
Thresholding Bandit Problem with Both Duels and Pulls

Yichong Xu1, Xi Chen2 Aarti Singh1, Artur Dubrawski1
1Machine Learning Department, Carnegie Mellon University 2Stern School of Business, New York University

Abstract

The Thresholding Bandit Problem (TBP)
aims to find the set of arms with mean re-
wards greater than a given threshold. We con-
sider a new setting of TBP, where in addition
to pulling arms, one can also duel two arms
and get the arm with a greater mean. In our
motivating application from crowdsourcing,
dueling two arms can be more cost-effective
and time-efficient than direct pulls. We refer
to this problem as TBP with Dueling Choices
(TBP-DC). This paper provides an algorithm
called Rank-Search (RS) for solving TBP-DC
by alternating between ranking and binary
search. We prove theoretical guarantees for
RS, and also give lower bounds to show the
optimality of it. Experiments show that RS
outperforms previous baseline algorithms that
only use pulls or duels.

1 Introduction

The Thresholding Bandit Problem (TBP, (Locatelli
et al., 2016)) is an important pure-exploration multi-
armed bandit (MAB) problem. Specifically, given a
set of K arms with different mean rewards, the TBP
aims to find arms whose mean rewards are above a
pre-set threshold of τ . The TBP has a wide range
of applications, such as anomaly detection, candidate
filtering, and crowdsourced classification. For example,
a popular crowdsourced classification model (Abbasi-
Yadkori et al., 2016; Chen et al., 2015) assumes that
there are K items with the latent true labels θi ∈ {0, 1}
for each item. The labeling difficulty of the i-th item
is characterized by its soft label µi ∈ [0, 1], which is
defined as the probability that a random crowd worker
will label the i-th item as positive. It is clear that the
item is easy to label when µi is close to 0 or 1, and
difficult when µi is close to 0.5. In MAB, µi is the

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

mean reward of arm i, and pulling this arm leads to
a Bernoulli observation with mean µi. Moreover, it is
natural to assume that the soft label µi is consistent
with the true label, i.e., µi ≥ 0.5 if and only if θi = 1.
Therefore, identifying items belonging to class 1 is
equivalent to detecting those arms with µi > τ with
τ = 0.5.

Existing literature on TBP considers the setting
that only solicits information from pulling arms di-
rectly. However, in many applications of TBP, com-
parisons/duels can be obtained at a much lower cost
than direct pulls. In crowdsourcing, a worker often
compares two items more quickly and accurately than
labeling them separately. It will be cheaper and time
efficient to ask a worker which image is more relevant
to a query as compared to asking for an absolute rele-
vance score of an image (see, e.g., Shah et al. (2016b)).
Another example is in material synthesis, a pull will
need an expensive synthesis of the material, whereas
duels can be carried out easily by querying experts.
In such settings, directly pulling an arm is expensive
and could incur a large sample complexity since each
arm needs to be pulled a number of times. This paper
considers two sources of information: in addition to
direct pulls of arms as in the classical TBP, one can
also duel two arms to find out the arm with a greater
mean at a lower cost. We refer to this problem as the
TBP with Dueling Choices (TBP-DC), since dueling
and pulling are both available in each round.

It is important to note that some direct pulls are still
necessary for solving a TBP even if one can duel two
arms. Without direct assessments of arms, we can
at best rank all the arms with duels. However, we
then cannot know the target threshold τ and therefore
cannot identify a boundary on the ranking. On the
other hand, using an appropriate dueling strategy, the
number of required direct pulls can be much lower than
that in the classical TBP setting, where only direct
pulling is available. We further note that TBP-DC is
also different from the top-K arm identification problem
considered in whether MAB (see, e.g., Bubeck et al.
(2013), Zhou et al. (2014), Chen et al. (2017)) or dueling
bandits (see, e.g., Mohajer et al. (2017)), because the
number of arms with means greater than the threshold
τ is unknown to us.

Thresholding Bandit Problem with Both Duels and Pulls

A straightforward way to solve the TBP-DC problem
is to utilize an existing ranking algorithm such as Ac-
tiveRank (Heckel et al., 2016) to rank all the arms,
and then use a binary search to find the boundary.
However, this method is impractical because it can be
very hard to differentiate arms with similar means (e.g.,
equally good images, similar quality materials). These
arms might be far from the threshold and it is actually
unnecessary to differentiate them. We instead take
an iterative approach; We develop the Rank-Search
(RS) algorithm for TBP-DC, which alternates between
refining the rank over all items using duels and a binary
search process using pulls to figure out the threshold
among ranked items. We interleave the ranking and
searching step so that we do not waste time differenti-
ating equally good arms.

Our contributions. First, in Section 3, we analyze
the number of duels and pulls required for RS under
the fixed confidence setting, i.e., to recognize the set
of arms with reward larger than τ with probability
at least 1− δ. To better illustrate our main idea, we
further provide concrete examples, which show that
the proposed RS only requires O(log2K) direct labels,
while the classical TBP requires at least Ω(K) labels
(see Section 4). Section 5 shows complementary lower
bounds that RS is near-optimal in both duel and pull
complexity. Finally, we provide practical experiments
to demonstrate the performance of RS.

Related Works. TBP is a special case of the pure-
exploration combinatorial MAB problem. As with
other pure-exploration MAB problems(Bubeck et al.,
2013) , algorithms for combinatorial bandits fall into
either fixed-budget or fixed-confidence categories. In the
former setting, the algorithm is given a time horizon of
T and tries to minimize the probability of failure. In
the latter setting, the algorithm is given a target failure
probability and tries to minimize the number of queries.
For TBP, the CLUCB algorithm (Chen et al., 2014)
can solve TBP under the pull-only and fixed confidence
setting, with optimal sample complexity. (Chen et al.,
2014) also develops the CSAR algorithm for the fixed-
budget setting which can also be used for TBP. The
result was improved by recent followup work (Locatelli
et al., 2016; Mukherjee et al., 2017) under the fixed
budget setting. Chen et al. (2015) considered TBP
in the context of budget allocation for crowdsourced
classification in the Bayesian framework.

Motivated by crowdsourcing and other applications,
this paper proposes a new setup since we allow both
pulling one arm and dueling two arms in each round,
with the underlying assumption that dueling is more
cost-effective than pulling. To the best of our knowl-
edge, this setting has not been considered in the previ-
ous work. Most close in spirit to our work is a series of
recent papers (Kane et al., 2017; Xu et al., 2018, 2017),
which consider using pairwise comparisons for learning

classifiers. The methods in those papers are however
not directly applicable to TBP-DC because their final
goal is to learn a classification boundary, instead of
labeling each item without feature information.

2 Problem Setup

Suppose there are K arms, which are denoted by A =
[K] = {1, 2, ...,K}. Each arm i ∈ A is associated with
a mean reward µi. Without loss of generality, we will
assume that µ1 ≤ µ2 ≤ · · · ≤ µK . Given a target
threshold τ , our goal is to identify the positive set
Sτ = {i : µi ≥ τ} and the negative set Scτ = {i : µi <
τ}.

