Supplementary Material

Supplementary material for the paper: ”Linear Convergence of Adaptive Stochastic Gradient Descent”.

This appendix is organized as follows:

e Appendix [A} Proof of Theorem [I]in the Stochastic Setting

Appendix [B} Proof of Theorem [2] and [ in the batch Setting

Appendix [C} Proof of Lemmas in Stage I

Appendix [D} Proof of Lemmas in Stage II

Appendix [E} More Numerical Experiments

A Proof of Theorem [1|in the Stochastic Setting

From Lemma let C = nL, after N > 1 *L2 b —|— 2 steps, if ming<;<y—1||@i — x*||* > €, then with high

aye
probability 1 — exp(— WQ—"/)W)’ by > nL. Then, there exists a first index kg < N, s.t. by, > nL but
bk0,1 < 77L.

If kg > 1, then
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where the last second inequality is from the condition by, > nL. The last inequality holds since b, 4+ < bmax and
ferg 11 (z) is convex, which implies (xg,—14+1 — *, Gry—141 — Vfgkoflﬂ(:c*)) >0, P(Vfgkoflﬂ (z*) =0)=1Dby
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Take expectation regarding to &x,—141, and use the fact that when j > ko, b; > L, when [ > 1 and 0 < e <
0
£ <1, then we can get
Ee,, oo ll@rors — 2| < |@kg—140 — *|* — (@po—141 — 2", VF(Thy-141))
max
S(l—bW7ﬂWm—Hd—$ﬂF
max
l
Mk, -1 — |
< J10=5 e, 2)
l * (|12 2 02
H Y(leo — 2™ +n (10g(b7)+1)
3=0 max 0
272
< (Jlzo — 2*||* + n* (log( 2 ) T ) exp(—3——)
0 max

where the second inequality is from the strong convexity of F(z), i.e. (x —y,VF(x) — VF(y)) > ullz — yl|?
and VF(z*) = 0. From Lemma we can give an upper bound for bmax = max;>obr,41 =

2
C + £(|lg — 2*|2 + 12(log G5 +1)) = 1L + (o — 2" |2 + 7 (log L~ +1)).



Then, take the iterated expectation and use Markov in inequality, with high probability 1 — dy,
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Otherwise, if kg = 0, i.e. by > nL, then we use the same inequality as above,
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Then, after M > b“ﬁ log % iterations, by Markov’s inequality,
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Plugging in the value, we can get M >

B Proof of Theorem [2] and 3] in the batch Setting

B.1 Proof of Theorem [2]

Lemma B1. (Co-coercivity with Strong Convexity) (Bubeck et al, (2015) If F(x) is p—strongly convex
and L—smooth, then
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Proof. Let ¢(x) = F(x) — &||x|/?, then ¢(z) is convex and (L — p)—smooth. By Lemma

(Vo(x) — Vo(y),x —y) > (z) — Vo(y)|?

Plugging in V¢(x) = VF(x) — px, we have

(VF(x) = VF(y),z —y) — pllz —y|*> > ﬁ(”vz«%@ —VF@)|I” + 1’|l -yl
—2i(VF(z) - VF(y),z —y))

With simple algebra, we can get the result. O
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By Lemma after N = H‘;ﬂﬂﬁtﬁg#fﬁg’ﬂ + 1 iterations, if ming<;<n_1 ||z; — *||> > €, then Jky < N, such
that kg is the first index s.t. by, > 77“+L

If ko > 1, since F(z) is p-strongly convex and L—smooth, by Lemma [BI]
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For j > 0, we have 0 < n2£= Ak <1 since 2uL < p2 + L2.

