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Abstract

In many fields, data appears in the form of
direction (unit vector) and usual statistical
procedures are not applicable to such direc-
tional data. In this study, we propose non-
parametric goodness-of-fit testing procedures
for general directional distributions based on
kernel Stein discrepancy. Our method is based
on Stein’s operator on spheres, which is de-
rived by using Stokes’ theorem. Notably, the
proposed method is applicable to distributions
with an intractable normalization constant,
which commonly appear in directional statis-
tics. Experimental results demonstrate that
the proposed methods control type-I error well
and have larger power than existing tests, in-
cluding the test based on the maximum mean
discrepancy.

1 INTRODUCTION

In many applications, data is obtained in the form of
directions and they are naturally identified with a vec-
tor on the unit hypersphere Sd−1 = {x ∈ Rd | ‖x‖ =
1} ⊂ Rd. For example, wind direction is represented by
a vector on the unit circle S1 ⊂ R2 [Genton and Her-
ing, 2007, Hering and Genton, 2010], while the protein
structure is described by vectors on the unit sphere
S2 ⊂ R3 [Hamelryck et al., 2006]. In addition, usual
multivariate data in Rd is transformed to directional
data by applying normalization, and such transforma-
tion is useful to analyze scale-invariant features. For
example, [Banerjee et al., 2005] transformed text doc-
ument and gene expression data into directional data
and applied model-based clustering. Also, [Wang et al.,
2017] showed that projecting face images to a unit hy-
persphere improves face recognition performance by
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convolutional neural networks. Statistical methods for
such directional data have been widely studied in the
field of directional statistics [Mardia and Jupp, 1999,
Ley and Verdebout, 2017], and many statistical models
of directional distributions have been proposed. One
characteristic feature of directional distributions is that
they often involve an intractable normalization con-
stant. For example, the Fisher-Bingham distribution
[Kent, 1982] is defined by an unnormalized density

p(x | A, b) ∝ exp(x>Ax+ b>x), x ∈ Sd−1,

and its normalization constant is not represented in
closed form. Such intractable normalization constant
makes statistical inferences for directional distributions
computationally difficult. While directional data are
becoming increasingly important in many applications
such as bioinformatics, meteorology, chronobiology, and
text/image analysis, to the best of our knowledge,
goodness-of-fit testing for general directional distri-
butions is not well established.

Several studies [Chwialkowski et al., 2016, Liu et al.,
2016] have proposed kernel-based goodness-of-fit test-
ing procedures for distributions on Rd. These methods
employ a model discrepancy measure called kernel Stein
discrepancy (KSD), which is based on Stein’s method
[Barbour and Chen, 2005, Chen et al., 2010] and repro-
ducing kernel Hibert space (RKHS) theory [Berlinet
and Thomas, 2004, Muandet et al., 2017]. Notably,
the KSD test is applicable to unnormalized models,
because it utilizes only the derivative of the logarithm
of the density like score matching [Hyvärinen, 2005].
This method is also applicable to model comparison
[Jitkrittum et al., 2018, 2017, Kanagawa et al., 2019].
Recently, it has been extended to discrete distributions
[Yang et al., 2018] and point processes [Yang et al.,
2019]. On the other hand, applying Stein’s method in
the context of manifold structure is previously studied
in [Barp et al., 2018] focusing on numerical integration
problems for scalar functions and in [Liu and Zhu, 2018]
dealing with Bayesian inference on density functions.

In this study, we develop goodness-of-fit testing proce-
dures for general directional distributions by extend-
ing kernel Stein discrepancy. Our contributions are
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as follows. We derive Stein’s operator on the unit
hypersphere Sd−1 via Stokes’ theorem and introduce
directional kernel Stein discrepancy (dKSD). We pro-
pose dKSD-based goodness-of-fit testing procedures for
general directional distributions including unnormal-
ized ones, which do not require to sample from the
null distribution. We show that the proposed methods
control type-I error well and have larger power than
existing tests in simulation.

2 BACKGROUND

2.1 Directional Distributions

Several distributions have been proposed for describ-
ing directional data on the unit hypersphere Sd−1 =
{x ∈ Rd | ‖x‖ = 1}. Here, we present two represen-
tative directional distributions: von Mises-Fisher and
Fisher-Bingham. Figure 1 shows samples from these
distributions on S2. See [Mardia and Jupp, 1999] for
more detail.

