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Abstract

This paper proposes a novel family of primal-
dual-based distributed algorithms for smooth,
convex, multi-agent optimization over net-
works that uses only gradient information and
gossip communications. The algorithms can
also employ acceleration on the computation
and communications. We provide a unified
analysis of their convergence rate, measured
in terms of the Bregman distance associated
to the saddle point reformation of the dis-
tributed optimization problem. When accel-
eration is employed, the rate is shown to be
optimal, in the sense that it matches (un-
der the proposed metric) existing complexity
lower bounds of distributed algorithms appli-
cable to such a class of problem and using
only gradient information and gossip commu-
nications. Preliminary numerical results on
distributed least-square regression problems
show that the proposed algorithm compares
favorably on existing distributed schemes.

1 Introduction

We study distributed (smooth) convex optimization
over multi-agent networks, modeled as a fixed, undi-
rected graph. Agents aim to cooperatively solve

min
x2Rd

F (x) :=
mX

i=1

f
i

(x), (1)

where x 2 Rd is the vector of optimization variables,
shared among the m agents; and f

i

: Rd ! R is the cost
function of agent i, assumed to be smooth, convex and
known only to that agent. We are interested in network
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architectures that do not have any centralized (master)
node handling the entire optimization process or able
to gather information from all the other agents in the
system (such as master/slave architectures); each agent
instead controls a local estimate of the common vector
x, which is iteratively updated based upon its local
gradient and information received from its immediate
neighbors. This scenario arises naturally from several
large-scale machine learning applications wherein the
sheer volume and spatial/temporal disparity of scat-
tered data render centralized processing and storage
infeasible or ine�cient.

The focus of this paper is on optimal rate decentralized
algorithms for Problem (1) that use only gradient in-
formation and gossip communications. By optimal we
mean that these algorithms provably achieve lower com-
plexity bounds for such a class of problems and oracle
decentralized algorithms. Primal (Duchi et al., 2012;
Yuan et al., 2016; Jakovetic et al., 2014; Nedic and
Olshevsky, 2014; Di Lorenzo and Scutari, 2016; Nedich
et al., 2017; Qu and Li, 2017b; Xu et al., 2015; Sun
et al., 2019) and primal-dual distributed methods (Shi
et al., 2015, 2014; Ling et al., 2015; Wei and Ozdaglar,
2012; Chang et al., 2015) applicable to Problem (1)
have been extensively studied in the literature, enjoy-
ing di↵erent convergence rates. In general, these rates
are not optimal for several reasons: i) the schemes do
not employ any acceleration on the local optimization
step and/or communications; or ii) they do not balance
optimally the number of optimization and communi-
cations steps. Optimal rates of first-order distributed
algorithms have been recently studied in Scaman et al.
(2017, 2018); Sun and Hong (2018); Uribe et al. (2018);
Lan et al. (2017); Shamir (2014); Arjevani and Shamir
(2015) for di↵erent classes of optimization problems and
network topologies; they however are not optimal or
applicable to the formulation considered in this paper.
Related works. Optimal lower complexity bounds
and matching distributed algorithms have been recently
investigated in Scaman et al. (2017) for smooth strongly
convex functions, in Scaman et al. (2018) for nons-
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mooth convex functions, and in Sun and Hong (2018)
for smooth nonconvex functions. Fully connected net-
works have been considered in Shamir (2014); Arje-
vani and Shamir (2015). However, to our knowledge,
no first-order gossip algorithm is known that achieves
both computation and communication lower complexity
bound for the minimization of smooth convex functions
over graphs. Attempts of designing accelerated dis-
tributed algorithms for Problem (1) can be found in
Li et al. (2018); Qu and Li (2017a); Uribe et al. (2018)
and are briefly discussed next. The scheme in Qu and
Li (2017a) combines the technique of gradient tracking
(Di Lorenzo and Scutari, 2016; Xu et al., 2015; Nedich
et al., 2017) with Nesterov acceleration of local com-
putations and achieves an ✏ > 0 solution in O

�
1/✏5/7

�

gradient and communication steps, under the assump-
tion that the solution set of the optimization problem
(1) is compact. Algorithm 7 in Uribe et al. (2018) is de-
signed for general smooth convex objectives; it reaches

an ✏ solution in O
⇣p

L
f

/(⌘ ✏) log 1/✏
⌘
outer loops of

communications and O
⇣p

L
f

/✏ log 1/✏
⌘

inner loops

of computations (per communication), resulting in an
overall gradient evaluations of O

�
L
f

/(✏
p
⌘) log2 1/✏

�
,

which do not match existing lower bounds. The sub-
sequent work (Li et al., 2018) proposes an accelerated
penalty-based method with increasing penalty values;

the algorithm achieves the lower bound of O
⇣p

L
f

/✏
⌘

gradient evaluations but at the cost of an increasing
number of communications per gradient evaluation

(iteration)–namely: O
⇣p

L
f

/ (⌘✏) log 1/✏
⌘
, making it

not optimal in terms of communication steps.