Modes of interactions. Each instance of TBP-DC
is uniquely defined by the tuple (M,µ), whereM is the
preference matrix (defined below) and µ = {µi}Ki=1 is
the mean reward vector. In each round of our algorithm,
we can choose one of two possible interactions:

• Direct Queries (Pulls): We choose an arm
i ∈ A and get a (independent) noisy reward
Y from arm i. We assume that each arm i is
associated a reward distribution νi with mean
µi, and that νi is sub-Gaussian with parameter
R: EY∼νi [exp(tY − tE[Y])] ≤ exp(R2t2/2) for
all t ∈ R. The definition of sub-Gaussian
variables includes many common distributions,
such as Gaussian distributions or any bounded
distributions (e.g., Bernoulli distribution). We
denote by ∆l

i = |µi − τ | the gap between arm i
and the threshold.

• Comparisons (Duels): We can also choose to
duel two arms i, j ∈ A and obtain a random vari-
able Z, with Z = 1 indicating the arm i has a
larger mean reward than j and Z = 0 otherwise.
Let Mij ∈ [0, 1] characterize the probability that
a random worker believes that arm i is “more posi-
tive” than arm j. The outcome of duels is therefore
characterized by the matrixM . The (Borda) score
of each arm in dueling is defined as

pi :=
1

K − 1

∑
j∈[K]\{i}

Mij , (1)

i.e., the probability of arm i beating another ran-
domly chosen arm j.
In contrast to previous work (Shah et al., 2016b;
Szörényi et al., 2015; Yue et al., 2012) that usually
assumes parametric or structural assumptions on
M , we allow an arbitrary preference matrixM ; the
only assumption is that the score of any positive
arm is larger than any negative arm, i.e., pi >
pj ,∀i ∈ Sτ , j ∈ Scτ . We note that this is a very
weak condition since arbitrary relations within

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

the positive and negative sets are allowed. This
assumption also holds if (1, 2, ...,K) is the Borda
ranking ofM ; or the underlying comparison model
follows the Strong Stochastic Transitivity (SST,
(Fishburn, 1973; Shah et al., 2016a)). We note that
the problem is very difficult under this assumption:
For example, even if µi (knowledge from pulls)
are bounded away from τ by a constant, the pi
(knowledge from duels) may be arbitrarily close,
hence making the problem much harder.

Taking crowdsourced binary classification as an ex-
ample, Yi ∈ {0, 1} would correspond to a binary la-
bel of the i-th item obtained from a worker, where
µi = PrYi∼νi [Y = 1]. For this case we have τ = 1/2.
Dueling outcome Zij will correspond to asking a worker
to compare item i with item j and Zij = 1 if the worker
claims that item i is “more positive” than item j.

The fixed-confidence setting. Given a target error
rate δ, our goal is to recover the sets Ŝτ and Ŝcτ , such
that Pr[Sτ = Ŝτ , S

c
τ = Ŝcτ] ≥ 1− δ, with as fewer pulls

and duels as possible. Since in practice duels are often
cheaper than pulls, we want to minimize the number
of pulls while also avoiding too many duels.

2.1 Problem Complexity

We define two problem complexities w.r.t pulls and
duels separately.

Pull complexity. Following previous works on TBP
and pure-exploration bandits (Chen et al., 2014; Lo-
catelli et al., 2016), we introduce the following quantity
to characterize the intrinsic problem complexity with
direct pulls. In particular, recall that ∆l

i = |µi − τ |
is the gap between arm i and threshold. Then the
pull complexity is defined as Hl =

∑K
i=1

1
(∆l

i)
2 . Chen

et al. (Chen et al., 2014) shows that there exists
an algorithm using at most O(Hl log(KHl/δ)) pulls.
Moreover, they show a lower bound that any pull-only
algorithm would require at least Ω(Hl log(1/δ)) pulls
to give correct output with probability 1 − δ. We
add another notation for a “partial” label complexity:
let Hl(m) be the sum of the largest m terms in Hl.
Namely, we sort µ1, . . . , µK by their gap with thresh-
old, i.e., ∆l

i1
≤ ∆l

i2
≤ · · · ≤ ∆l

iK
(cf. Figure 1 left),

and Hl(m) =
∑m
j=1

1
(∆l

ij
)2
.

Duel complexity. Now we define the complexity
w.r.t. duels. Our goal is to use duels to infer the
(positive or negative) label of arms without actually
pulling them. Therefore the difficulty of inferring a
positive arm i ∈ Sτ will depend on its difference with
the “worst” positive arm, and similarly i ∈ Scτ with
the “best” negative arm. Let il = arg maxi∈Scτ pi be
the best negative arm and iu = arg mini∈Sτ pi be the
worst positive arm, where pi is defined in Equation (1).
And for any arm i ∈ Sτ , let ∆c

i = pi − piu be the gap

with arm iu and similarly for any arm j ∈ Scτ define
∆c
j = pil − pj . Intuitively, the complexity of identifying

arm i through duels should depend on ∆c
i , and we

therefore define Hc,1 =
∑K
i=1

1
(∆c

i)
2 .

Moreover, it is worthwhile noting that the complexity
of inferring a positive arm i using arm iu will not only
depend on pi − piu , but also on piu − pil . If the gap
piu − pil is very small, we cannot easily differentiate iu
from the other negative arms. On the other hand, we
can use any positive arm j to infer about arm i, when
piu ≤ pj < pi. To this end, we define

∆̄c
i =

max
j∈Sτ

min{pj − pil , pi − pj} if i ∈ Sτ ,

max
j∈Scτ

min{pj − pi, piu − pj}, if i ∈ Scτ ,

See Figure 1 right for a reference. And we define
another duel complexity as Hc,2 =

∑
i∈A\{iu,il}

1(
∆̄c
i

)2 .
Relation between ∆c

i and ∆̄c
i . Although we always

have ∆c
i ≥ ∆̄c

i and thus Hc,1 ≤ Hc,2, in many situ-
ations ∆c

i and ∆̄c
i are of similar scales. To see this,

notice that ∆̄c
i ≥ min{∆c

i , piu − pil}. In many cases
in practice, we would expect a gap between Sτ and
Scτ , and therefore piu − pil will be a constant. We give
a formal proposition about the relation between Hc,2

and Hc,1 under Massart noise condition in Section 4.

In Section 3, we present an upper bound using Hc,2,
and in Section 5, we present a lower bound using Hc,1.

3 The Rank-Search (RS) Algorithm

We present our Rank-Search algorithm in this section.
We give a detailed description of the algorithm in Sec-
tion 3.1, and analyze its theoretical performance in
Section 3.2.

3.1 Algorithm Description

Algorithm 1 describes the Rank-Search algorithm. At
a high level, RS alternates between ranking items using
duels (Line 3-13), and a binary search using pulls (Line
14 and Algorithm 2). We first initialize the work set
S with all arms, and comparison confidence γ0 = 1/4.
In the rank phase, we iteratively compare each arm
i ∈ S with a random arm, as an unbiased estimator for
pi. After each arm has received log(2/δt)

γ2
t

comparisons,
we rank the arms in S according to their win rates p̂i.
Then Algorithm 2 performs binary search on the sorted
S to find the boundary between positive and negative
arms (detailed below).

