same inequality as above,
uM
b/

max

Ee, ,lza — 2" < (1- Nea—1 — x| < [|wo — =*||* exp(—)

I

binax
’ * 12

Then, after M > b“ﬁ log % iterations, by Markov’s inequality,

Efzy —z*|

P(lzy —2|* 2) < < O
where b .. = by + %Hwo — x*||? is derived as follows:
n [1GI?
i — x| < |z —x*|* - =
[+ 17 <l =7 .
J 2
n - G ||
< oo -zt - 231
i=0 bit

Then, for any j + 1:
||2

g+1—bo+zb

bo+ £ ||lwo—a* || log lzo—2|2
iz €dp,

L * *
0 + 5(”930 — | = [l —) 3)

Plugging in the value, we can get M >

B Proof of Theorem [2] and 3] in the batch Setting

B.1 Proof of Theorem [2]

Lemma B1. (Co-coercivity with Strong Convexity) (Bubeck et al, (2015) If F(x) is p—strongly convex
and L—smooth, then

pL 2 1 2
_ _ > _ - _
(VP(@) = VF(y).w—y) > L oyl + [V P(a) - VF ()]
Proof. Let ¢(x) = F(x) — &||x|/?, then ¢(z) is convex and (L — p)—smooth. By Lemma

(Vo(x) — Vo(y),x —y) > (z) — Vo(y)|?

Plugging in V¢(x) = VF(x) — px, we have

(VF(x) = VF(y),z —y) — pllz —y|*> > ﬁ(”vz«%@ —VF@)|I” + 1’|l -yl
—2i(VF(z) - VF(y),z —y))

With simple algebra, we can get the result. O

2 2 2
By Lemma after N = H‘;ﬂﬂﬁtﬁg#fﬁg’ﬂ + 1 iterations, if ming<;<n_1 ||z; — *||> > €, then Jky < N, such
that kg is the first index s.t. by, > 77“+L

If ko > 1, since F(z) is p-strongly convex and L—smooth, by Lemma [BI]

(VF(z) - VF(y),z —y) 2

1
_ 2 - _ 2
eyl IVE@) - VR

2puL 1 <
pAL bl 45 (M+L)

For j > 0, we have 0 < n2£= Ak <1 since 2uL < p2 + L2.

We divide the analysis into two situations to get a better bound instead of using bpyax for all the following
steps, which is different from the proof of Theorem [1| First, assume that n% < by, < nL and after another [
iterations, by, is still less than nL, then ||z,; — z*||? is bounded as follows:

*||2

[@ry 1 — 2" [|° = |2hy 101 — @ IVF(zr,—141)?

bi0+l

2n .
— m@kruz — ", VF(xr,—1+41))

0

2unL
<(1- K
(,Uz + L)bko
n n
- VF

i bko+l(bko+l u+L)” (@ko-140)||?

k140 — ||

Mk, —1 — 2|

where ||zx,—1 — *||? can be upper bounded according to Lemma [3{ with C' = %:

(n+L)?

) +1)
412

ey —1 — a*||* < llzg — 2*[|* + n* (log(

Second, if bg,+ a1, > L, Mo can be 0,1,2, ..., then for [> 0,

||wk0+M0+l - m*”Z = Hx’fo-i-Mo—l-‘rl - $*||2 b2 IlvF(wko+Mo 1+l)||2
ko+1
2n «
— Xkt Mo—141 — &, VF (Thyy My—141))
bk0+Mo+l
2L 2
< Nk rtg—141 — 272 + (ot TV @rgr a1+ — 2 V(g atg141))
bk0+M0+l bk0+M0+l
n
<(1- b ko + 1011 — 2*||?
max
nl
< exp(— ko411, — 2|7
max
unl 2u(Mo +1 *
< oxp(— 2 yexp(- 2 D)

