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A Proofs

A.1 Proof of Proposition in Section 2

Proof of Proposition 2.2. For the simplicity of notations, we drop the subscript of the loss function picked by
the auditor, that is, we denote £, by £. Furthermore, let

(5(2) = 65(z,y) = sup {Uz2,y) = Ael(@, ), (@2,9))}-

By the duality result of Blanchet and Murthy (2019), for any & > 0, we have

sup  Ez.p[l(Z)] = inf {de +Ezp, [(5(2)]}
P:W(P,P,)<e A0

and
s Eppll(Z)] = inf (e +Egep, 65 (2)]}.

P:W,(P,P,)<e

Let A\, € argminy>o {Ae + Ezp,[(5(Z)]}. Then we have

s EzpllZ)] - sw Ezpll(Z)
P:W(P,P,)<e P:W,(P,P,)<e

= inf {Ae + Ezvr, [5(2))} = A — Bz, [65:.(2)]

<Me+Ezop, [l5,(Z2)] — Me —Ezop, [(5 (Z)]
=Ez~p,[l5.(2) = (5. (2)].

By Assumption A3, we have

5. (2) =45 (2) = sup {€(za,y) = Aec((2,9), (22,9))} = sup {€(w2,y) — Aeu((2,9), (22,9))}

ro€X To€EX
S >‘* sup |C((I, y)7 ($27y)) - C*((SC,y), (I27y))‘
ToEX
< A\.nD?2.
Thus, we conclude that
sup Ezopll(2)] - sup  Ez.p[l(Z)] < \anD?.
P:W(P,P,)<e P:W,(P,P,)<e
Similarly, we have
sup  Ezopll(Z)]—  sup  Ezopll(Z2)] < A\nD?,
P:W, (P,P,)<e P:W(P,P,)<e

where A+ € argminy>o {Ae + Ezp, [¢5(2)]}.

Now, it suffices to show that A\, < % (and similarly Ay < %) By the optimality of A,

M S Mg+ Ezop, [sup {€(z2,Y) — A\d2 (X, 22)} — £(X,Y)]
T EX

=Mt +Ezup, 65 (2) - €(2)]
<Ae+Ezep, (05 (2) = U(2)]
)

= e+ Egep, [sup {€(z2,Y) — €(X,Y) = A2 (X, 23)}]
ToEX
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for any A > 0. By Assumption A2, the right-hand side is at most

A€ < Ae+Ezop, [sup {Ld,, (X, 22) — )\di*(X, x2)}]
ro€X

< Ae +sup{Lt — \t?}.

>0
We minimize the right-hand side with respect to ¢ (set ¢ = ) and A (set A = Q\L/g) to obtain A.e < Ly/e, or
equivalently A\, < % O

A.2 Proofs of Theorems in Section 3

Proof of Theorem 3.1. We are working with Euclidean space D = R¥ and E = R.
By Theorem 3.4, 1 : R — R is Hadamard directionally differentiable at f, (tangentially to R¥).

Since f,, is the empirical version of f,, by central limit theorem, we have
d d
\/'E(fn - f*) — N(O,E(f*)) ~ Z7

which is tight and supported in R¥.
Via delta method (Theorem 3.3) with ¢(-) and the derivative formula given by Theorem 3.4, we conclude

Ve (fa) = ()} 395 (Z2) =mf{(A+ )7 Z : (v, 1,A) € A}

Hence we complete the proof of Theorem 3.1. O

The next theorem adapted from from Bonnans and Shapiro (2000) will turn out to be useful.

Theorem A.1 (Proposition 4.27 in Bonnans and Shapiro (2000)). A, B and V are Banach spaces. f: A — R
is continuously differentiable. G 4+ o : A XV — B is continuously differentiable. K is a closed convexr subset of
B. Consider a class of problems

(Po) : min f(z)

€A
subject to G(z)+v eK

parameterized by v € V. Let p(v) be the optimal value of the problem P,. Suppose that

1. for v =0, the problem Py is convex;
2. »(0) is finite;
3. 0 € int{G(A) — K}.

Then the optimal value function ¢(v) is Hadamard directionally differentiable at v = 0. Furthermore,

) — ()

h!—h,t—0+ t

=sup{\'h:AeT}

for any h € V, where I is the set of optimal solutions of the dual problem of Py.

Proof of Theorem 3./. We first prove the theorem without constraint (D,II) = 0. In order to employ Theorem
A1, the result of canonical perturbation, we introduce a parameter ¢ € R, and the optimization problem (fy)
can be equivalently rewritten as

(P1): max "M 1 — f) +t
teR,ITeRS ™

subject to  (C,II) < e
HlK = f* T
t=20

AN
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where v, A\, are Lagrange multipliers.

The canonical perturbation of problem (P1) is then given by

(Pu,v,w) : maXK X ZT(HTlK - f*) +1
teR,ITeR ™

subject to  (C,II) +u <e
H1K+U:f*
t+w =0,

which outputs its optimal value ¢(u, v, w). Thus ¢ is a function from R¥+2 to R.

Let A=RNF xR, B=V=REF2 and K = {(z, f,|,0)" : 2 < e} ¢ RE*+2. Consider function f : A — R such
that (I1,¢) — —{IT (1" 1x — f.) +t}, and function G : A — B such that (II,¢) — ((C,TI), (I1x) ", ).

Then, the class of maximization problems (P, 4. ) is equivalent to the following class of minimization problems

(Qu,v,w) : min f(ILt)

(ILt)eA
subject to  G(II, ) + (u,v",w)" € K.

Denote the optimal value function of Q, 4., by ¢(u, v, w).

(i) To check item 1 in Theorem A.1, we note that Qg o, .0 is a problem of linear programming, and thus a convex
optimization problem.