Our binary search is a standard process: it starts with
the middle of the sequence, and if the middle arm
is positive, we move to the first half (i.e., arms with

Thresholding Bandit Problem with Both Duels and Pulls

µ1 µ2 µ3 µ4 µ5τ

∆l
1

∆l
3 ∆l

5

∆l
4

p1 p2 p3 p4 p5

∆c
1

(2)(1) (5)
(4)(3)

∆̄c
1

∆c
5, ∆̄

c
5

Figure 1: Graphical illustration of the quantities ∆l
i (left) and ∆c

i , ∆̄
c
i (right) for K = 5 arms, with Sτ = {4, 5}.

We have iu = 4 and il = 3. ∆̄c
1 is equal to the max of min{(1), (2)} and min{(3), (4)}; ∆̄c

5 is equal to min{(2), (5)}.

Algorithm 1 Rank-Search (RS)

Input: Set of arms A, noise tolerance δ, threshold τ ,
initial confidence level γ0, shrinking factor κ

1: S ← A = [K], counter t← 0
2: For every i ∈ S, let ni ← 0, wi ← 0
3: . ni: Comparison count, wi: Win count
4: while S 6= ∅ do
5: while ∃i ∈ S, ni ≤ 1

γ2
t

log
(

8|S|(t+1)2

δ

)
do

6: for i ∈ S do
7: Draw i′ ∈ [K] uniformly at random, and

compare arm i with arm i′

8: If arm i wins, wi ← wi + 1
9: ni ← ni + 1
10: end for
11: end while
12: Compute p̂i ← wi/ni for all i ∈ S
13: Rank arms in S according to their p̂i: S =

(i1, i2, ..., i|S|), p̂i1 ≤ p̂i2 ≤ · · · ≤ p̂i|S|
14: Get (k, T) = Binary-Search(S, τ, δ/4(t+ 1)2)
15: If k < |S|, let S = {i ∈ S : p̂i − p̂ik+1

> 2γt};
for i ∈ S, set ŷi = 1

16: If k > 0, let S = {i ∈ S : p̂i − p̂ik < −2γt}; for
i ∈ S, set ŷi = 0

17: S ← S − S − S − T
18: γt+1 ← γt/κ
19: t← t+ 1
20: end while
Output: Ŝτ = {i : ŷi = 1}, Ŝcτ = A \ Ŝτ

smaller estimated means), and otherwise, we move to
the second half (i.e., arms with larger estimated means).
Algorithm 2 just behaves as if S is perfectly ranked. It is
worthwhile noting that since S is not ranked according
to the real pi’s, there might be negative samples larger
than positive samples in S. However, we show that RS
can still run effectively even with a misranked S. We
figure out the label of the middle point using Figure-Out-
Label (Algorithm 3). Figure-Out-Label aims to solve
the simple TBP in the one-arm setting: We keep a
confidence interval µ̂i± γ in each round and return the
label once τ is not in the interval.

Binary-Search returns the boundary k. Let S = {i ∈
S : p̂i − p̂ik+1

> 2γt} be the arms that are separated
from arm ik+1, and we label i ∈ S as positive; we do
similarly for negative arms. Then we update working
set S with all the unlabeled arms, and we shrink the
confidence level by a constant factor κ > 1.

Algorithm 2 Binary-Search

Input: Sequence S = (i1, i2, ..., i|S|), threshold τ , con-
fidence δ0

1: kmin ← 0, kmax ← |S|, T = ∅
2: while kmin < kmax do
3: k = d(kmin + kmax)/2e
4: ŷik = Figure-Out-Label(ik, τ, δ

log |S|)

5: T = T ∪ {ik}
6: if ŷik = 1 then
7: kmax = k − 1
8: else
9: kmin = k
10: end if
11: end while
Output: Boundary kmin, labeled arms T

Algorithm 3 Figure-Out-Label

Input: Arm i, threshold τ , confidence δ1
1: t← 0
2: Define mi ← 0, si ← 0
3: repeat
4: while mi ≤ 2t do
5: Query Yi, and let si ← si +Yi,mi ← mi + 1
6: end while
7: Compute µ̂i ← si/mi

8: γ = R
√

2 log(4(t+1)2/δ1)
mi

9: t← t+ 1
10: until |µ̂i − τ | > γ
Output: Predicted label ŷi = I(µ̂i > τ)

3.2 Theoretical Analysis

We now present the theorem about performance of RS.

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

0 11
2

1
3

1
4

1
5

...
1
l+2

2
3

3
4

4
5

...
l+1
l+2

| | || ||| ||| || || ||| ||| || ||| || | ||| |||| || || |

Figure 2: Graphical illustration of the examples. Each red vertical line corresponds to one arm i, and τ = 1/2.
Left: Example 1 with fixed means. Right: Example 2 with K = 40 arms. The blue curve illustrates the pdf of all
arm means.

Theorem 1. Let γ∗ = mini∈A\{iu,il} ∆̄c
i and ∆∗ =

mini ∆l
i. Then with probability 1− δ RS succeeds, and

the number of duels and pulls it uses are bounded by

nduel ≤ 32Hc,2 log
4K log(1/γ∗)

δ
,

npull ≤ 16R2Hl(nl) log

(
nl log(1/∆∗)

δ

)
,

where nl is the number of times Figure-Out-Label is
called, and we have nl = O(logK log(1/γ∗)).

Remark. First, the results in (Chen et al., 2014) cor-
respond to using O

(
Hl(K) log

(
Hl(K)K

δ

))
pulls to get

δ confidence. In terms of number of direct pulls, RS
can reduce K dependence to logK dependence when
γ∗ is a constant, an exponential improvement.
Second, in terms of number of duels, RS has a require-
ment based on dueling complexity Hc,2 instead of Hl.
In many cases, Hc,2 is close to Hl, and we point out
several such cases in Section 4. Thus, we see that in
the Dueling-choice framework, the number of pulls re-
quired improves exponentially in dependence on K at
the expense of requiring a number of duels proportional
to number of pulls in pull-only case.

4 Implications of Upper Bounds in
Special Cases

We provide two examples to compare our theoreti-
cal upper bounds with the classical pull-only TBP.
Throughout this section, we will assume that all the ob-
servations follow Bernoulli distributions, and τ = 1/2.
The examples we raise in this section all follow the
Massart noise condition, i.e., |µi − τ | ≥ c that is well
known in classification analysis (Massart and Nédélec,
2007). We first give the following proposition to show
that RS is optimal under Massart noise.
Proposition 2. Suppose ∆l

i ≥ c for some c for all
arm i, and Mij = 1

2 + σ(µi − µj) for some increasing

link function σ : R → [−1/2, 1/2]. Also assume for
any x, y ∈ [µ1, µK] we have σ(x − y) ≥ L(x − y) for
some constant L. Then we have i) piu − pil ≥ 2Lc, ii)
∆̄c
i ≥ min{2Lc,∆c

i}, and iii) Hc,2 ≤ 1
4L2c2Hc,1.