In this paper, we define the probability density of direc-
tional distributions by taking the uniform distribution
on Sd−1 as base measure. Namely, the density of the
uniform distribution is p(x) ≡ 1.

The von Mises-Fisher (or von Mises when d = 2) dis-
tribution is a directional counterpart of the isotropic
Gaussian distribution on Rd. Its density is given by

p(x | µ, κ) = 1
Cd(κ) exp(κµ>x), (1)

for x ∈ Sd−1, where µ ∈ Sd−1, κ > 0,

Cd(κ) = κd/2−1

(2π)d/2Id/2−1(κ)
,

and Iv is the modified Bessel function of the first kind
and order v. It is a unimodal distribution with peak
at µ and degree of concentration specified by κ.

The Fisher-Bingham (or Kent) distribution is an exten-
sion of the von Mises-Fisher distribution [Kent, 1982].
Its density is given by

p(x | A, b) = 1
Z(A, b) exp(x>Ax+ b>x), (2)

for x ∈ Sd−1, where A ∈ Rd×d is symmetric and b ∈ Rd.
The normalization constant Z(A, b) is not represented
in closed form in general.

The goodness-of-fit test for general directional distribu-
tions is not well established, to the best of our knowl-
edge. Tests for specific distributions such as uniform
[Figueiredo, 2007, García-Portugués and Verdebout,
2018, Mardia and Jupp, 1999] and von Mises-Fisher

(a) Uniform (b) von Mises-Fisher (c) Fisher-Bingham

Figure 1: Samples from directional distributions on S2

[Figueiredo, 2012, Mardia et al., 1984] cannot be readily
extended to general directional distributions. Although
[Boente et al., 2014] proposed testing procedures based
on the kernel density estimator, they are difficult to ap-
ply to unnormalized models such as the Fisher-Bingham
distribution (2), because they require the normaliza-
tion constant of the null model to calculate the Lp test
statistics.

2.2 Kernel Stein Discrepancy on Rd

Here, we briefly review the goodness-of-fit testing with
kernel Stein discrepancy on Rd by [Chwialkowski et al.,
2016, Liu et al., 2016], which is inspired from [Gorham
and Mackey, 2015, Ley et al., 2017]. See [Chwialkowski
et al., 2016, Liu et al., 2016] for more detail.

Let q be a smooth probability density on Rd. For a
smooth function f = (f1, . . . , fd) : Rd → Rd, Stein’s
operator Tq is defined by

Tqf(x) =
d∑
i=1

(
fi(x) ∂

∂xi
log q(x) + ∂

∂xi
fi(x)

)
. (3)

From integration by parts on Rd, we obtain the equality

Eq[Tqf ] = 0

under mild regularity conditions. Since Stein’s operator
Tq depends on the density q only through the deriva-
tives of log q, it does not involve the normalization
constant of q, which is a useful property for dealing
with unnormalized models [Hyvärinen, 2005].

Let H be a reproducing kernel Hilbert space (RKHS)
on Rd and Hd be its product. By using Stein’s operator,
kernel Stein discrepancy (KSD) [Chwialkowski et al.,
2016, Liu et al., 2016] between two densities p and q is
defined as KSD(p, q) = sup‖f‖Hd≤1 Ep[Tqf ].

It is shown that KSD(p, q) ≥ 0 and KSD(p, q) = 0
if and only if p = q under mild regularity conditions
[Chwialkowski et al., 2016]. Thus, KSD is a proper
discrepancy measure between densities. After some
calculation, KSD(p, q) is rewritten as

KSD2(p, q) = Ex,x̃∼p[hq(x, x̃)], (4)

where hq does not involve p.
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Now, suppose we have samples x1, . . . , xn from un-
known density p on Rd. Based on (4), estimates of
KSD2(p, q) are obtained by using U-statistics or V-
statistics. These estimates can be used to test the
hypothesis H0 : p = q. The critical value is determined
by bootstrap based on the theory of U-statistics or
V-statistics. In this way, a general method of goodness-
of-fit test on Rd is obtained, which is applicable to
unnormalized models as well.

3 STEIN’S OPERATOR ON Sd−1

In this section, we derive Stein’s operator for distribu-
tions on spheres. The derivation is based on Stokes’
theorem, which is a fundamental theorem in differential
geometry.