Summary of the contributions. We propose a
novel family of primal-dual-based distributed algo-
rithms for Problem (1) that use only gradient infor-
mation and gossip communications. The algorithms
can also employ acceleration on the computation and
communications. We provide a unified analysis of their
convergence rate, measured in terms of the Bregman
distance associated to the saddle point reformation
of (1). When acceleration on both computation and
communications is properly designed, the proposed al-
gorithms are shown to be optimal, in the sense that
they match existing complexity lower bounds (Li et al.,
2018), rewritten in terms of the Bregman distance met-
ric. Furthermore, di↵erently from Scaman et al. (2017);
Uribe et al. (2018), our algorithms do not require any
information on the Fenchel conjugate of the agents’
functions, which significantly enlarge the class of func-
tions to which provably optimal rate algorithms can
be applied to. Hence, we termed our algorithms OP-
TRA (optimal conjugate-free distributed primal-dual
methods). Our preliminary numerical results show that
OPTRA compares favorably with existing distributed

accelerated methods (Li et al., 2018; Qu and Li, 2017a;
Uribe et al., 2018) proposed for Problem (1), which
supports our theoretical findings.

Technical novelties. While the genesis of OPTRA
finds routs in the primal-dual algorithm (Chambolle
and Pock, 2011) and employs Nesterov acceleration
similarly to Chen et al. (2014) (which also builds on
Chambolle and Pock (2011)), there are some substan-
tial di↵erences between the proposed distributed algo-
rithms and the aforementioned schemes (Chambolle
and Pock, 2011; Chen et al., 2014), which are briefly
discussed next. The scheme in Chambolle and Pock
(2011) is meant for abstract saddle-point problems and
so Chen et al. (2014) does; the focus therein is not
on distributed optimization. Hence communications
over networks are not explicitly accounted. Further-
more, Chambolle and Pock (2011) does not employ any
acceleration while Chen et al. (2014) accelerates the
computation but lacks of the communication (network-
ing) component (no gossip-based updates are present
in (Chen et al., 2014, Alg. 2)). On the other hand,
OPTRA adopts Nesterov and Chebyshev acceleration
to balance computation and communication, so that
lower complexity bounds on both are achieved (in terms
of Bregman distance). This is a major novelty with
respect to Chambolle and Pock (2011); Chen et al.
(2014). Because of these di↵erences, the convergence
analysis of OPTRA can not be deducted by that of
Chambolle and Pock (2011); Chen et al. (2014); a novel
convergence proof is provided, which shows an explicit
dependence of the rate on key network parameters.

Notations: We use null(·) (resp. span(·)) to de-
note the null space (resp. range space) of the ma-
trix argument. The vector or matrix (with proper
dimension) of all ones (resp. all zeros) is denoted
by 1 (resp. 0); e

i

denotes the i-th canonical vector;
and the identity matrix is denoted by I; the dimen-
sions of these vector and matrices will be clear from
the context. The inner product between two ma-
trices x,y is defined as hx,yi := trace(x,y) while
the induced norm is kxk := kxk

F

; we will use the
same notation for vectors, treated as special cases.
Given a positive semidefinite matrix G, we define
hx,x0i

G

= hGx,x0i and kxk
G

=
p

hGx,xi.

2 Problem formulation

2.1 Distributed optimization over networks

We study Problem (1) under the following assumptions.

Assumption 1. (i) Each cost function f
i

: Rd ! R
is convex and L

f

i

-smooth and (ii) Problem (1) has a
solution. Define L

f

:= maxm
i=1

L
f

i

Network model Agents are embedded in a commu-
nication network, modeled as an undirected graph
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G = (E ,V), where V is the set of vertices–the agents–
and E is the set of edges; {i, j} 2 E if there is a commu-
nication link between agent i and agent j. We assume
that the graph has no self-loops, that is, {i, i} /2 E . We
use N

i

:= {j|{i, j} 2 E} to denote the set of neighbors
of agent i.

Definition 1 (Graph Induced Matrix). The symmetric
matrix S = [s

ij

] 2 Rm⇥m is said to be induced by the
graph G = (E ,V) if s

ij

6= 0 only if i = j or {i, j} 2 E .
The set of such matrices is denoted by WG .

Since we are interested in optimization over networks
with no centralized nodes, we will focus on distributed
algorithms whereby agents communicate with their
neighbors using a suitably designed gossip matrix. Stan-
dard assumptions on such matrices are the following.