Proposition 2 shows that Hc,2 = O(Hc,1) under Mas-
sart noise and the assumption that a link function ex-
ists. The assumption of such a link function is satisfied
by several popular comparison models including the
Bradley-Terry-Luce (BTL) (Bradley and Terry, 1952)
and Thurstone models (Thurstone, 1927). We now
give two positive examples that RS will lead to a gain
compared with the pull-only setting. For simplicity we
will suppose duels follow a comparison model given as
follows: Mij = Pr[i � j] =

1+µi−µj
2 . This is known

as the linear link function since it linearly relates the
duel win probability with the reward means. Routine
calculations show that under a linear link function we
have pi − pj = Θ(µi − µj). We require that both our
method and pull-only method succeed with probability
1 − δ, with a small constant δ (e.g., δ = 0.05). Both
of our positive examples assume that the means are
dense near the boundaries given by µ = 0 and µ = 1,
while a very small fraction of arms have means near
1/2, so that there is a significant gap between the arms
iu and il closest to the threshold, as well as any arm
i and arm iu or il that is closest to it(cf. Figure 2).
Although these examples can look artificial at first
sight, we note that such a bowl-shaped distribution is
common in practice, and is similar to Tsybakov noise
(Tsybakov et al., 2004) assumption used to characterize
classification noise in the machine learning literature.

Example 1. Suppose K = 2l, and µi = 1
(l+3)−i for

1 ≤ i ≤ l, and µi = 1− 1
i−(l−2) for l + 1 ≤ i ≤ 2l (see

Figure 2 left). We will have ∆l
i = ∆̄c

i = Ω(1) for all
arms i ∈ A. Then the previous state-of-art CLUCB
algorithm requires O(K logK) pulls, and their lower
bounds show that any pull-only algorithm needs at
least Ω(K) pulls. On the other hand, our algorithm
requires O(K logK) duels and only O(log2K) pulls.

Thresholding Bandit Problem with Both Duels and Pulls

When pulls are more expensive than duels, there is a
significant cost saving when using our RS algorithm.

Example 2. Suppose K = 2l. Sample x1, ..., xK
from an exponential distribution with parameter λ =
4 log(4l/δ), and let µi = xi for 1 ≤ i ≤ l, and µi = 1−xi
for l + 1 ≤ i ≤ 2l (see Figure 2 right). Then with
probability 1− δ: i) µi ∈ [0, 1] ∀i ∈ [K]; ii) ∆l

i = Ω(1),
andHc,2 = Hc,1; iii) CLUCB requiresO(K logK) pulls,
and any pull-only algorithm requires at least Ω(K)
pulls; iv) Our algorithm requires O(K log3K) duels
and O(log2K) pulls.

We provide proofs of the results for these two examples
in the appendix.

5 Lower Bounds

In this section, we give lower bounds that complement
our upper bounds. We first give an arm-wise lower
bound in Section 5.1 to show that RS is almost optimal
in terms of the total number of queries to each individ-
ual arm. Then, we discuss the optimality of both nduel
and npull in Section 5.2.

For simplicity, in this section we suppose all rewards
follow a Gaussian distribution with parameter R, i.e.,
νi = N (µi, R

2). Our results can be easily extended to
other sub-Gaussian distributions (e.g., when all rewards
are binary).

5.1 An Arm-Wise Lower Bound

The following theorem gives a lower bound on the
number of pulls and duels on a particular arm k.
Theorem 3. Suppose an algorithm A recovers Sτ with
probability 1− δ for any problem instance (M,µ) and
δ ≤ 0.15. For any arm i, let DAi be the number of times
that arm i is selected for a duel, and LAi be the number
of times that arm i is pulled. Let c = min{ 1

10 ,
R2

2 }.
Then for any problem instance (M,µ) with Mij ≥ 3

8
for every arm i, j ∈ [K], and a specific arm k ∈ Sτ , we
have

EM,µ[(∆c
k)2DAk + (∆l

k)2LAk] ≥ c log(
1

2δ
). (2)

Theorem 3 shows an arm-wise lower bound that the
sum of duels and pulls (weighted by their complexity)
must satisfy (2). In the pull-only setting, this agrees
with the known result that number of pulls needed for
an arm k is Ω((∆l

k)−2). And for duel-choice setting,
it shows that if we never pull arm k, number of duels
involving arm k (against some known arm) is at least
Ω((∆c

k)−2). From our proof of Theorem 1, we can easily
show the following proposition for the upper bound
that RS achieves:
Proposition 4. For any problem instance (M,µ) and
arm k, Algorithm RS succeeds with probability at least

1 − δ and there exists a constant C such that the RS
algorithm achieves that

EM,µ[(∆̄c
k)2DRS

k +(∆l
k)2LRS

k] ≤ C log

(
K log(K

γ∗∆∗)

δ

)
.

(3)

Comparing (3) with (2), our RS algorithm is arm-wise
optimal except for the difference of ∆c

k vs. ∆̄c
k, and

the log factors. This shows that RS is near optimal in
the sum EM,µ[(∆c

k)2DAk + (∆l
k)2LAk].

5.2 Optimality of nduel and npull

In this subsection, we analyze the lower bound of TBP-
DC under the case when duels are much cheaper than
pulls. In this case, we would like to minimize the
number of pulls, and then minimize the number of
duels. Intuitively, RS algorithm is optimal in npull as
it uses roughly O(logK) pulls; this is necessary even
if we know a perfect ranking of all arms (due to the
complexity of binary search). We consider an extreme
case, where we know the label of arm iu and il from
pulls, and wish to infer all other labels using duels. The
following corollary of Theorem 3 shows a lower bound
in this case:

Corollary 5. Suppose an algorithm A is given that
iu ∈ Sτ and il ∈ Scτ , and uses only duels. Under the
same assumption as in Theorem 3, the number of duels
of A is at least E[nAduel] ≥ cHc,1 log(1/2δ).

Combining Corollary 5 with the fact that O(logK) is
necessary for TBP-DC, we show that RS is near optimal
in both nduel and npull.

6 Experiments

To verify our theoretical insights, we perform experi-
ments on a series of settings to illustrate the efficacy
of RS, on both synthetic and real-world data. For
comparison, we include the state-of-art CLUCB in the
pull-only setting, and several naive baselines.

6.1 Data Configuration

For synthetic data, we vary the number of arms K
from 50 to 500, and set threshold τ = 0.5. The duels
follows from a linear link function Pr[i � j] =

1+µi−µj
2

1. Let K = 2l, the mean rewards are given as below:

Experiment 1 (harmonic): This is Example 1 from
Section 4.
Experiment 2 (exponential): This is Example 2

1We include the results with a BTL model in the ap-
pendix.

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

(a) harmonic (b) exponential (c) 3 groups

Figure 3: Empirical results comparing RS and other baselines. Error bars represent standard deviation across 500
experiments.

from Section 4.
Experiment 3 (3groups): This is similar to the
example in (Locatelli et al., 2016). Let µi = 0.1 for
i = 1, 2, ..., l − 2, µ(l−1):(l+2) = (0.35, 0.45, 0.55, 0.65),
and µi = 0.9 for i = l + 3, ...,K.