3.1 Differential Forms and Stokes’ Theorem

The original derivation of Stein’s operator for distri-
butions on Rd was based on integration by parts, in
which the boundary term vanishes due to the decaying
property of the probability density. We need a different
argument for spheres because its topology is different
from Rd. Specifically, differential forms and Stokes’
theorem are essential to discuss integration by parts
on spheres. Here, we briefly review these concepts.
See [Flanders, 1963, Spivak, 2018] for more detail and
rigorous treatments.

Let M be a d-dimensional closed manifold and take
its local coordinate system x1, . . . , xd. We intro-
duce symbols dx1, . . . ,dxd and an associative and
anti-symmetric operation ∧ between them called the
wedge product: dxi ∧ dxj = −dxj ∧ dxi. Note that
dxi ∧ dxi = 0. Then, a p-form ω on M (0 ≤ p ≤ d) is
defined as

ω =
∑
i1···ip

fi1···ipdxi1 ∧ · · · ∧ dxip ,

where the sum is taken over all p-tuples {i1, · · · , ip} ⊂
{1, . . . , d} and each fi1···ip is a smooth function on
M . The exterior derivative dω of ω is defined as the
(p+ 1)-form given by

dω =
∑
i1···ip

d∑
i=1

∂fi1···ip
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxip .

For another coordinate system y1, . . . , yd on M , the
differential form is transformed by

dyj =
d∑
i=1

∂yj

∂xi
dxi.

The integration of a d-form on a d-dimensional manifold
is naturally defined like the usual integration on Rd

and invariant with respect to the coordinate selection.
Correspondingly, the integration by parts formula on
Rd is generalized in the form of Stokes’ theorem.
Theorem 1 (Stokes’ theorem). Let ∂M be the bound-
ary of M and ω be a (d− 1)-form on M . Then,∫

M

dω =
∫
∂M

ω.

In particular, since ∂Sd−1 is empty, we obtain the
following.
Corollary 1. Let ω be a (d− 2)-form on Sd−1. Then,∫

Sd−1
dω = 0. (5)

Corollary 1 plays an important role in the derivation
of Stein’s operator on Sd−1.

3.2 Spherical Coordinate System

In this paper, we use the spherical coordinate system
θ = (θ1, . . . , θd−1) on Sd−1 defined by

θ1

θ2

θ3

...
θd−1

 7→


cos θ1

sin θ1 cos θ2

sin θ1 sin θ2 cos θ3

...
sin θ1 · · · sin θd−1

 ∈ Sd−1, (6)

where (θ1, . . . , θd−2) ∈ [0, π)d−2 and θd−1 ∈ [0, 2π). In
this coordinate system, the volume element [Flanders,
1963] is given by

dS = J(θ1, . . . , θd−1)dθ1 ∧ · · · ∧ dθd−1,

where

J(θ1, . . . , θd−1) = sind−2(θ1) sind−3(θ2) · · · sin(θd−2).

Note that J(θ1) = 1 when d = 2. Since the surface
area of Sd−1 is Sd−1 = 2πd/2/Γ(d/2), the uniform
distribution on Sd−1 corresponds to the (d− 1)-form η
on Sd−1 given by

η = 1
Sd−1

J(θ1, . . . , θd−1)dθ1 ∧ · · · ∧ dθd−1.

By using this, the directional distribution on Sd−1 with
density p is represented by the (d− 1)-form ω given by

ω = pη.

Thus, expectation of a function g with respect to p is
obtained by

Ep[g] =
∫
Sd−1

gω

= 1
Sd−1

∫ 2π

0

∫ π

0
· · ·
∫ π

0
g(θ)p(θ)J(θ)dθ1 · · · dθd−1.



A Stein Goodness-of-fit Test for Directional Distributions

3.3 Stein’s Operator on Sd−1

Now, we derive Stein’s operator on Sd−1 in the spheri-
cal coordinate.
Theorem 2 (Stein’s operator on Sd−1). Let p be
a smooth probability density on Sd−1. For smooth
functions f1, . . . , fd−1 : Sd−1 → R, define a function
Apf : Sd−1 → R by

Apf =
d−1∑
i=1

(
∂fi
∂θi

+ fi
∂

∂θi
log(pJ)

)
. (7)

Then,

Ep[Apf ] = 0.