We divide the analysis into two situations to get a better bound instead of using bpyax for all the following
steps, which is different from the proof of Theorem [1| First, assume that n% < by, < nL and after another [
iterations, by, is still less than nL, then ||z,; — z*||? is bounded as follows:

*||2

[@ry 1 — 2" [|° = |2hy 101 — @ IVF(zr,—141)?

bi0+l

2n .
— m@kruz — ", VF(xr,—1+41))

0

2unL
<(1- K
(,Uz + L)bko
n n
- VF

i bko+l(bko+l u+L)” (@ko-140)||?

k140 — ||

Mk, —1 — 2|

where ||zx,—1 — *||? can be upper bounded according to Lemma [3{ with C' = %:
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where byax can be upper bounded according to Lemma here bpax < nL + £||ack0+ My — )%
Once b, > L > 2 , by Lemmal 5 AdaGrad-Norm is indeed a decent algorithm for ||z; —x* |2, 50 || 5o+ a0 —1 —
x*||? < ||@ky—1 — =*||*. Hence,
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Combining the two situations above, we have
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B.2 Proof of Theorem [3|

By Lemma , after N > % iterations, if ming<;,<n—1 F(x;) — F* > ¢, then 3ky < N, such that kg

is the first index s.t. by, > nL.
If ko > 1, then for j > 0, from Assumption |(A2)| we have
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The last inequality is from p—PL inequality (Assumption [(A1b)): —||F(z)|* < 2u(F * —F(z;)), Vx. Then, add
—F* on both sides, we can get
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Since byy4; > nL > np, 1 — € (0,1) holds for all j > 0, it is a contraction at every step. Then,
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where we use the fact that 1 — 2 < e %, Vo € (0,1) and the lemma in [Ward et al| (2018): F(xg,—1) <
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The upper bound of b; is also from |Ward et al.| (2018]):
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Then,
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Otherwise, if kg = 1, the upper bound of b; degenerates to
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Then, using the same procedure, we have
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we can get the expected result: F(xpy) — F* <e.

C Proof of Lemmas in Stage I

C.1 Proof of Lemma Il

Lemma C2. (Bernstein’s Inequality) (Wainwright, 2019) Let X be a random variable, E[X] = p, Var(X) =
o2, if X satisfies Bernstein condition with parameter b > 0, i.e. if |B(X — p)*| < %k!aQbk’Q,Vk > 2, then
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Lemma C3. (Wainwright, 2019) Let X; ~ Bernoulli(p),i.i.d¥i = 1,2,...n, and X = > | X;. Since X; €
[0,1], {X;} satisfy Bernstein condition, then
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Proof of Lemma (1] If min; ||z; — z*||? < ¢, we are done.
Otherwise, we have ||z; —z*||? > €,Vj = 0,1,2,..., N. Assume that F(z) satisfies (¢, o, 7)— RUIG (Assumption
, we can use independent identical Bernoulli random variables {Z;} to represent them with the following
distribution:
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where P(Z; = 1) = v,Vj. Note that the RUIG assumption is for any fixed « (conditional on ), the probability
distribution is over the random variable i (or &;) (but not over ). Every index &; is sampled independently and
uniformly at each iteration, so random variables {Z;} are independent. Then, from Lemmaﬂand let Z =37

with high probability bigger than l—exp(—m) Z > ~yN—6§,VN. Thus, after N > —|— iterations,
. 2
with 1 — eXp(_m), we have
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Note that even if in the case that there is some correlation between Bernoulli random variables, since each of
them is sub-Gaussian with ¢ = 0.5, then the upper bound of the sub-Gaussian parameter of the sum of them is
0.5N, so the worst-case variance is 0.25N?2. Hence, the result still holds under this setting.

C.2 Proof of Lemma [2]

(a) If by > C, we are done.
2 2
Otherwise if by < C, and after N > % iterations, by < C and ming<;<y—_1 ||z; — x*||> > €. Since
F(z) is p— strongly convex, € < [[&; — @*||> < 5| VF(z;) — VF(z*)||*, Va; and VF(z*) = 0. Then,
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Contradiction! Hence, at least one of ming<;<ny_1 ||@; — @*[|* < € or by > C holds. When y is small and C

is big, we have log(1 + ‘é—g;) 2 “0—226
(b) With PL inequality iHVF(:c)H2 > F(x) — F(x*) instead of p-strongly convex assumption, if
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contradiction! Hence, either ming<;,<n—1 F(x;) — F* < eor by > C.