For real-world data, we use the reading difficulty
dataset collected by Chen et al. (2013). The data
consists of 491 passages, each with a reading difficulty
level ranged in 1-12. We randomly take K passages
from the whole set, with K varying from 50 to 491. Let
µi = li/13, where li is the difficulty level of passage
i. The goal here is to identify the difficult passages
with level at least 7, or equivalently τ = 0.5. Al-
though the original dataset from Chen et al. (2013)
comes with comparisons, it does not cover all pairs
and we therefore use a probabilistic model to gen-
erate comparison feedbacks. Specifically, we experi-
ment with two types of comparison models: i) linear
link function Pr[i � j] =

1+θ(µi−µj)
2 ; ii) BTL model:

Pr[i � j] = 1

1+e(µj−µi)θ
. For both model, we find the θ

that maximizes the log likelihood based on comparisons
data provided in (Chen et al., 2013). Hypothesis test-
ing against a null hypothesis (Pr[i � j] = 1/2) gives
p-values less than 1× 10−4 for both models.

6.2 Baselines and Implementation Details

We compare performance of the following methods.

CLUCB(Chen et al., 2014): We implement the
CLUCB algorithm which only queries for selective di-
rect pulls in a TBP setting.
SimpleLabel: This is a simple pull-only baseline
where we apply Figure-Out-Label to all the arms i ∈ A
with confidence δ/K.
RankThenSearch: As we discussed in introduction,
we compare to the baselines where we first use a rank-
ing algorithm to rank all the arms, and then perform
a binary search to find the boundary. We consider
two methods for the first ranking step. i) ActiveR-

ank(Heckel et al., 2016): An active ranking algorithm
that achieves optimal rates based on Borda scores. ii)
PLPAC-AMPR(Szörényi et al., 2015): Another rank-
ing algorithm that focuses on BTL model. After the
ranking algorithm we run a single binary search on
the sorted sequence, using Figure-Out-Label to identify
labels.
RankSearch: Our algorithm. The parameters of our
algorithms are the initial confidence γ0 and shrinking
factor κ. Both of them decides how aggressive we de-
crease our confidence: A small γ0 will lead to a starting
point with high confidence, and a large κ will increase
the confidence level quickly. Both of them will lead to
a higher number of duels. In our implementation, we
pick γ0 adaptively so that max p̂i −min p̂i ≥ 2γ0 (see
Appendix for details), and use κ = 2.

We note that previous works on TBP in the fixed
budget setting (Locatelli et al., 2016; Mukherjee et al.,
2017) cannot be implemented in our fixed-confidence
setting.

We run all the methods with varying number of arms,
and compare their performance to reach confidence
δ = 0.95. For complexity notion, since there is no pre-
defined cost ratio between duels and pulls, we compare
the pull and duel complexity of RS separately with
the baselines. Specifically, we compare pull complex-
ity with SimpleLabel and CLUCB, and compare duel
complexity with RankThenSearch (since the other two
baselines are pull-only algorithms). Each experiment
is repeated 500 times, and we compute the mean and
standard deviation of each baseline’s performance.

6.3 Experiment Results

Results on synthetic data. In Figure 3, we plot
the empirical pull complexity of RS along with the
baselines of CLUCB and SimpleLabel. As expected,
the number of pulls of RS is much lower than the
baseline algorithms in all three experiments we con-
sider. Interestingly, SimpleLabel also has an advantage
over CLUCB in the pull-only setting. We note that

Thresholding Bandit Problem with Both Duels and Pulls

(a) harmonic

(b) exponential

Figure 4: Empirical results comparing RS and Rank-
ThenSearch. Error bars represent standard deviation
across 500 experiments. PLPAC is short for PLPAC-
AMPR.

CLUCB’s O(Hl log(Hlδ)) is only optimal up to log(Hl)
factors, and SimpleLabel might have an advantage be-
cause its pull complexity is O(Hl log(K log ∆∗

δ)) in the
pull-only setting, slightly better than CLUCB. This
advantage and the optimal rate for the pull-only set-
ting is of independent interest and we leave it as future
work.

We then compare the duel complexity with Rank-
ThenSearch in Figure 4. Since RankThenSearch needs
to differentiate between every pair of arms, the algo-
rithms take extremely long to run and we have to limit
the arms to be at most 20 (as is done in Szörényi et al.
(2015)). Note that since in 3groups the arms are
not separable, we only compare to RankThenSearch
in the first two settings. The results show that Rank-
ThenSearch with ActiveRank and PLPAC-AMPR both
acquires an incredible number of duels in order to rank
the arms: to rank 20 arms they acquire hundreds of mil-
lions (1×108) of duels, for the exponential arm setup.
This prohibitive cost makes it impossible to adopt the
RankThenSearch method. We also observed a very
large variance in performance for RankThenSearch, be-
cause differentiating arms close to each other is very
unstable. Dueling complexity of RS is much lower and
more stable than the above methods, and therefore RS

(a) Linear Link Function

(b) BTL Link Function

Figure 5: Empirical results comparing RS and other
baselines. Error bars represent standard deviation
across 500 experiments.

achieves a balance between duels and pulls.

Results on real-world data. Finally, we compare
the pull complexity between RS and the pull-only base-
lines on real-world data in Figure 5. RS still performs
better than both baselines for the real data, but the
advantage of RS over the baselines are lower than on
synthetic data. This is possibly because the data con-
tains many passages near the boundary (i.e., grade 6
and 7), and RS have to use pulls to identify their label.
We verify this empirically in the appendix.

7 Conclusion

We formulate a new setting of the Thresholding Bandit
Problem with Dueling Choices, and provide the RS
algorithm, along with upper and lower bounds on its
performance. For future work, it would be interesting
to tighten the upper and lower bounds to match them;
We believe it should be possible to improve the lower
bound by randomizing the arms closest to the thresh-
old. It would also be interesting to develop algorithms
adapting to varying noise levels in comparisons.

Acknowledgements

This work has been supported in part by DARPA
FA8750-17-2-0130, NSF CCF-1763734 and IIS-1845444,
and AFRL FA8750-17-2-0212.

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

References
Abbasi-Yadkori, Y., Bartlett, P., Chen, X., and Malek,
A. (2016). Large-scale markov decision problems with
kl control cost and its application to crowdsourcing.
In In Proceedings of the International Conference on
Machine Learning (ICML).

Bradley, R. A. and Terry, M. E. (1952). Rank analysis
of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345.

Bubeck, S., Wang, T., and Viswanathan, N. (2013).
Multiple identifications in multi-armed bandits. In
Proceedings of the International Conference on Ma-
chine Learning (ICML).

Chen, J., Chen, X., Zhang, Q., and Zhou, Y. (2017).
Adaptive multiple-Arm identification. In In Pro-
ceedings of the International Conference on Machine
Learning (ICML).

Chen, S., Lin, T., King, I., Lyu, M. R., and Chen,
W. (2014). Combinatorial pure exploration of multi-
armed bandits. In Advances in Neural Information
Processing Systems, pages 379–387.