Proof. Let dθ(−i) = dθi+1∧· · ·∧dθd−1∧dθ1 · · ·∧dθi−1

be a (d−2)-form on Sd−1 for i = 1, . . . , d−1. Consider
a (d− 2)-form ω on Sd−1 defined by

ω =
d−1∑
i=1

fidθ(−i).

Then,

d(pJω) =
d−1∑
i=1

(
fi

∂

∂θi
(pJ) + pJ

∂fi
∂θi

)
dθ1 ∧ · · · ∧ dθd−1

= (pJApf)dθ1 ∧ · · · ∧ dθd−1.

From Corollary 1, Ep[Apf ] =
∫
Sd−1 d(pJω) = 0.

Although Stein’s operator on Sd−1 has a similar form to
the original Stein’s operator on Rd in (3), its derivation
is different from the original one due to the topology of
spheres. Whereas the original derivation on Rd required
vanishing density at the boundary, our derivation on
Sd−1 is free from such assumption. Also note that,
although we use the spherical coordinate system in
this paper, we can derive Stein’s operator in other
coordinate systems as well.

4 KERNEL STEIN DISCREPANCY
ON Sd−1

Based on Stein’s operator on Sd−1 in (7), we define
the Stein discrepancy and its kernelized counterpart
between two directional distributions via kernel mean
embeddings, similar to [Chwialkowski et al., 2016, Liu
et al., 2016].

Let H be an RKHS on Sd−1 with reproducing kernel k
and let Hd−1 be its product. We define the directional
kernel Stein discrepancy (dKSD) by

dKSD(p, q) = sup
‖f‖Hd−1≤1

Ep[Aqf ] (8)

Let x and x̃ be points on Sd−1 with spherical coor-
dinates θ and θ̃, respectively. We identify the kernel
function k(x, x̃) with a function of θ and θ̃ through (6)
and take its derivatives. For example, when d = 2 and
k(x, x̃) = exp(κx>x̃) = exp(κ cos(θ − θ̃)), we have

∂2

∂θ∂θ̃
k(x, x̃) = κ(cos(θ−θ̃)−κ sin2(θ−θ̃)) exp(κ cos(θ−θ̃)).

Let

hq(x, x̃) = k(x, x̃)
d−1∑
i=1

∂

∂θi
log(q(θ)J(θ)) ∂

∂θ̃i
log(q(θ̃)J(θ̃))

+
d−1∑
i=1

∂

∂θi
log(q(θ)J(θ)) ∂

∂θ̃i
k(x, x̃)

+
d−1∑
i=1

∂

∂θ̃i
log(q(θ̃)J(θ̃)) ∂

∂θi
k(x, x̃)

+
d−1∑
i=1

∂2

∂θi∂θ̃i
k(x, x̃).

Similarly to the original KSD (4), dKSD is rewritten
as follows.
Theorem 3. Assume p and q are smooth densities on
Sd−1 and the reproducing kernel k of H is a smooth
function on Sd−1 × Sd−1. Then,

dKSD2(p, q) = Ex,x̃∼p[hq(x, x̃)]. (9)

Proof. Since Stein’s operator Aq is linear from (7),
Ep[Aqf ] is a linear functional of f ∈ Hd−1. Then, from
Riesz representation theorem, there uniquely exists g =
(g1, . . . , gd−1) ∈ Hd−1 such that Ep[Aqf ] = (f, g)Hd−1 .
By using the reproducing property of H, we obtain

gi(x) = Ex̃∼p
[
k(x, x̃) ∂

∂θ̃i
log(q(θ̃)J(θ̃)) + ∂

∂θ̃i
k(x, x̃)

]
,

(10)

for i = 1, . . . , d− 1. Thus, the maximization in (8) is
attained by f = g/‖g‖Hd−1 and dKSD(p, q) = ‖g‖Hd−1 .
Therefore, after straightforward calculations, we obtain
(9).

Importantly, the function hq in (9) does not involve
p. Therefore, we can estimate dKSD2(p, q) based on
samples from p and apply it to goodness-of-fit testing.