Assumption 2. Given the graph G, the gossip matrix
L 2 Rm⇥m satisfies:

(i) L 2 WG ;

(ii) Positive semi-definiteness: L ⌫ 0, with 0 = �
1


�
2

 �
3

 ...  �
m

;

(iii) Connectivity: null(L) = span(1);

where {�
i

}m
i=1

are the eigenvalues of L.

It is not di�cult to check a gossip matrix satisfying
Assumption 2 always exists if the associated graph is
connected; see, e.g., Olfati-Saber et al. (2007). Several
gossip matrices have been considered in the literature;
we refer the reader to Xiao and Boyd (2004); Nedić et al.
(2018) and references therein for specific examples.

2.2 Saddle-point reformulation

A standard approach for solving (1) consists in rewrit-
ing the optimization problem in the so-called consensus
optimization form, that is

min
x2Rm⇥d

f(x) + ◆C(x), (2)

where x = [x
1

, x
2

, ..., x
m

]> 2 Rm⇥d, with x
i

being
the local estimate of x owned by agent i; f(x) :=P

m

i=1

f
i

(x
i

); and ◆C(·) is the indicator function on the
consensus space C := {1

m

x> |x 2 Rd}. Note that
rf(x) = [rf

1

(x
1

),rf
2

(x
2

), ...,rf
m

(x
m

)]> 2 Rm⇥d.

To solve Problem (2), we consider the following closely
related saddle point formulation

max
y2Rm⇥d

min
x2Rm⇥d

�(x,y) := f(x)+ hy,xi� ◆C?(y), (3)

where C? is the space orthogonal to C and �(x,y) is
the Lagrangian associated to problem (2). By Assump-
tion 1, strong duality holds for (3); hence, (3) admits
a primal-dual optimal solution pair (x?,y?) 2 D :=
Rm⇥d⇥C? that satisfies the following KKT conditions

(Lagrangian Optimality) y? = �rf(x?), (4a)

(Primal Feasibility) x? 2 C, (4b)

and the saddle-point property �(x?,y)  �(x?,y?) 
�(x,y?), for all (x,y) 2 D. Note that x? solves Prob-
lem (2) and thus it is also a solution of the original
formulation (1) (Bertsekas et al., 2003).

Using (3) and (4), one can write

�(x,y?)� �(x?,y) = f(x) + hy?,xi � f(x?)� hy,x?i
(4)

= f(x)� f(x?)� hrf(x?),x� x?i �

= G(x,x?) � 0.
(5)

where G(x,x?) is the Bregman distance. The following
properties of G are instrumental for our develoments
(the proof is provided in the supporting material).

Proposition 1. Let x? be any optimal solution of (2);
the following hold for G defined in (5):

(a) x̄ is an optimal solution of (2) if and only if x̄ 2 C
and G(x̄,x?) = 0;

(b) G(x, •) is constant over the solution set of (2).

Due to (b), for notational simplicity, in what follows,
we will write G(x) for G(x,x?).

Remark 1. In this paper we will use G as metric to as-
sess the (worst-case) convergence rate of the proposed
algorithms as well as to state lower complexity bounds.
Note that, since f is not assumed to be strictly convex,
G(x) = 0 does not imply x = x?, but it is only a
necessary condition for x to be optimal (cf. Proposi-
tion 1(a)). Still, G is a valid merit function for both
purposes above, as explained next. First, G(x) > ✏
implies that x is ✏ “far” away (in the G-measure) from
any optimal solution of (2); hence, a lower bound in
terms of G is an informative measure. Furthermore,
when it comes to the convergence rate analysis of dis-
tributed algorithms, Proposition 1-(a) legitimates the
use of (the decay rate of) G along the agents’ iterates
{xk}1

k=0

, as the distance of xk from C is proved to be
vanishing–see Sec. 4.

3 Lower Complexity Bounds

We recall here existing lower complexity bounds for
decentralized first-order schemes belonging to the same
oracle class of the distributed algorithms we are going
to introduce. The di↵erence from the literature is that
we will write such bounds in terms of the Bregman
distanceG. We begin introducing the distributed oracle
model (cf. Sec. 3.1), followed by the lower complexity
bound (cf. Sec. 3.2).

3.1 Decentralized first-order oracle

Given Problem (1) over the graph G, we consider dis-
tributed algorithms wherein each agent i controls a
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local variable x
i

2 Rd, which is an estimate of the
shared optimization variable x in (1). The value of x

i

at (continuous) time t 2 R
+

is denoted by x
(t)

i

. To up-
date its own variable, each agent i: 1) has access to the
gradient of its own function–we assume that the time
to inquire such a gradient is normalized to one; and
2) can communicate values (vectors in Rd) to (some
of) its neighbors j 2 N

i

–this communication requires
a time ⌧

c

2 R
+

(which may be smaller or greater than

one). Each update x
(t)

i

is generated according to the
following general black-box procedure.