X
binax P p+L

where byax can be upper bounded according to Lemma here bpax < nL + £||ack0+ My —)%
Once b, > L > 2 , by Lemmal 5 AdaGrad-Norm is indeed a decent algorithm for ||z; —x* |2, 50 || 5o+ a0 —1 —
x*||? < ||@ky—1 — =*||*. Hence,

L *
bmax S 77L + E”mko—l - H2

Combining the two situations above, we have

2
k2 < 7M : M - * |12
[Zko+0s — 27| < exp(—M min b 11 L M@k, -1 — 2]

. H 2 |12
< -M 1 —
< exp(-dmin{ s D, -]

where A = ||zy, -1 — z*||.

After M > max {M, ";—L} log 2 — 1 iterations,
I 1 €

[ETNVES

Otherwise, if kg = 1, then

M
*)[2 e 2p 2
Ty — T < exp(— min , Tog— I
loas =l < ep(=3 {%X /HL})II 0—a’|

where b’

max

=L+ £lmo - a*|

Cs2,2 2L .
Then, after M > max {M, %} log M iterations, we can assure that

ey — x> <€
B.2 Proof of Theorem [3|

By Lemma , after N > % iterations, if ming<;,<n—1 F(x;) — F* > ¢, then 3ky < N, such that kg

is the first index s.t. by, > nL.
If ko > 1, then for j > 0, from Assumption |(A2)| we have

n nL
F(@potj) < F(@pg+j—1) — -(1— NV (@451
bko+] 2bk0+]
1
< F(@pg4j—1) — ST~ IVE(@k45-1)II7 (4)
o0TJ
/-
< F(@ko+j-1) + - +_(F — F(@ro+5-1))
o0TJ

The last inequality is from p—PL inequality (Assumption [(A1b)): —||F(z)|* < 2u(F * —F(z;)), Vx. Then, add
—F* on both sides, we can get

Hn
bro+j

F(@po45) —F7 < (1 -)(F(@rg1j-1) — F7) (5)

un
b+

Since byy4; > nL > np, 1 — € (0,1) holds for all j > 0, it is a contraction at every step. Then,

1=0 Dro+i
J
< exp(= Y 70 (Flarg-1) — F) (6)
1=0 “kotl

< exp(= 3) iag) - B4 TE (1 4 10g o))

= broti 2 b2
where we use the fact that 1 — 2 < e %, Vo € (0,1) and the lemma in [Ward et al| (2018): F(xg,—1) <
b2
F(@o) + (1 + log(Z4r)).
The upper bound of b; is also from |Ward et al.| (2018]):
2 2 2L 212
b = bhy 1 (Fry 1 = F7) S 0 (F (o) = F* + 252 (1 log (15-)) (7)
0

Then,
2

- M ., ML L
Py, enr-1) = F* < exp(= 5) (F(o) = F* + 152 (14 210g)
max

Hence, we need

M > bmax 10g F(Jﬁo) —F* + 7’2TL(1 + 210g%)
o €
It is sufficient that

2 2r2
ok 2(F(@o) = F* + T4 (1 + log %)) o F(ao) — F* + E(1 4 21og 12)

I €

Then,
min F(x;)— F* <e
0<i<N+M—1
_ log(n°L?/b3)
where N = [mg(i%e/(n%)zﬂ 1.

Otherwise, if kg = 1, the upper bound of b; degenerates to

2
b/ :b0+5(F(ﬂJ0)*F*)

max

Then, using the same procedure, we have

F(xpy) — F* <exp(—

Once the number of iterations satisfies

b F(zo) — F* bo+ 2(F(xo) — F*) F(xo) — F*
M > nax g Fl@o) _ bot 5 (F(o))log (o)
) €

we can get the expected result: F(xpy) — F* <e.