From the following theorem, dKSD2(p, q) provides a
proper discrepancy measure between directional distri-
butions. Let

Li(x) = ∂

∂θi
log q(θ)

p(θ) , i = 1, . . . , d− 1.
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Theorem 4. Let p and q be smooth densities on
Sd−1. Assume the following: 1) The kernel k is C0-
universal [Carmeli et al., 2010, Definition 4.1]; 2)
Ex,x̃∼php(x, x̃) <∞; 3) Ep‖L(x)‖2 <∞.

Then, dKSD2(p, q) ≥ 0 and dKSD2(p, q) = 0 if and
only if p = q.

Proof. From the proof of Theorem 3, we have
dKSD2(p, q) = ‖g‖2

Hd−1 ≥ 0, where g = (g1, . . . , gd−1)
is defined as (10). If p = q, then dKSD2(p, q) = 0
from the definition (8) and Theorem 2. Conversely, if
dKSD2(p, q) = 0, then g = 0, namely gi = 0 for i =
1, . . . , d− 1. Then, from log(q/p) = log(qJ)− log(pJ),
we obtain

Ex̃∼p [Li(x̃)k(x, x̃)] = gi(x)− Ex̃∼p [Apk(x, x̃)] = 0,

for every x. Since k is C0-universal, it implies Li =
0 [Carmeli et al., 2010, Theorem 4.2b]. Therefore,
log(q/p) is constant on Sd−1. Since both p and q are
densities on Sd−1 that integrate to one, we obtain
p = q.

RKHS on Sd−1 To apply dKSD for goodness-of-fit
testing, we need to choose an RKHS on Sd−1 that
satisfies the conditions in Theorem 4. In this paper,
we use the RKHS generated by the von-Mises Fisher
kernel:

k(x, x̃) = exp(κx>x̃), x, x̃ ∈ Sd−1,

where κ > 0 is a concentration parameter that has a
similar role to the band-width parameter in the Gaus-
sian kernel. Since both x and x̃ have unit norm, their
inner product x>x̃ is equal to the cosine of their an-
gular separation. We discuss the method to choose κ
in Section 5.3. See [Gneiting et al., 2013] for general
discussion on RKHS on Sd−1.

5 GOODNESS-OF-FIT TESTING
VIA dKSD

In this section, we develop goodness-of-fit testing pro-
cedures based on dKSD. Suppose x1, · · · , xn ∼ p and
we test H0 : p = q with significance level α.

5.1 Test with U-statistics

From (9), an unbiased estimate of dKSD2(p, q) is ob-
tained in the form of U-statistics [Lee, 1990]:

dKSD2
u(p, q) = 1

n(n− 1)
∑
i 6=j

hq(xi, xj). (11)

Algorithm 1 dKSD test via U-statistics (dKSDu)
Input:

samples x1, . . . , xn ∼ p
null density q
kernel function k
test size α
bootstrap sample size B

Objective: Test H0 : p = q versus H1 : p 6= q.
Test procedure:
1: Compute the U-statistics dKSD2

u(p, q) via (11).
2: Compute n × n matrix H with Hij = hq(xi, xj)

and its eigenvalues ĉ1, . . . , ĉn.
3: for t = 1 : B do
4: Sample Z1, . . . , Zn ∼ N (0, 1) independently.
5: Compute St =

∑n
j=1 ĉj(Z2

j − 1).
6: end for
7: Determine the (1− α)-quantile γ1−α of S1, . . . , SB .
Output:

Reject H0 if n · dKSD2
u(p, q) > γ1−α; otherwise do

not reject.

From the U-statistics theory [Lee, 1990], the asymp-
totic distribution of dKSD2

u(p, q) is explicitly obtained
as follows. Here, d→ denotes the convergence in distri-
bution.
Theorem 5. Under the conditions in Theorem 4, the
following statements hold.

1. Under H0 : p = q, the asymptotic distribution of
dKSD2

u(p, q) is

n · dKSD2
u(p, q) d→

∞∑
j=1

cj(Z2
j − 1), (12)

where Zj are i.i.d. standard Gaussian random
variables and cj are the eigenvalues of the kernel
hq(x, x̃) under p(x̃):∫

hq(x, x̃)φj(x̃)p(x̃)dx̃ = cjφj(x), φj(x) 6= 0.