Chen, X., Bennett, P. N., Collins-Thompson, K., and
Horvitz, E. (2013). Pairwise ranking aggregation in
a crowdsourced setting. In Proceedings of the sixth
ACM international conference on Web search and
data mining, pages 193–202. ACM.

Chen, X., Lin, Q., and Zhou, D. (2015). Statistical
decision making for optimal budget allocation in
crowd labeling. The Journal of Machine Learning
Research, 16(1):1–46.

Fishburn, P. C. (1973). Binary choice probabilities: on
the varieties of stochastic transitivity. Journal of
Mathematical psychology, 10(4):327–352.

Heckel, R., Shah, N. B., Ramchandran, K., and Wain-
wright, M. J. (2016). Active ranking from pairwise
comparisons and when parametric assumptions don’t
help. arXiv preprint arXiv:1606.08842.

Kane, D. M., Lovett, S., Moran, S., and Zhang, J.
(2017). Active classification with comparison queries.
In 2017 IEEE 58th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 355–366.
IEEE.

Kaufmann, E., Cappé, O., and Garivier, A. (2016). On
the complexity of best-arm identification in multi-
armed bandit models. The Journal of Machine Learn-
ing Research, 17(1):1–42.

Locatelli, A., Gutzeit, M., and Carpentier, A. (2016).
An optimal algorithm for the thresholding bandit
problem. In Proceedings of the 33rd International
Conference on Machine Learning-Volume 48, pages
1690–1698. JMLR. org.

Massart, P. and Nédélec, É. (2007). Risk bounds for
statistical learning. arXiv Mathematics e-prints, page
math/0702683.

Mohajer, S., Suh, C., and Elmahdy, A. (2017). Active
learning for top-k rank aggregation from noisy com-
parisons. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
2488–2497. JMLR. org.

Mukherjee, S., Purushothama, N. K., Sudarsanam, N.,
and Ravindran, B. (2017). Thresholding bandits with
augmented ucb. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence,
pages 2515–2521. AAAI Press.

Shah, N., Balakrishnan, S., Guntuboyina, A., andWain-
wright, M. (2016a). Stochastically transitive models
for pairwise comparisons: Statistical and computa-
tional issues. In International Conference on Ma-
chine Learning, pages 11–20.

Shah, N. B., Balakrishnan, S., Bradley, J., Parekh, A.,
Ramchandran, K., and Wainwright, M. J. (2016b).
Estimation from pairwise comparisons: Sharp mini-
max bounds with topology dependence. The Journal
of Machine Learning Research, 17(1):2049–2095.

Szörényi, B., Busa-Fekete, R., Paul, A., and Hüller-
meier, E. (2015). Online rank elicitation for plackett-
luce: A dueling bandits approach. In Advances in
Neural Information Processing Systems, pages 604–
612.

Thurstone, L. L. (1927). A law of comparative judg-
ment. Psychological review, 34(4):273.

Tsybakov, A. B. et al. (2004). Optimal aggregation
of classifiers in statistical learning. The Annals of
Statistics, 32(1):135–166.

Xu, Y., Muthakana, H., Balakrishnan, S., Singh, A.,
and Dubrawski, A. (2018). Nonparametric regres-
sion with comparisons: Escaping the curse of dimen-
sionality with ordinal information. In International
Conference on Machine Learning, pages 5469–5478.

Xu, Y., Zhang, H., Miller, K., Singh, A., and
Dubrawski, A. (2017). Noise-tolerant interactive
learning using pairwise comparisons. In Advances in
Neural Information Processing Systems, pages 2431–
2440.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T.
(2012). The k-armed dueling bandits problem. Jour-
nal of Computer and System Sciences, 78(5):1538–
1556.

Zhou, Y., Chen, X., and Li, J. (2014). Optimal
PAC multiple arm identification with applications to
crowdsourcing. In In Proceedings of the International
Conference on Machine Learning (ICML).

Thresholding Bandit Problem with Both Duels and Pulls

(a) uniform (b) 12groups (c) 4groups

Figure 6: Empirical results comparing RS and other baselines under the 12groups and 4groups setting for pull
complexity. Error bars represent standard deviation across 500 experiments.

A Additional Experiment Details

Method to initialize γ0. The method to find the initial γ0 is stated in Algorithm 4. We lower γ0 iteratively
until we find max p̂i −min p̂i ≥ 2γ0. This criteria is set so that we are likely to find separable arms in subsequent
binary searches.

Algorithm 4 Initialize γ0

1: γ0 ← 0.1
2: while True do
3: while ∃i ∈ S, ni ≤ 1

γ2
0

log
(

8|S|(t+1)2

δ

)
do

4: for i ∈ S do
5: Draw i′ ∈ [K] uniformly at random, and compare arm i with arm i′

6: If arm i wins, wi ← wi + 1
7: ni ← ni + 1
8: end for
9: end while
10: Compute p̂i ← wi/ni for all i ∈ S
11: if max p̂i −min p̂i < 2γ0 then
12: γ0 ← γ0/1.1
13: else
14: break
15: end if
16: end while
Output: γ0

Additional Synthetic Experiments. In addition to the settings we consider in Section 6, we also test the
uniform reward distribution:
Uniform: The means are simply uniformly random in [0, 1]. Also to verify our observations on real data (see
Section 6.3), we compare RS with the baselines for pull complexity for the two following setups:
12groups: The means are uniformly randomly picked from [1/13, 2/13, ..., 12/13]. This simulates the reading
difficulty distribution;
4groups : The means are randomly picked by Pr[µi = 1/13] = Pr[µi = 12/13] = 5/12 and Pr[µi = 6/13] = Pr[µi =
7/13] = 1/12. This only keeps the arms close to the boundary and makes the other arms further from the
boundary.
Results are depicted in Figure 6. For uniform rewards(Figure 6a), RS achieves a slightly better performance
than SimpleLabel, much better than CLUCB. This situation can hardly be improved by using comparisons, since
identifying the labels of the hardest arms is almost as difficult as identifying the labels of all the arms. Still, RS
can outperform baselines by a small margin since it pulls fewer arms.

For 12groups and 4groups (Figure 6b,c) we obtain a similar performance gain as in the real data setting, suggesting
that the arms close to the boundary are increasing the cost of RS. We note that the pulls of RS is necessary since

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

there is no other way to identify the labels of arms with means 6/13 and 7/13.

(a) harmonic (b) exponential (c) 3 groups

Figure 7: Empirical results comparing RS and other baselines under BTL model for pull complexity. Error bars
represent standard deviation across 500 experiments.

Results on BTL model. We compare RS with the baselines under the same synthetic data but with the BTL
model for comparisons. The results for pull complexity is in Figure 7 and duel complexity in Figure 8. The results
are generally very similar to the linear link function case, but with a larger duel complexity. As in the linear link
function case, RS exhibits a better performance in both pull and duel complexity than all the other baselines.

(a) harmonic (b) exponential

Figure 8: Empirical results comparing RS and RankThenSearch under BTL model for duel complexity. PLPAC is
short for PLPAC-AMPR.