C Proof of Lemmas in Stage I

C.1 Proof of Lemma Il

Lemma C2. (Bernstein’s Inequality) (Wainwright, 2019) Let X be a random variable, E[X] = p, Var(X) =
o2, if X satisfies Bernstein condition with parameter b > 0, i.e. if |B(X — p)*| < %k!aQbk’Q,Vk > 2, then

t2
P(IX = ul 2 1) < 2exp(—3

(02 +bt))

Lemma C3. (Wainwright, 2019) Let X; ~ Bernoulli(p),i.i.d¥i = 1,2,...n, and X = > | X;. Since X; €
[0,1], {X;} satisfy Bernstein condition, then

t2

PAX = npl > 1) < 2exp(~50 ==y

)

Proof of Lemma (1] If min; ||z; — z*||? < ¢, we are done.
Otherwise, we have ||z; —z*||? > €,Vj = 0,1,2,..., N. Assume that F(z) satisfies (¢, o, 7)— RUIG (Assumption
, we can use independent identical Bernoulli random variables {Z;} to represent them with the following
distribution:

7 _ { L oif (IVfe (z)I? > allz; —2*|

7 0 else 9)

where P(Z; = 1) = v,Vj. Note that the RUIG assumption is for any fixed « (conditional on), the probability
distribution is over the random variable i (or &;) (but not over). Every index &; is sampled independently and
uniformly at each iteration, so random variables {Z;} are independent. Then, from Lemmaﬂand let Z =37

with high probability bigger than l—exp(—m) Z > ~yN—6§,VN. Thus, after N > —|— iterations,
. 2
with 1 — eXp(_m), we have
N-1
b =05+ > IV fe(@)* > b5 + (7N -)ae > C?
i=0

Note that even if in the case that there is some correlation between Bernoulli random variables, since each of
them is sub-Gaussian with ¢ = 0.5, then the upper bound of the sub-Gaussian parameter of the sum of them is
0.5N, so the worst-case variance is 0.25N?2. Hence, the result still holds under this setting.

C.2 Proof of Lemma [2]

(a) If by > C, we are done.
2 2
Otherwise if by < C, and after N > % iterations, by < C and ming<;<y—_1 ||z; — x*||> > €. Since
F(z) is p— strongly convex, € < [[&; — @*||> < 5| VF(z;) — VF(z*)||*, Va; and VF(z*) = 0. Then,

by = b + |[VF(zy_1)|

= b%\ffl(]- + HVFb(;BNfl)H2)
N—-1
{h M) (10)

ue
b(1+02) >C?

v

Contradiction! Hence, at least one of ming<;<ny_1 ||@; — @*[|* < € or by > C holds. When y is small and C

is big, we have log(1 + ‘é—g;) 2 “0—226
(b) With PL inequality iHVF(:c)H2 > F(x) — F(x*) instead of p-strongly convex assumption, if

2 2
ming<;<n—1 F(x;) — F* > ¢ and by < C, then after N > % iterations, b3, > b3 (1 + %)N > (C?,

contradiction! Hence, either ming<;,<n—1 F(x;) — F* < eor by > C.

C.3 Proof of Lemma [3]

Lemma C4. (Co-coercivity) (Needell et al., |2016) For a L—smooth convex function F(x), Va,y
IVE(x) - VF(y)||” < L{z —y,VF(z) - VF(y))

Lemma C5. (Integral lemma) (Ward et al.,|2018) For any non-negative sequence ay, ..., ar, such thata; > 1,

(11)

(12)

Proof. The lemma can be proved by induction. Besides, we can take above sums as Riemman sums, then the
sums should be proportional to integrals, log(z) and 2./, respectively. O

Proof of Lemma [3] With above two lemmas, we can bound ||z ;_; — x*||? as follows:

lzj—1—x*|* = |zs—2 —

Gj_
nGg 2_:1:*”2

G Gi_
— (|l — |+ | T2)2 - 22

b | f"”“ e
<)12 G-z G v (12
<y =" + | I” - [Gy—2 = Ve, . (=)
bj_1 b _ L
2 G 2
* J—
< oo — a2+ TGl
J-1
- IG5
< o — 2% + 7? Z
j=0 J+1
J-2
2 1G;1I%/05