2. Under H1 : p 6= q, the asymptotic distribution of
dKSD2

u(p, q) is
√
n(dKSD2

u(p, q)− dKSD2(p, q)) d→ N (0, σ2
u),

where σ2
u = Varx∼p[Ex̃∼p[hq(x, x̃)]] 6= 0.

The proof is essentially the same with Theorem 4.1 of
[Liu et al., 2016]. We employ Theorem 5 for goodness-
of-fit. Namely, we generate bootstrap samples from
an approximation of the null distribution (12) of n ·
dKSD2

u(p, q) and compare their (1− α) quantile with
the realized value of n · dKSD2

u(p, q). To approximate
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the null, we truncate the infinite sum in (12) following
[Gretton et al., 2009]:

∑n
j=1 ĉj(Z2

j − 1), where ĉj are
eigenvalues of the n×n matrix H with Hij = h(xi, xj)
and Z1, . . . , Zn are independent standard Gaussian
random variables. The testing procedure is outlined in
Algorithm 1.

5.2 Wild Bootstrap Test with V-statistics

Here, we propose another testing procedure with wild
bootstrap adapted from [Chwialkowski et al., 2016,
Section 2.2], which is applicable even when observations
x1, . . . , xn ∼ p are not independent. It is based on the
V-statistics

dKSD2
b(p, q) = 1

n2

∑
i,j

hq(xi, xj). (13)

For each t = 1, . . . , B, we sample uniform i.i.d. vari-
ables U1, . . . , Un ∼ U[0, 1], let W0,t = 1 and define

Wi,t = 1{Ui>at}Wi−1,t − 1{Ui<at}Wi−1,t, (14)

for i = 1, . . . , n, where 1{·} denotes the indicator func-
tion and at is the probability of sign change which is
set to 0.5 when x1, . . . , xn are independent.

Then, wild bootstrap samples are given by

St = 1
n2

∑
i,j

Wi,tWj,th(xi, xj), t = 1, . . . , n. (15)

We reject the null if the test statistic dKSD2
b(p, q) in

(13) exceeds the (1 − α) quantile of S1, . . . , SB. The
testing procedure is outlined in Algorithm 2.

Algorithm 2 dKSD test via wild bootstrap (dKSDv)
Input:

samples x1, . . . , xn ∼ p
null density q
kernel function k
test size α
bootstrap sample size B

Objective: Test H0 : p = q versus H1 : p 6= q.
Test procedure:
1: Compute the V-statistics dKSD2

b(p, q) via (13).
2: for t = 1 : B do
3: Sample W1,t, . . . ,Wn,t via (14).
4: Compute St by (15).
5: end for
6: Determine the (1− α)-quantile γ1−α of S1, . . . , SB .
Output:

Reject H0 if dKSD2
b(p, q) > γ1−α; otherwise do not

reject.

5.3 Kernel Choice

In kernel-based testing, the performance is sensitive to
the choice of kernel parameters such as the bandwidth
parameter in Gaussian kernels [Gretton et al., 2012].
For the proposed dKSD tests with the von Mises-Fisher
kernel k(x, x′) = exp(κx>x′), the choice of concentra-
tion parameter κ is crucial. Namely, if κ is too small,
the test magnifies any small difference between ob-
served samples, and gives high type-I error. On the
other hand, if κ is too large, the test fails to detect the
discrepancy between two different distributions. Pre-
vious works [Chwialkowski et al., 2016, Gretton et al.,
2012, Jitkrittum et al., 2018, 2016, 2017] proposed to
choose the kernel parameter by maximizing the test
power, which is defined as the probability of rejecting
H0 when it is false. Here, we provide a method for
choosing the kernel parameter by maximizing the test
power of dKSDu.

We employ an approximation formula for the test power
of dKSDu under H1 : p 6= q. Since

D :=
√
n
dKSD2

u(p, q)− dKSD2(p, q)
σu

d→ N (0, 1)

from Theorem 5, we have

PrH1(n · dKSD2
u(p, q) > r)

=PrH1

(
D >

r√
nσH1

−
√
n
dKSD2(p, q)

σu

)
≈1− Φ

(
r√
nσu

−
√
n
dKSD2(p, q)

σu

)
,

for large n and fixed r, where Φ denotes the cumu-
lative distribution function of the standard Gaussian
distribution and σ2

u is defined in Theorem 5. Following
the argument in [Sutherland et al., 2016], we use the
approximation

r√
nσu

−
√
n
dKSD2(p, q)

σu
≈ −
√
n
dKSD2(p, q)

σu
.