C.3 Proof of Lemma [3]

Lemma C4. (Co-coercivity) (Needell et al., |2016) For a L—smooth convex function F(x), Va,y
IVE(x) - VF(y)||” < L{z —y,VF(z) - VF(y))

Lemma C5. (Integral lemma) (Ward et al.,|2018) For any non-negative sequence ay, ..., ar, such thata; > 1,
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Proof. The lemma can be proved by induction. Besides, we can take above sums as Riemman sums, then the
sums should be proportional to integrals, log(z) and 2./, respectively. O



Proof of Lemma [3] With above two lemmas, we can bound ||z ;_; — x*||? as follows:
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where the first inequality is from the co-coercivity (Lemma and Assumption [(A4)| m (Vfe, ,(x*)=0) =
last second inequality is from lemma [CH and the last 1nequahty is from the assumption that J is the first 1ndex

s.t. by > C.

D Proof of Lemmas in Stage 11

D.1 Proof of Lemma [

Since by > nL, we have the following bound for |z ;4; — z*|?:
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inequalities are from fe, ,_, () is L-smooth (Assumption [(A2)) and co-coercivity (Lemma [C4). Then, we have

the bound of the sum:
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Therefore, by.x is bounded as follows:
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where ||z;_1 — z*||? < ||@o — x*||* + nz(log%; +1) is from Lemma
0

D.2 Proof of Lemma [5]

Use similar technique as above,

2
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where the first inequality if from f;(z) is L-smooth (Assumption [(A2)), V f;_1(«*) = 0 (Assumption [(A4)) and
Lemma Therefore, once b; > nL/2, AdaGrad-Norm is a descent algorithm.

E More Numerical Experiments

E.1 Numerical Experiments of AdaGrad-Norm with Extreme Initialization

In this section, we demonstrates the numerical experiments of AdaGrad-Norm with xg = 0 (stochastic: Figure
|§|; batch: Figure E[) and the extreme case (stochastic: Figure E batch: Figure : x is far away from x* and
|xo]| is large. Then, we tune the hyperparameter 7 in the extreme case with n = O(|lzy — =*||?) (stochastic:
Figure[§) and n = O(||xo — x*||) (batch: Figure[lI). In these figures, the x-axis represents iteration ¢ while y-axis
is the approximation error ||z; — z*||? in log scale for the first and third columns and it is b; for the second and
fourth columns.

We show that when starting from @y = 0, the result is close to the experiment we show in Figure[2l When initialize
o with extremely bad one, o = 100 * wy, where wq is a randomly generated vector wg and wy ~ N (0, I),
AdaGrad-Norm takes much more iterations than before. However, after tuning n = 10000 in stochastic setting
and 77 = 100 in batch setting, the convergence rate of AdaGrad-Norm is better again. In this case, by plays a
small role.
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Figure 6: Error and growth of b; with &y = 0 and n = 1 in stochastic setting.
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Figure 7: Error and growth of b; with extremely bad initialization and n = 1 in stochastic setting.
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Figure 8: Error and growth of b; with extremely bad initialization and tuning n = ©(||zo — *||?) in stochastic
setting.
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Figure 10: Error and growth of b, with extremely bad initialization and n = 1 in batch setting.
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Figure 11: Error and growth of b; with extremely bad initialization and tuning n = ©(||lzg — x*||) in batch
setting.

E.2 Numerical Experiment of Two Layer Neural Networks

We implement AdaGrad-Norm in a two-layer network. The experiment is mainly to show the stochastic AdaGrad-
Norm (black curve) converges with a linear rate. We first define loss function as in (2019):

n 2

LW) = 323 (5= D el (k). @) ~ v

i=1

where ¢ is a ReLLU activation function; n is size of data; m is the width for the one-hidden layer. For our
implementation, we set n = 100, m = 200 and d = 10. Set mini-batch size 20 for each iteration and the effective
stepsize of AdaGrad-Norm with 100/b; and by = 0.1. We also run vanilla SGD (blue curve) with n, = 100.
For details, see the code hereﬂ Figure [12] (left) clearly illustrates that AdaGrad-Norm (black curve) converges
linearly. Figure[12| (right) shows the norm of the gradients at the first few iterations by AdaGrad-Norm are often
big enough to accumulate to exceed nL, which empirically verifies Assumption

min-batch loss min-batch Gradient
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Figure 12: Error and the norm of gradient in a two-layer neural network
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