B Proofs

B.1 Proof of Theorem 1

First we show that with high probability our confidence interval in Algorithm 1 and 3 bounds pi and µi.

Lemma 6. With probability 1− δ the following holds:

• At step 13 in Algorithm 1 we have |pi − p̂i| ≤ γt for all i ∈ S and all t;

• At step 8 in Algorithm 3 we have |µi − µ̂i| ≤ γ for all arms i that are passed to Algorithm 3.

Proof. The lemma follows from standard concentration inequality. Using Hoeffding’s inequality and a union
bound we know that in each round of Algorithm 1 we have

Pr[∃i, |pi − p̂i| > γt] ≤ |S| exp(−2ni · γ2
t) ≤ δ

4t2
.

Sum it up we have |pi − p̂i| ≤ γt holds for all i ∈ S and all rounds t with probability at most δ/2.

Thresholding Bandit Problem with Both Duels and Pulls

Similarly, from Hoeffding’s inequality for sub-Gaussian random variables and a union bound we have for any run
of Figure-Out-Label,

Pr[∃t, |µi − µ̂i| > γ] ≤
∞∑
t=0

exp(− γ2

2R2
)

≤
∞∑
t=0

δ1
4(t+ 1)2

≤ δ1.

Now sum the probability over all runs of Figure-Out-Label we have

Pr[Every Figure-Out-Label is correct] =

∞∑
t=0

δ

4(t+ 1)2
log |S| · 1

log |S|
≤ δ/2.

The lemma follows from another union bound.

We now assume the event in Lemma 6 happens. Now we can show that we never make a mistake when we estimate
labels in Algorithm 3 using direct pulls. Firstly, upon termination of Figure-Out-Label we have |µ̂i − τ | > γ. Not
losing generality, suppose we have ŷi = 1 as the output. Then we have µ̂i − τ > γ, and thus µi > τ , so i ∈ Sτ .
Similarly we do not make a mistake when ŷi = 0.

To show the correctness when we infer labels in step 15 and 16 in Algorithm 1, we first need the following lemma
for binary search in an arbitrary noisy sequence:
Lemma 7. Binary-Search always returns within dlog(|S|)+1e iterations, and the first output k satisfies i) ŷik+1

= 1
if k < |S|; and ii) ŷik = 0 if k > 0.

Proof. Firstly, Algorithm 2 always terminates, because k = d(kmin + kmax)/2e satisfies kmax − kmin ≥ 2 max{k −
kmin, kmax − k}. For simplicity, define imaginary labels ŷ0 = 0, ŷ|S|+1 = 1. We prove by induction that we always
have ŷikmin

= 0 and ŷikmax+1
= 1. This is true for the first iteration; for subsequent iterations, if we move to the

left (Line 7) we have ŷik = ŷikmax+1
= 1; if we move the right (Line 9) we have ŷik = ŷikmin

= 0. Therefore the
claim holds. Note that upon termination we must have kmax = kmin. The lemma then follows from the claim.

Now if we let ŷi = 1 in step 15 in Algorithm 1, we have p̂i − p̂ik+1
≥ 2γt, and therefore pi > pik+1

. Since, we have
ŷik+1

= 1 from Lemma 7 and its label is estimated correctly by Algorithm 3, yik+1
= 1 and thus ik+1 ∈ Sτ . Since

ik+1 ∈ Sτ , pik+1
≥ pj for all j ∈ Scτ and same holds for pi > pik+1

meaning i ∈ Sτ . Similarly we do not make a
mistake on step 16.

Now we consider the number of duels taken to infer when any arm i = A \ {iu, il} is in S or S and hence is
eliminated from further duels. Not losing generality, suppose i ∈ Sτ , and thus µi > τ . We show that the arm i is
eliminated from further duels when we have 4γt < ∆̄c

i . Suppose we have i 6∈ S i.e. p̂ik+1
≥ p̂i − 2γt at the end of

the binary search in round t. Let j = arg maxj∈Sτ min{pj − pil , pi − pj} be the maximizer to obtain ∆̄c
i .

By Lemma 6 and definition of ∆̄c
i we have

p̂j ≤ pj + γt ≤ pi − ∆̄c
i + γt < pi − 3γt ≤ p̂i − 2γt,

so p̂j < p̂i − 2γt ≤ p̂ik+1
. So arm j is ranked before arm ik+1; and since ŷik = 0 by Lemma 7, we have ik 6∈ Sτ

since its label is estimated correctly by Algorithm 3, and therefore arm j is ranked no later than arm ik, thus
p̂j ≤ p̂ik . However, from definitions of ∆̄c

i and arm il, we have

pj ≥ pil + ∆̄c
i ≥ pik + 4γt.

And therefore by Lemma 6 we have p̂j ≥ pj − γt ≥ pik + 3γt ≥ p̂ik + 2γt, which makes a contradiction. Therefore
we will have p̂ik+1

< p̂i − 2γt i.e. arm i ∈ S, and arm i will be excluded from S in iteration t. In a similar way we
can argue that for i ∈ Scτ , it is excluded from S when ∆̄c

i > 4γt.

Therefore we would need log(8|S|t2/δ)
(∆̄c

i/4)2
duels to eliminate arm i from further duels. Sum this over all arms i and

use the fact that t ≤ log(1γ∗), we get the number of duels is O(Hc,2 log(K log(1/γ∗)
δ)) to identify all arms except

{il, iu}. When every arm i ∈ A \ {iu, il} has been given a label, iu, il will be given a label during binary search.

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

Now we bound the number of direct pulls. We figure out the label of arm i when 2γ ≥ |µi − τ | in Algorithm 3.

Therefore for each sample we need 2
√
R2 2 log(2/δ0)

T ≤ |µi − τ | pulls; note that we only require pulls during binary
search. Each binary search runs Algorithm 3 for at most logK times, and we do log(1/γ∗) times of binary search.
Combining these terms we get the number of pulls.

B.2 Proof of Theorem 3

Our proof borrows ideas from Heckel et al. (2016) but adapting to the dueling-choice case. Not losing generality,
suppose k ∈ Sτ ; the proof for k ∈ Scτ is similar. We first use a lemma from bandit literature (Kaufmann
et al., 2016) that links KL divergence with error probability. Let ν = {νj}mj=1 be a collection of m probability
distributions supported on R. Consider an algorithm A that selects an index it ∈ [m] and receives an independent
draw X from νi. it only depends on its past observations; i.e., it is Ft−1 measurable, where Ft is the σ-algebra
generated by i1, X1, ..., it, Xt. Let χ be a stopping rule of A that determines the termination of A. We assume
that χ is measurable w.r.t Ft and Pr[χ < ∞] = 1. Let Qi(χ) be the number of times that νi is selected by A
until termination. For any p, q ∈ (0, 1), let d(p, q) = p log p

q + (1− p) log 1−p
1−q be the KL divergence between two

Bernoulli distributions with parameter p, q. We use the following lemma:
Lemma 8 ((Kaufmann et al., 2016), Lemma 1). Let ν = {νj}mj=1, ν