Thus, to maximize the test power, we choose κ by

κ∗ = arg max
κ

dKSD2(p, q)
σu

.

In practice, we use part of the data to calculate
dKSD2

u(p, q)/(σ̂u + λ), where σ̂u is an unbiased esti-
mate of σu and a regularization parameter λ > 0 is
added for numerical stability. Then, we select κ∗ by
grid search and apply the dKSD tests to the rest of the
data. In our experiments, this method had better test-
ing performance than selecting the kernel parameter by
the methods proposed in density estimation literature
[García-Portugués et al., 2013b,a, Taylor, 2008].
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5.4 Test with Maximum Mean Discrepancy

A proxy way to tackle the goodness-of-fit test on Sd−1

is via the two-sample test with maximum mean discrep-
ancy (MMD) [Gretton et al., 2007]. Namely, to test
whether x1, . . . , xn is from density q, we draw samples
y1, . . . , ym from q and determine whether x1, . . . , xn
and y1, . . . , ym are from the same distribution. See
[Gretton et al., 2007] for details. We compare the per-
formance of the proposed dKSD tests with the MMD
two-sample test in Section 6. Note that the MMD
two-sample test requires to sample from the null distri-
bution q, which can be computationally intensive for
directional distributions especially in high dimension.
On the other hand, the proposed dKSD tests do not
need samples from the null.

6 EXPERIMENTAL RESULTS

Here, we validate the proposed dKSD tests by simula-
tion. We employ the von Mises-Fisher kernel for both
the dKSD tests and MMD two-sample test in Section
5.4. The bootstrap sample size is set to B = 1000.
The significance level is set to α = 0.01. In MMD
two-sample test, we set m = n.

6.1 Circular Uniform Distribution

First, we consider the circular (d = 2) uniform dis-
tribution, for which several goodness-of-fit tests have
been proposed such as Rayleigh test and Kuiper test
[Mardia and Jupp, 1999]. See Supplementary Material
for details of Rayleigh test and Kuiper test. We com-
pare the proposed dKSD tests with these existing tests
and MMD two-sample test. We repeated 600 trials to
calculate rejection rates.

n Rayleigh Kuiper dKSDu dKSDv MMD
30 0.006 0.010 0.011 0.007 0.013
50 0.015 0.011 0.015 0.015 0.016
100 0.010 0.011 0.008 0.011 0.030
200 0.015 0.018 0.010 0.015 0.013

Table 1: Type-I error of tests for the circular uniform
distribution

n Rayleigh Kuiper dKSDu dKSDv MMD
30 0.138 0.128 0.560 0.338 0.133
50 0.308 0.267 0.750 0.898 0.317
100 0.712 0.667 0.820 1.0 0.583
200 0.980 0.962 0.900 1.0 0.900

Table 2: Rejection rates for the circular uniform distri-
bution under the von Mises distribution with κ = 0.5

n Rayleigh Kuiper dKSDu dKSDv MMD
30 0.757 0.731 0.650 0.831 0.600
50 0.957 0.940 0.750 1.0 0.833
100 1.0 1.0 0.833 1.0 0.983
200 1.0 1.0 0.96 1.0 1.0

Table 3: Rejection rates for the circular uniform distri-
bution under the von Mises distribution with κ = 1

Table 1 presents the rejection rate at the null. The type-
I errors of all tests are well controlled to the significance
level α = 0.01. Tables 2 and 3 present the rejection rate
under the von Mises distribution with concentration
κ = 0.5 and κ = 1, respectively. The power of all tests
increases with increasing n or κ and converges to one.
The dKSDv has the largest power.

6.2 von Mises-Fisher Distribution

Next, we consider the von Mises-Fisher distribution
vMF(µ, κ) in (1). We compare the proposed dKSD
tests with MMD two-sample test. We repeated 200
trials to calculate rejection rates.

We set the null and alternative distributions to
vMF(µ0, 1) and vMF(µ, 1 + σ), respectively, where
µ0 = (1, 0, . . . , 0) ∈ Sd−1, µ ∈ Sd−1 and σ ≥ 0. We
generated samples from the von Mises-Fisher distribu-
tion by using the methods proposed in [Jakob, 2012].