< |lo — z*|* + -
=0 Zgzo HGlHZ/bg

J—2
< o — 2|1 + n*(log (> IG;11%/63) + 1)
=0

. c?
< |lwo — x*|* + 772(10gb72 +1)

where the first inequality is from the co-coercivity (Lemma and Assumption [(A4)| m (Vfe, ,(x*)=0) =
last second inequality is from lemma [CH and the last 1nequahty is from the assumption that J is the first 1ndex

s.t. by > C.

D Proof of Lemmas in Stage 11

D.1 Proof of Lemma [

Since by > nL, we have the following bound for |z ;4; — z*|?:

lZsst — x*|* = |@spi1 — @

a2 L MGl
| S~ E—
T+
2n « *
b <GJ+l 1— vf§J+L71(m)3wJ+l—1 - >
+
. 77GJ+l 1 2n .
<@y — x>+ | 12 - 1Gysi—1 =V frp—1(x)|?
by L (13)
13
* U n 2
<|xjpi—1 —x 2+77—* Gryi-
|27 +1-1 | bJ+l(bJ+l L)” +i-1|
. 0 1G iy
< @ ypims — 27| — LI
% s41-1 | T by

0~ G
<lwgoa —at|? = 7y
L zz:o byj

inequalities are from fe, ,_, () is L-smooth (Assumption [(A2)) and co-coercivity (Lemma [C4). Then, we have

the bound of the sum:

l
||(;’J—i-'—1||2 L * *
> < lwya = 1> = ll#sse — 2*)1%) (14)
- J+j n

Therefore, by.x is bounded as follows:

Gyl
by +byri—1

G
by 1+Z” =il
+Jj

byt =byri-1+

L
<C+ EIImJ—l —z*|?

L . 2
=C+ E(Ilwo — x*||* + 7*(log 3 +1))

where ||z;_1 — z*||? < ||@o — x*||* + nz(log%; +1) is from Lemma
0

D.2 Proof of Lemma [5]

Use similar technique as above,

2
* (12 * (12 Ui 2
|z — 2 [|" < |lzj—1 — =7 (b*?* b]L)IIGJ 1]
« n,2 n .
=@y — "] - F(Z - ;)IIGHII2 < |y — 2|
J J

where the first inequality if from f;(z) is L-smooth (Assumption [(A2)), V f;_1(«*) = 0 (Assumption [(A4)) and
Lemma Therefore, once b; > nL/2, AdaGrad-Norm is a descent algorithm.

E More Numerical Experiments

E.1 Numerical Experiments of AdaGrad-Norm with Extreme Initialization

In this section, we demonstrates the numerical experiments of AdaGrad-Norm with xg = 0 (stochastic: Figure
|§|; batch: Figure E[) and the extreme case (stochastic: Figure E batch: Figure : x is far away from x* and
|xo]| is large. Then, we tune the hyperparameter 7 in the extreme case with n = O(|lzy — =*||?) (stochastic:
Figure[§) and n = O(||xo — x*||) (batch: Figure[lI). In these figures, the x-axis represents iteration ¢ while y-axis
is the approximation error ||z; — z*||? in log scale for the first and third columns and it is b; for the second and
fourth columns.

We show that when starting from @y = 0, the result is close to the experiment we show in Figure[2l When initialize
o with extremely bad one, o = 100 * wy, where wq is a randomly generated vector wg and wy ~ N (0, I),
AdaGrad-Norm takes much more iterations than before. However, after tuning n = 10000 in stochastic setting
and 77 = 100 in batch setting, the convergence rate of AdaGrad-Norm is better again. In this case, by plays a
small role.