′ = {ν′j}mj=1 be two collections of m probability
distributions on R. For any event E ∈ Fχ with Prν [E] ∈ (0, 1) we have

m∑
i=1

Eν [Qi(χ)]KL(νi, ν
′
i) ≥ d(Pr

ν
[E],Pr

ν′
[E]). (4)

Now, define the event E to be the event that A succeeds under M and µ, i.e., E ≡
{
Sτ = Ŝτ , S

c
τ = Ŝcτ

}
. Under

the relation Mij = 1−Mji the comparison is uniquely defined by the probabilities {Mij , 1 ≤ i < j ≤ K}; and
pull is uniquely defined by the mean vector µ. For any two arms i, j, let Dij(χ) be the number of times that
arms i and j duel before stopping. Therefore for two problem settings (M,µ) and (M ′,µ′), by Lemma 8 we have

K∑
i=1

K∑
j=i+1

EM,µ[Dij]d(Mij ,M
′
ij) +

1

2R2

K∑
i=1

(µi − µ′i)2 ≥ d(Pr
M,µ

[E], Pr
M ′,µ′

[E]). (5)

The second term in (5) follows from the KL divergence between Gaussian variables. We now construct another
feasible profile (M ′,µ′) and that µk < τ and that p′k < p′j for any j ∈ Sτ according to M ′. Therefore in this case
k 6∈ Sτ (M ′,µ′), where Sτ (M ′,µ′) is the set of arms with reward larger than τ under M ′,µ′. Since A succeeds
with probability 1− δ for any problem setting, we have PrM,µ[E] ≥ 1− δ and PrM ′,µ′ [E] ≤ δ. Therefore

d(Pr
M,µ

[E], Pr
M ′,µ′

[E]) ≥ d(δ, 1− δ) ≥ log
1

2δ
,

which holds for δ ≤ 0.15.

We now specify M ′,µ′. Let

M ′ij =


Mkj − (pk − piu), if i = k, j 6= k,

Mkj + (pk − piu), if j = k, i 6= k,

Mkj otherwise.

and µ′k = 2τ − µk. It is easy to see that µ′k ≤ τ , and therefore k 6∈ Sτ (M ′,µ′). We now show that the profile
M ′,µ′ by showing that p′k < p′j . In the new profile we have

p′k =
1

K − 1

∑
j 6=k

M ′kj =
1

K − 1

∑
j 6=k

(Mkj − (pk − piu)) = pk − pk + piu = piu .

For other arms i 6= k we have

p′i =
1

K − 1

∑
j 6=i

M ′ij = pi +
1

K − 1
(pk − piu).

Thresholding Bandit Problem with Both Duels and Pulls

And therefore p′k = piu < p′i for any i ∈ Sτ (M ′,µ′), and therefore (M ′,µ′) is feasible. Also since Mij ∈ [3
8 ,

5
8] we

have
M ′ij ≤

5

8
+ (

5

8
− 3

8
) =

7

8
,

and similarly M ′ij ≥ 1
8 . So for any j 6= k we have

d(Mkj ,M
′
kj) ≤

(Mkj −M ′kj)2

M ′kj(1−M ′kj)
= 10(pk − piu)2 (6)

Now consider the sums on the LHS of (5). Note that M ′ij = Mij when i 6= k, j 6= k; and also µk − µ′k = 2(µk − τ)
and µi − µ′i = 0 for i 6= k. Combining (5) and the uniform bound in (6) we have

K∑
i=1

K∑
j=i+1

EM,µ[Dij]d(Mij ,M
′
ij) +

1

2R2

K∑
i=1

(µi − µ′i)2

≤ 10(pk − piu)2
∑
j 6=k

EM,µ[Dkj] +
2(µk − τ)2

R2
E[Lk]

= 10(pk − piu)2EM,µ[Dk] +
2(µk − τ)2

R2
E[Lk]

Combining the expectations we get the desired results.

B.3 Proof of Corollary 5

The corollary follows directly from Theorem 3: For k 6∈ {iu, il} we have Lk = 0, and therefore

EM,µ[DAk] ≥
c log(1

2δ)

(∆c
k)2

.

Sum this over all arm k 6∈ {iu, il} we get the desired result.

B.4 Proof of Proposition 2

Under the link function assumption we have

piu − pil =
1

K − 1

∑
i 6=iu

σ(µiu − µi)−
1

K − 1

∑
i 6=il

σ(µil − µi)

≥ 1

K − 1

K∑
i=1

[σ(µiu − µi)− σ(µil − µi)]

≥ K

K − 1
L(µiu − µil) ≥ 2Lc.

For any i ∈ Sτ , use j = iu and we have ∆̄c
i ≥ min{2Lc,∆c

i}, and this holds similarly for i ∈ Scτ . Finally for iii),
notice that 2Lc ≤ 1 because otherwise σ(2c) > 1, and ∆c

i ≤ 1. Thus we have ∆̄c
i ≥ 2Lc∆c

i , and it leads to iii).

B.5 Proof for Example 1

The results follow easily from Theorem 1: We have ∆l
i = |µi − τ | ≥ 1

6 for every arm i. Under the linear link
function, we have pi − pj = Θ(µi − µj), and thus ∆̄c

i = Ω(1) for every arm i 6∈ {l, l + 1}. Therefore Hl = O(K)
and Hc,2 = O(K), and the results follow.

B.6 Proof for Example 2

For each xi, we have Pr[x ≤ 1/4] ≤ δ/(4l). Using a union bound, we have that with probability 1− δ/2 we have
xi ≤ 1/4∀i ∈ [K]. Let this event be EB. So under EB all sample means are in [0, 1/4] and [3/4, 1], so pull-only
algorithm requires Ω(K) pulls.

Yichong Xu, Xi Chen, Aarti Singh, Artur Dubrawski

On the other hand, let x(l) and x(l−1) be the l-th and (l − 1)-th order statistic of x1, ..., xl, i.e., the largest and
second largest element of x1, ..., xl. Then x(l) − x(l−1) is distributed according to a exponential distribution with
parameter λ. Routine calculation shows that

Pr[x(l) − x(l−1) ≥
− log(1− δ/4)

λ
] ≥ 1− δ/4.

Plug in λ and EB we have

Pr[x(l) − x(l−1) ≥
− log(1− δ/4)

4 log(4l/δ)
, EB] ≥ 1− δ/2.

Under this event and symmetrically for l + 1 ≤ i ≤ 2l, we have Hc,2 = O(K log2K); thus nduel = O(K log3K)

and npull = O(log2K).

	Introduction
	Problem Setup
	Problem Complexity

	The Rank-Search (RS) Algorithm
	Algorithm Description
	Theoretical Analysis

	Implications of Upper Bounds in Special Cases
	Lower Bounds
	An Arm-Wise Lower Bound
	Optimality of nduel and npull

	Experiments
	Data Configuration
	Baselines and Implementation Details
	Experiment Results

	Conclusion
	Additional Experiment Details
	Proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Corollary 5
	Proof of Proposition 2
	Proof for Example 1
	Proof for Example 2