Figure 2(a) plots the rejection rate under the null (µ =
µ0, σ = 0) with respect to n for d = 3. The type-I errors
of dKSD tests are well controlled to the significance
level α = 0.01. Figure 2(b) plots the rejection rate with
respect to n for d = 3, µ = µ0 and σ = 1. Both dKSDu
and dKSDv have larger power than MMD two-sample
test. Figure 2(c) plots the rejection rate with respect
to σ for d = 3, n = 200 and µ = µ0. The dKSDu
has the largest power and achieves almost 100% power
around κ = 0.3. Figure 2(d) plots the rejection rate
with respect to d for n = 200, µ = (1/

√
d)1d and

σ = 0.5, where 1d denotes the all one vector. Although
the test power decreases for higher dimension, dKSD
tests have larger power than MMD two-sample test in
all dimensions.

6.3 Fisher-Bingham Distribution

Finally, we consider the Fisher-Bingham distribution
(2). Here, we focus on the Bingham distribution, FB(A):
the distribution in the Fisher-Bingham family that only
includes second order terms:

p(x | A) ∝ exp(x>Ax), x ∈ Sd−1,

where A ∈ Rd×d is symmetric. The normalization con-
stant does not have closed form in general. We compare



A Stein Goodness-of-fit Test for Directional Distributions

(a) d = 3, µ = µ0, σ = 0 (b) d = 3, µ = µ0, σ = 1 (c) d = 3, n = 200, µ = µ0 (d) n = 200, µ = 1d√
d
, σ = 1

2

(e) d = 3, σ = 0 (f) d = 3, σ = 1 (g) d = 3, n = 200 (h) n = 200, σ = 1

Figure 2: Rejection rates for (a)-(d) von Mises-Fisher and (e)-(h) Bingham distributions

the proposed dKSD tests with MMD two-sample test.
We repeated 200 trials to calculate rejection rates.

We set the null distribution to FB(A) with

Aij =
{

2 (i = j)
1 (i 6= j)

,

and the alternative distribution to FB(A′) with A′ =
A + σ1d,d, where σ ≥ 0 and 1d,d denotes the d × d
matrix with all entries one. We generated samples from
the Fisher-Bingham distribution via rejection sampling
with angular central Gaussian proposals [Kent et al.,
2013, Fallaize and Kypraios, 2016].

Figure 2(e) plots the rejection rate under the null
(σ = 0) with respect to n for d = 3. The type-I
errors of dKSD tests are approximately controlled to
the significance level α = 0.01. Figure 2(f) plots the
rejection rate with respect to n for d = 3 and σ = 1.
The dKSD tests have larger power and achieve almost
100% power around n = 100. Figure 2(g) plots the
rejection rate with respect to σ for n = 200 and d = 3.
Again, the dKSD tests have larger power and capture
small perturbation. Figure 2(h) plots the rejection rate
with respect to d for n = 200 and σ = 1. The dKSD
tests attain almost 80% power even when the dimen-
sion is as large as 15, whereas the power of the MMD
two-sample test is smaller than 20% for all dimensions.

Table 4 presents the computational time for d = 3.
The dKSD tests are more computationally efficient
than MMD test. The computational time of MMD

test grows rapidly with the sample size n, because it
requires to sample from the Bingham distribution.

n dKSDu dKSDv MMD
30 0.005 0.009 0.091
50 0.011 0.015 0.120
100 0.027 0.030 0.180
200 0.096 0.105 0.379
300 0.227 0.238 0.704
500 0.588 0.574 2.614

Table 4: Computational time (in seconds) for Bingham.

7 CONCLUSION

In this study, we developed goodness-of-fit testing pro-
cedures for general directional distributions including
unnormalized ones, based on an extension of Stein’s
operator and kernel Stein discrepancy. Experimental re-
sults demonstrated that the proposed methods control
type-I errors well and attain larger power than existing
tests, without sampling from the null distribution.

Although we focused on the unit hypersphere Sd−1,
our derivation of Stein’s operator and kernel Stein
discrepancy is applicable to general manifolds as well.
It is an interesting future work to extend the proposed
methods to general manifolds such as Stiefel manifolds
and Grassmann manifolds
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