= = AdaGrad-Norm:by > L = AdaGrad-Norm:by =1 = AdaGrad-Norm:by <L ===+ (Stochastic) GD_const =+ (Stochastic) GD_sqrt
Stochastic AdaGrad-Norm without Noise Stochastic AdaGrad-Norm without Noise Stochastic AdaGrad-Norm with Noise Stochastic AdaGrad-Norm with Noise
W] e e ——— i ——
10 30 ,¢— . — 10 200

° 50
5 L
cod
0

0 250 5000 7500 10000 12500 15000 17500 20000 0 500 1000 1500 2000 2500 3000 3500 4000 0 250 500 750 1000 1250 1500 1750 2000 0 50 100 150 200 250 300 350 400
Iterations Iterations Iterations Iterations

t ~N ~N
30w
ﬁ. —
\-
\
Error (log)
t
g

Error (log)

5

Figure 6: Error and growth of b; with &y = 0 and n = 1 in stochastic setting.

= = AdaGrad-Norm:by > L

Stochastic AdaGrad-Norm without Noise

= AdaGrad-Norm:by =1

Stochastic AdaGrad-Norm without Noise

= AdaGrad-Norm:by <L

Stochastic AdaGrad-Norm with Noise

===+ (Stochastic) GD_const

=+ (Stochastic) GD_sqrt

Stochastic AdaGrad-Norm with Noise

o
20000 10
B b 120000
17500 107
10~
15000 108 100000
—~ 10 -
2 12500 D10 N 80000
1072 4 10000 = N, 3
o 9 10t \.\ 60000
i} 1078 7500 I} \\
100 . 40000
5000
102 \
2500 10 ~. 20000
1028 \
o . e e— — — — 10t s Y o o — — —— — — — —
0 2500 5000 7500 10000 12500 15000 17500 20000 0 S0 100 150 200 250 300 350 400 0 250 500 750 1000 1250 1500 1750 2000 0 S0 100 150 200 250 300 350 400
Iterations Iterations Iterations Iterations

= = AdaGrad-Norm:by > L

Error (log)

Figure 7: Error and growth of b; with extremely bad initialization and n = 1 in stochastic setting.

Stochastic AdaGrad-Norm without Noise

= AdaGrad-Norm:by =1

Stochastic AdaGrad-Norm without Noise

= AdaGrad-Norm:by <L

Stochastic AdaGrad-Norm with Noise

===+ (Stochastic) GD_const

=+ (Stochastic) GD_sqrt

Stochastic AdaGrad-Norm with Noise

70000
Lo 1750000
60000 107 1500000
50000 108 1250000
o
40000 0108 1000000
& = L
30000 g 100 750000
w
20000 108 500000
10000 102 250000
\\
0 o — — — — — 10! N e 0 - ——— — — — — —
0 250 5000 7500 10000 12500 15000 17500 20000

Iterations

50 100 150 200 250

Iterations

300 350 400

0 25 00 750

Iterations

1000 1250 1500 1750 2000

50 100 150 200 250

Iterations

300 350 400

Figure 8: Error and growth of b; with extremely bad initialization and tuning n = ©(||zo — *||?) in stochastic
setting.

= = AdaGrad-Norm:by > L

AdaGrad-Norm without Noise

= AdaGrad-Norm:bg =1

AdaGrad-Norm without Noise

= AdaGrad-Norm:by <L

AdaGrad-Norm with Noise

+==+ GD_const

— - GD_sqrt

AdaGrad-Norm with Noise

S — S
107 25 I
. —— -
—
107% - 80
20 EEEEEEEEEEE SRR R E R
5)
60
=3 15 210
= 10 & - &
2 2
w1077 10 i} 40
-21 10° o — o — —
10° 20 o m—
5
1072
] o1]
3 250 5000 7500 10000 12500 15000 17500 20000 3