Distributed first-order oracle A: A distributed
first order iterative method generates a sequence�
x(t)

 
t�0

, with x(t) , [x(t)

1

, . . . , x
(t)

m

], such that

x
(t)

i

2 span(x(s)

j

| j 2 N
i

and 0  s < t� ⌧
c

)
| {z }

local communication

+ span(x(s)

i

,rf
i

(x(s)

i

) | 0  s < t� 1)
| {z }

local computation

,
(6)

for all i 2 V. We made the blanket assumption that
each x0

i

= 0, without loss of generality.

The oracle (6) allows each agent to use all the histor-
ical values of its local gradients (local computations)
as well as the historical values of the decision variables
received from its neighbors (local communications).
Furthermore, (6) also captures algorithms employing
multiple rounds of communications (resp. gradient
computations) per gradient evaluation (resp. communi-
cation). In the supporting material (Appendix A), we
show that, in fact, the above oracle accounts for most
existing distributed algorithms, such as primal-dual
methods (Shi et al., 2015) as well as gradient tracking
methods (Di Lorenzo and Scutari, 2016; Nedich et al.,
2017; Qu and Li, 2017b; Xu et al., 2015).

A similar black-box procedure has been introduced in
Scaman et al. (2017) for strongly convex instances of
(1). The di↵erence here is that the oracle in (6) cannot
return the gradient of the conjugate of the f

i

’s. The
reason of considering such “less powerful” methods is
that, in practice, it is hard to compute the gradient
of conjugate functions. This means that the gossip
(dual-based) methods in Scaman et al. (2017) do not
belong to the oracle considered in this paper.

3.2 Lower complexity bounds

We state now lower complexity bounds in the G-metric
for the class of algorithms A applied to Problem (2)
[and thus (1)] over a connected graph G. In Section 4
we will introduce a primal-dual distributed algorithm
that indeed converges to an optimal solution of (2)
driving G to zero at a rate that matches the lower

complexity bound. Proofs of the results are available
as supporting material.

Theorem 2. Consider Problem (1) under Assumption
1 and let G be a connected graph. For any given ⌘ 2
(0, 1] and L

f

> 0, there exists a gossip matrix L 2
WG with eigengap ⌘ , �2(L)

�

m

(L)

, and a set of local cost

functions {f
i

}m
i=0

, f
i

: Rd ! R, with f(x) =
P

i

f
i

(x
i

)
being L

f

-smooth such that, for any first-order gossip
algorithm in A using L, we have

G
�
x(t)

�
= ⌦

0

BBB@
L
f

R2

✓
t

1+

l
1

5
p

⌘

m
⌧

c

+ 2

◆
2

+
R krf(x?)k

t

1+

l
1

5
p

⌘

m
⌧

c

+ 2

1

CCCA
,

(7)

for all t 2
h
0, d�1

2

⇣
1 +

l
1

5

p
⌘

m
⌧
c

⌘i
, where R , kx0 �

x?k. Furthermore,

L
f

R2

t /
⇣
1 +

l
1

5

p
⌘

m
⌧
c

⌘ = ⇥ (R krf(x?)k) . (8)

Corollary 3. In the setting of Theorem 2, the overall
time needed by any first-order algorithm in A using the
gossip matrix L to drive G below ✏ > 0, with f given
in Theorem 2, is

⌦

 ✓
1 +

1
p
⌘
⌧
c

◆ r
L
f

R2

✏
+

R krf(x?)k
✏

!!
. (9)

Notice that, because of (8), the lower bound (9) can
be equivalently stated as

⌦

 ✓
1 +

1
p
⌘
⌧
c

◆r
L
f

R2

✏

!
. (10)

It is not di�cult to check that the lower bound in terms
of the traditional function-error-based metric (FEM):

max
i2V

(F (x
i

)� min
x2Rd

F (x)) (11)

has the same expression as (7) [and thus (9) and (10)]
up to some constants. This observation is also reported
in Li et al. (2018) without proof, and stated formally
below for completeness (the proof can be found in the
supporting material).

Theorem 4 (Lower bound on the FEM-metric). In
the setting of Theorem 2, the overall time needed by any
first-order algorithm in A using the gossip matrix L to
drive the function-error-based metric, max

i2V(F (x
i

)�
min

x2Rd F (x)), below ✏ > 0, with f given in Theorem
2, is bounded by (9) [or, equivalently, by (10)].

Remark 2 (Balancing computations & communi-
cations). The above lower bounds tell us that one
cannot reach an ✏-solution of (2) (measured either
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in terms of the G or FEM-metrics) in less than

O
⇣p

L
f

R2/✏+Rkrf(x?)k/✏
⌘

computing time and

O
⇣
⌧
c

/
p
⌘ ·
⇣p

L
f

R2/✏+Rkrf(x?)k/✏
⌘⌘

communica-

tion time for the worst-case problem as stated in The-
orem 2 (see Eq. (28) in the supporting material for a
concrete example). Since the time for a single gradient
evaluation has been normalized to one, the former lower
bound corresponds also to the overall number of gradi-
ent evaluations while the overall communication steps

read ⌦
⇣
1/
p
⌘ ·
⇣p

L
f

R2/✏+Rkrf(x?)k/✏
⌘⌘

. This

sheds light also on the optimal balance between compu-
tation and communication: the optimal number of com-
munication steps per gradient evaluations is d1/p⌘e
(in the worst case). In the next section, we introduce a
distributed, gossip-based algorithm that achieves lower
complexity bounds in the G-metric.

4 Distributed primal-dual algorithms

4.1 A general primal-dual scheme

A gamut of primal-dual algorithms has been proposed
in the literature to solve Problem (2) in a centralized
setting; see, e.g., Condat (2013); Chambolle and Pock
(2011) and references therein for details. Building on
Condat (2013); Chambolle and Pock (2011), here, we
propose a general primal-dual algorithm to solve the
saddle point problem (3) in a distributed manner. The
algorithm reads: given xk and yk at iteration k,

xk+1 = A(xk � �(rf(xk) + ŷk)), (12a)

yk+1 = yk + ⌧Bxk+1, (12b)

ŷk+1 = yk+1 + (yk+1 � yk), (12c)

where yk is the dual vector variable; � and ⌧ are the
primal and dual step-sizes common to all the agents;
and A,B 2 Rm⇥m satisfy the following assumption.

Assumption 3. The weight matrices A,B 2 Rm⇥m

in (12) are such that

(i) A = A>, 0 � A � I, and null(I�A) ◆ span(1);

(ii) B = B>, B ⌫ 0, and null(B) = span(1).

Remark 3. Several choices for A and B satisfying
Assumption 3 are possible, resulting in a gamut of spe-
cific algorithms, obtained as instances of (12). Note
that, when A and B satisfy also Assumption 2, all
these algorithms are implementable over the graph G.
Several examples of such distributed algorithms are dis-
cussed in details in Appendix A. Here, we only mention
that the gradient tracking methods (Di Lorenzo and
Scutari, 2016; Nedich et al., 2017; Qu and Li, 2017b;
Xu et al., 2015) and primal-dual methods, such as EX-
TRA (Shi et al., 2015), are all special cases of (12);
the former schemes are obtained setting A = W2 and

B = (I�W)2, where W 2 WG is the weight matrix
used by the agents to employ the consensus step; and
EXTRA is obtained setting A = W and B = I�W.

We begin studying convergence of the general primal-
dual algorithm (12), under the following tuning of the
free parameters:

� =
⌫

⌫L
f

+ 1
, ⌧ =

1

⌫�
m

(B)
, (1��L

f

)I��⌧B ⌫ 0,

(13)
where �

m

(B) is the largest eigenvalue of B.

Theorem 5. Consider Problem (1) under Assumption
1. Given (x1,y1), let {(xk,yk)}1

k=1

be the sequence
generated by Algorithm (12), under Assumption 3

and the setting in (13). Define x̄k := 1

k�1

P
k

t=2

x
t

and R , kx1 � x?k. Then, the following hold: (i)
{xk}1

k=0

converges to an optimal solution x? of (2)
[thus x? = 1x?, for some solution x? of (1)]; therefore
lim

k!1 G(xk) = 0; and (ii) the number of iterations
needed for G(x̄k) to go below ✏ > 0 is1

O

 
L
f

R2

✏
+

1p
⌘(B)

Rkrf(x?)k
✏

!
. (14)

The proof of the theorem can be found in the supporting
material. Note that the convergence rate (14) does
not match the lower bound given in Theorem 2. For
instance, consider as concrete example the choice A =
I � L and B = L; and let ⌧

c

2 R
+

(resp. 1) be the
time for each agent to perform a single communication
to its neighbors (resp. gradient evaluation). The time
complexity of the primal-dual algorithm (12) becomes

O

✓
(1 + ⌧

c

)

✓
L
f

R2

✏
+

1
p
⌘

Rkrf(x?)k
✏

◆◆
.

To match the lower lower bound given in Theorem 2,
our next step is accelerating the algorithm, both the
computational part and the communication step; we
leverage Nesterov acceleration (Nesterov, 2013) for the
optimization step while employ Chebyshev polynomials
(Wien, 2011) to accelerate communications. To provide
some insight of our construction, we begin with the
former acceleration; the latter is added in Section 4.3.