Iterations

50 100 150 200 250 300 350 400

Iterations

0 25 500 750 1000 1250 1500 1750 2000

0 50 100 150 200 250 300 350 400

Iterations Iterations
Figure 9: Error and growth of b; with £y = 0 and n = 1 in batch setting.
= = AdaGrad-Norm:by > L = AdaGrad-Norm:bg =1 = AdaGrad-Norm:by <L ===+ GD_const =+ GD_sqrt
AdaGrad-Norm without Noise AdaGrad-Norm without Noise AdaGrad-Norm with Noise AdaGrad-Norm with Noise
17500
100 100 17500
15000 107
10! 15000
o 12500 10° 12500
:g’ 10) 10000 § 108 '4\ 0000
S 100 7500 S 10t .\, h 7500
I I N\
07 5000 1 .\' 5000
21 ~
o0 2500 100 ., 2500
10-% 10 \'"v-,%_
tssssssssnns 0 * e § e e e S—— e —— 0 § St B Bt § et § Bt § et § Bt § et
T 2500 5000 7500 10000 12300 15000 17300 20000

Iterations

50 100 150 200 250

Iterations

300 350 400

0 25 500 750 1000 1250 1500 1750 2000

Iterations

S0 100 150 200 250

Iterations

300 350 400

Figure 10: Error and growth of b, with extremely bad initialization and n = 1 in batch setting.

= = AdaGrad-Norm:by > L = AdaGrad-Norm:bg =1 = AdaGrad-Norm:by <L ===+ GD_const =+ GD_sqrt

AdaGrad-Norm without Noise AdaGrad-Norm without Noise AdaGrad-Norm with Noise AdaGrad-Norm with Noise

2

T % %8 %

Error (log)
be
Error (log)

1077

10721

10-%

0 250 5000 7500 10000 12500 15000 17500 20000 0 S0 100 150 200 250 300 350 400 0 250 500 750 1000 1250 1500 1750 2000 0 50 100 150 200 250 300 350 400
Iterations Iterations Iterations Iterations

Figure 11: Error and growth of b; with extremely bad initialization and tuning n = ©(||lzg — x*||) in batch
setting.

E.2 Numerical Experiment of Two Layer Neural Networks

We implement AdaGrad-Norm in a two-layer network. The experiment is mainly to show the stochastic AdaGrad-
Norm (black curve) converges with a linear rate. We first define loss function as in (2019):

n 2

LW) = 323 (5= D el (k). @) ~ v

i=1

where ¢ is a ReLLU activation function; n is size of data; m is the width for the one-hidden layer. For our
implementation, we set n = 100, m = 200 and d = 10. Set mini-batch size 20 for each iteration and the effective
stepsize of AdaGrad-Norm with 100/b; and by = 0.1. We also run vanilla SGD (blue curve) with n, = 100.
For details, see the code hereﬂ Figure [12] (left) clearly illustrates that AdaGrad-Norm (black curve) converges
linearly. Figure[12| (right) shows the norm of the gradients at the first few iterations by AdaGrad-Norm are often
big enough to accumulate to exceed nL, which empirically verifies Assumption

min-batch loss min-batch Gradient

10° —— AdaGrad-Norm —— AdaGrad-Norm
—— SGD —— SGD

1074

0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration Iteration

Figure 12: Error and the norm of gradient in a two-layer neural network

‘https://colab.research.google.com/drive/1kv-XuUxvSogVENyT02wlahoqlS2chlYH

https://colab.research.google.com/drive/1kv-XwUxvSogVfNyTO2w1aAoqlS2chlYH

	Proof of Theorem 1 in the Stochastic Setting
	Proof of Theorem 2 and 3 in the batch Setting
	Proof of Theorem 2
	Proof of Theorem 3

	Proof of Lemmas in Stage I
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Lemmas in Stage II
	Proof of Lemma 4
	Proof of Lemma 5

	More Numerical Experiments
	Numerical Experiments of AdaGrad-Norm with Extreme Initialization
	Numerical Experiment of Two Layer Neural Networks