4.2 Accelerated primal-dual algorithms

We accelerate the primal-dual algorithm (12) as follows:

uk+1 = A(xk � �(rf(xk) + ŷk)), (15a)

xk+1 = uk+1 + ↵
k

(uk+1 � uk), (15b)

x̂k+1 = �
k

xk+1 + (1� �
k

)uk+1 (15c)

yk+1 = yk + ⌧
k

Bx̂k+1, (15d)

ŷk+1 = yk+1 + �
k

(yk+1 � yk), (15e)

1We use ⌘(B) to denote the eigengap of B.
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where uk, x̂k, and ŷk are auxiliary variables and
↵
k

,�
k

, ⌧
k

,�
k

are parameters to be properly chosen.
Roughly speaking, (15a), (15d) and (15e) are the stan-
dard primal-dual steps while (15b) and (15c) are the
extra steps meant for the acceleration, with (15b) be-
ing the standard Nesterov momentum step and (15c)
being a correction step. Note that setting ↵

k

⌘ 0,�
k

⌘
1, ⌧

k

⌘ ⌧,�
k

⌘ 1, the algorithm reduces to the primal-
dual method (12). We provide next an instance of (15)
that is suitable for a distributed implementation.

Let T be the overall number of iterations being carried
out. The free parameters in (15) is chosen as follows:

A = I� L/�
m

(L), B = L/�
m

(L), � =
⌫

⌫L
f

+ T
,

⌧ =
1

⌫T �
m

(B)
,
1

✓
k

=
1 +

q
1 + 4( 1

✓

k�1
)2

2
with ✓

1

= 1,

�
k

=
1

✓
k+1

, ↵
k

=
✓
k+1

✓
k

� ✓
k+1

, �
k

=
⌧
k+1

⌧
k

, ⌧
k

=
⌧

✓
k

.

(16)

The resulting scheme is summarized in Algorithm 1,
and its convergence properties are stated in Theorem
6. We point out that Theorem 6, although stated
for Algorithm 1, can be readily extended to the more
general accelerated primal-dual scheme (15), with other
choices of A and B just satisfying Assumption 3.

Algorithm 1 OPTRA-N

Input: number of iterations T , Laplacian matrix L,
⌫ > 0
Output: (uT ,yT )
Initialization: y1

i

= 0, 8i 2 V and ✓
1

= 1

1: ŷ1 = ⌧
1

Bx1, u1 = x1

2: for k = 1, 2, ..., T do
3: compute ✓

k

according to (16),
4: for 8i 2 V do in parallel
5: compute the next iterate according to (15),

using the tuning as in (16),
6: end for
7: end for
8: Return (uT ,yT )

Theorem 6. Consider Problem (1) under Assumption
1; let u(t) be the value of the u-vector generated by
Algorithm 1 at time t 2 R

+

, under Assumptions 2 and
3, and the parameter setting in (16). If ⌫ =

p
⌘, then

G(u(t)) = O

0

B@
L
f

R2

⇣
t

1+⌧

c

⌘
2

+
R2 + krf(x?)k2

p
⌘ t

1+⌧

c

1

CA .

If one can set ⌫ = O
�p

⌘R/ krf(x?)k
�
, the above

bound can be improved to

G(u(t)) = O

0

B@
L
f

R2

⇣
t

1+⌧

c

⌘
2

+
R krf(x?)k
p
⌘ t

1+⌧

c

1

CA . (17)

Furthermore, the consensus error decays
����

✓
I� 11T

m

◆
u(t)

���� =

O

0

B@
L
f

R2

krf(x?)k
⇣

t

1+⌧

c

⌘
2

+
R2 + krf(x?)k2

krf(x?)kp⌘ t

1+⌧

c

1

CA .

(18)

While the convergence time of Algorithm 1 benefits
from the Nesterov acceleration of the computation step,
it is not optimal in terms of communications (optimal
dependence on ⌘). In fact, when the network is poorly
connected, the second term on the RHS of (17) becomes
dominant with respect to the first one, and (17) overall
will be larger than (7). This is due to the fact that
Algorithm 1 performs a one-consensus-one-gradient
update while the lower bound shows an optimal ratio
of d1/p⌘e (cf. Remark 2). This optimal ratio can be
achieved accelerating also the communication step, as
described in the next section.

4.3 Optimal primal-dual algorithms with
Chebyshev acceleration

We employ the acceleration of the communication step
in Algorithm 1 by replacing the gossip matrix L with
P
K

(L), where P
K

(·) is a polynomial of at most K de-
gree that maximizes the eigengap of P

K

(L). This leads
to a widely used acceleration scheme known as Cheby-
shev acceleration and the choice P

K

(x) = 1�T
K

(c
1

(1�
x))/T

K

(c
1

), with c
1

= (1+⌘(L))/(1�⌘(L)) and T
K

(·),
are the Chebyshev polynomials (Wien, 2011). It is not
di�cult to check that such a P

K

(L) is still a gossip
matrix. Using in (15) the following setting:

A = I� c
2

P
K

(L), B = P
K

(L), K =
l
1/
p

⌘(L)
m
, with

c
2

=

✓
1 + 2

cK
0

(1 + c2K
0

)

◆�1

, c
0

=
1�

p
⌘(L)

1 +
p

⌘(L)
,

(19)
leads to the distributed scheme described in Algo-
rithm 2, whose convergence rate achieves the lower
bound (9), as proved in Theorem 7 below. Note that,
although the idea of using Chebyshev polynomial has
been already used in some (centralized and distributed)
algorithms in the literature (Wien, 2011; Scaman et al.,
2017), Algorithm 2 substantially di↵ers from that of
Scaman et al. (2017), which assumes strongly-convex
cost functions and is not rate-optimal in the setting
considered in this paper (cf. Sec. G in the supporting
material for more details).
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Algorithm 2 OPTRA

Input: number of iterations T , Laplacian matrix

eL, number of inner consensus K =

⇠
1p
⌘(L)

⇡
, c

0

=

1�
p

⌘(

e
L)

1+

p
⌘(

e
L)

, c
1

= 1+⌘(

e
L)

1�⌘(

e
L)

, c
2

= 1/
⇣
1 + 2 c

K

0

1+c

2K
0

⌘
, ⌧ = c2

⌫T

,

� = ⌫

⌫L

f

+T

, ⌫ > 0.

Initialization: y1 = 0; Preprocessing: L =
2

�2(
e
L)+�

n

(

e
L)

eL.
Output: (uT ,yT )

1: ŷ1 = ⌧
1

·AccGossip(x1,L,K), u1 = x1

2: for k = 1, 2, ..., T do
3: uk+

1
2 = xk � �

�
rf(xk) + ŷk

�
,

4: uk+1 = uk+

1
2 � c

2

·AccGossip(uk+

1
2 ,L,K),

5: xk+1 = uk+1 +
⇣

✓

k+1

✓

k

� ✓
k+1

⌘
(uk+1 � uk),

6: x̂k+1 = 1

✓

k+1
xk+1 +

⇣
1� 1

✓

k+1

⌘
uk+1,

7: yk+1 = yk + ⌧

✓

k

AccGossip(x̂k+1,L,K),

8: ŷk+1 = yk+1 + ✓

k

✓

k+1
(yk+1 � yk),

9: end for
10: Return (uT ,yT ).

11: procedure AccGossip(x,L,K)
12: a

0

= 1, a
1

= c
1

13: z
0

= x, z
1

= c
1

(I� L)x
14: for k = 1 to K � 1 do
15: a

k+1

= 2c
1

a
k

� a
k�1

16: z
k+1

= 2c
1

(I� L)z
k

� z
k�1

17: end for
18: return z

0

� z

K

a

K

19: end procedure

Theorem 7. Consider Problem (1) under Assumption
1; let u(t) be the value of the u-vector generated by
Algorithm 2 at time t 2 R

+

, under Assumptions 2 and
3, the parameter setting in (16), and employing the
Chebyshev acceleration (19). If ⌫ = 1, then

G(u(t)) = O
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BBB@
L
f

R2

✓
t

1+d 1p
⌘

e⌧
c

◆
2

+
R2 + krf(x?)k2

t

1+d 1p
⌘

e⌧
c

1

CCCA
.

If one can set ⌫ = O (R/krf(x?)k) , the above bound
can be improved to

G(u(t)) = O
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Furthermore, the consensus error
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According to Theorem 7, given ✏ > 0, the time needed
by the algorithm to drive G below ✏ > 0 is

O

 ✓
1 +

1
p
⌘
⌧
c

◆ r
L
f

R2

✏
+

Rkrf(x?)k
✏

!!
,

matching the lower complexity bound given in (9).

Note that the optimality is stated in terms of the G-
metric and does not imply that the algorithm is rate
optimal also in the FEM-metric (11), which to date
remains an open question. In our experiments (cf. Sec.
5) we observed i) the same behavior of the two errors
as a function of the total number of computations
and communications; and ii) that Algorithm 2 in fact
outperforms existing distributed schemes.

5 Numerical Results

We report here some preliminary numerical results2

validating our theoretical findings. We compare the
proposed rate-optimal algorithm–OPTRA–with exist-
ing accelerated ones designed for convex smooth prob-
lems, namely: Acc-DNGD-NSC (Qu and Li, 2017a)
and APM-C (Li et al., 2018). We also included
non-accelerated schemes that perform quite well in
practice, namely: i) the gradient tracking method,
NEXT/DIGing (Di Lorenzo and Scutari, 2016; Nedich
et al., 2017); ii) the primal-dual method, EXTRA (Shi
et al., 2015); and iii) the decentralized stochastic gra-
dient method, DPSGD (Lian et al., 2017).

We tested the above algorithms on a decentralized linear
regression problem, in the form min

x2Rd kAx� bk2 ,
where A = [A

1

;A
2

; · · · ;A
m

] 2 Rmr⇥d and b =
[b

1

;b
2

; · · · ;b
m

] 2 Rmr⇥1, with A
i

2 Rr⇥d and b
i

2
Rr⇥1, r = 10, d = 500, and m = 20. Note that each
agent i can only access the data (A

i

,b
i

). We gener-
ated the matrix A of the feature vectors according to
the following procedure, proposed in Agarwal et al.
(2010). We first generate a random matrix Z with
each entry i.i.d. drawn from N (0, 1). Using a control
parameter ! 2 [0, 1), we generate columns of A (M

:,i

and M
i,:

denote the i-th column and i-th row of a
matrix M, respectively) so that the first column is
A

:,1

= Z
:,1

/
p
1� !2 and the rest are recursively set as

A
:,i

= !A
:,i�1

+ Z
:,i

, for i = 2, . . . , d. As result, each
row A

i,:

2 Rd is a Gaussian random vector and its co-
variance matrix ⌃ = cov(A

:,i

) is the identity matrix if

2Code: https://github.com/YeTian-93/OPTRA.

https://github.com/YeTian-93/OPTRA
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Figure 1: Comparison of distributed first-order gradient algorithms: Bregman distance versus the total cost (left
panel), the communication cost (middle panel), and the gradient computation cost (right panel). The curves of
DIGing/NEXT overlap with that of EXTRA.

! = 0 and becomes extremely ill-conditioned as ! ! 1;
we set ! = 0.95. Finally we generate x

0

2 Rd with each
entry i.i.d. drawn from N (0, 1), and set b = Ax

0

+ ⇠,
where each component of the noise ⇠ is i.i.d. drawn
from N (0, 0.25). We simulated a network of m = 20
agents, connected throughout a communication graph,
generated using the Erdös-RéTyi model; the probability
of having an edge between any two nodes is set to 0.1.
We calculated L

f

from the generated data and used
the exact value whenever this parameter is needed. We
tuned the free parameters of the simulated algorithms
manually to achieve the best practical performance for
each algorithm. This leads to the following choices:
i) the step size of DIGing/NEXT and EXTRA is set
to 10�5; ii) for Acc-DNGD-NSC, we used the fixed
step-size rule, with ⌘ = 0.005/L

f

(the one provided in
(Qu and Li, 2017a, Th. 5) is too conservative, resulting
in poor practical performance); iii) for APM-C, we set
(see notation therein) T

k

= dc · (log k/
p
1� �

2

(W))e,
with c = 0.2 and �

0

= 104; iv) for DPSGD, we set
the step size to 10�5; at each iteration, the gradient
of each agent was computed using 20% of the samples
in the local data set; and v) for our algorithm, we set
⌫ = 100 and K = 2.

Our experiments are reported in Figure 1, where we
plot the Bregman distance versus the overall number
of communications and computations performed by
each agent (left panel), the number of communications
(middle panel), and the number of computations (right
panel). The time for local communications and gradi-
ent computations using all the local data samples is
normalized to one; for DPSGD, the computation time
unit is scaled proportionally to the size of the local
mini-batch. The plots in terms of the more traditional
FEM-metric are reported in the supporting material,
the behavior is consistent with the results in Figure 1.

The following comments are in order. The acceler-
ated schemes and the stochastic algorithm–DPSGD–
converge faster than the non-accelerated schemes–
NEXT/DIGing, EXTRA (the curves of EXTRA and
NEXT/DIGing coincide in all the panels). In our ex-
periments (including those not reported), we observed
that this gap is quite evident when problems are ill-
conditioned. From the right panel, one can see that
APM-C performs better than OPTRA and Acc-DNGD-
NSC in terms of the number of gradient evaluations,
which is expected since APM-C employs an increasing
number of communication steps per gradient evaluation.
On the other hand, APM-C su↵ers from high commu-
nication cost (which is evident from the middle panel),
making it not competitive with respect to the proposed
OPTRA in terms of communications. When both com-
munication and computation costs are considered (left
panel), OPTRA outperforms all the other simulated
schemes, which support our theoretical findings.

6 Conclusion

We studied distributed gossip first-order methods for
smooth convex optimization over networks. We pro-
vided a novel primal-dual distributed algorithm that
employs Nesterov acceleration on the optimization step
and acceleration of the communication step via Cheby-
shev polynomials, balancing thus computation and
communication. We also proved that the algorithm
achieves the lower complexity bound in the Bregman
distance-metric. Preliminary numerical results showed
that the proposed scheme outperforms existing dis-
tributed algorithms proposed for the same class of
problems. An open question, currently under investi-
gation, is whether the proposed distributed algorithms
are rate optimal also in terms of the FEM metric. No
such an algorithm is known so far in the literature.
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