(i) Item 2 in Theorem A.1 is guaranteed by

£ Z O = H}lIl{<C’7 H> il S RfXK7H1K = f*}7

which implies that Qg 0,0 has a solution, and thus ¢(0,0x, 0) is finite.
(iii) f. € RE ensures that item 3 in Theorem A.1 holds.

Now applying Theorem A.1 to (Qy v ), we conclude that ¢ is Hadamard directionally differentiable at the origin.
Note that ¢ = —¢, we can further conclude that ¢ is also Hadamard directionally differentiable at the origin,
and

lim 0(0,t8') —(0,0k41) _ lim ¢(0,t£") — $(0,0k41)
¢'—¢ t §'—¢ L

t—07T t—07"

= —sup{((A",w)", &) : (v, \,w) €T},

where I is the set of optimal solutions of the dual problem of (P1).

Furthermore, one can check that I' = A x {—1}, where A is the set of optimal solutions of the dual problem of

(f)-
Specifically, the dual problem of ¥(f,) is given by

K
. k
min — eV — E ff ))\k
y20A1, A !

subject to cijv+ X < —=lj, for1 <45 <K.

Thus, we have

A = argmax {EU—I—f:—)\ teiv+ N < =11 <4, < K}
v,>0,AeRK
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Note that ¥(f) = (0, f» — f,17(f — f+)), we conclude that 9 (f) is Hadamard directionally differentiable at f,,
and the derivative formula is given by

o) = i PO E ) =05

h'—h t
t—07T

— lim 90(07 _thl? tlTh/) B gD(O, OKa 0)
h' —h t

t—0t
— lim (p(o,tfl) - 90(0; 0K+1)

¢ t
t—0t+

—sup{((AT,w)",€) : (vy,\,w) €T}

= —sup{(\\", 1) T, (=A",ITA) ") : (v, \) € A}
—sup{—(A+1,h): (r,\) € A}

inf{(A+1,h) : (v,A) € A}.

[where £ = (—h',1"h)T]

For the case with constraint (D, II) = 0, note that the dual problem of 9 (f,) changes slightly into

K
min —ev — Z f*(k))\k
k=1

v, u>0,A1, 0 Ak

subject to CijV + dU,LL + /\7 S 7lj, for 1 S Z,j S K,

and
A= argmax {ev+ f;'—)\ sV digp+ N < =11 <45 < K}
v,u>0, ERK
Hence we complete the proof of Theorem 3.4. O

A.3 Proofs of Theorems in Section 4

The following lemma adapted from Hong and Li (2018) provides a general recipe for the consistency of our two
bootstrap strategies.

Lemma A.2 (Theorem 3.1 in Hong and Li (2018)). Suppose D and E are Banach Spaces and ¢ : Dy C D +— E
is Hadamard directionally differentiable at 6y tangentially to Dy. Let 6,, : {X;}! | — Dy be such that for some

rn T 00,7, {Hn — 00} ~ Gg in D, where Gg is tight and its support is included in Dy. Then

ra (6 (62) = 6 (60)) ~ 04, (Go).

Let 7%, ~ Gy satisfy regularity of measurability *. Then for €, — 0,76, — 00,

& 2 e (ot azi) ~o(m) S, (Go).

€n

Proof of Theorem 4.1. Hereafter, Gq refers to N'(f,, 2(f,)). By central limit theorem, we have
\/ﬁ{fn - f*} ~ Go and m{f;,m - f*} ~ Go.
Since m/n — 0, we have
fm

17z is asymptotically measurable jointly in the data and the bootstrap weights; g (Z%) is a measurable function of the
bootstrap weights outer almost surely in the data for every bounded, continuous map g : D — R; G is Borel measurable
and separable.
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Let r, = \/n, e, = 1/y/m and Zy, = /m{ [y ,, — fu}. Then ¢, — 0,76, — 00, and Z}, ~ Go. Applying Lemma
A.2, we conclude

U (fu+ VL = fa}) = ()
1/ym
V(fn + enly) —Y(fn) —

67L

Vi {(f ) — O(fa)} =

V%, (Go).

Finally, note that \/n{¢(fn) — ¢¥(f«)} ~ ¥}, (Go), we have

sup (B g (Vin {6(£,) = 00} Ifa] =B g (VA {0(f) = 0 (0D)] |

g€BL; (R)

< swp_ |E[g (Vi {$(fim) = ¥(f)}) 1fa] —E [g (¥], (G0)] |

g€BL1(R)

+ sup |B [ (4], (Go)] — E g (Vi {u(fa) — w(f0D)] |

g€BL1 (R)
= Op(l) + 0p<1) = Op(1>

by triangle inequality. Hence we complete the proof of Theorem 4.1. O

Proof of Theorem 4.2. By central limit theorem, we have
\/ﬁ{fn - f*} ~ Go ~ N(Oka E(f*))

As e = 0,n — oo, we have

T(fn,€) = RE and 2% ~ N(0g, 2(f0); T) ~ N(0k, 2(f.)) ~ Go.

Let rp, = v/n,e, =€, and Z; = z%. Then €, — 0,r,€, — 00, and Z} ~~ Gg. Applying Lemma A.2, we conclude

¢(fn + enZ:z) — w(fn)

€n

e {W(fn +e2h) —U(fa)} =

~ P (Go).

Similar to the previous proof, note that /n{¢(fn) — ¥ (f)} ~ ¥} (Go), we have

sup ‘E [9 (‘5_1 {w(fn + EZ:L) - ¢(fn)}) Ifn] —-E [9 (\/ﬁ{w(fn) - w(f*)})] ‘

g€BL1(R)

< sup ‘E [g (7 {w(fu + €25) = (fu)}) | fn] —E [g (¢}, (Go))] ’

g€BL;1 (R)

+ s [B]g (84, (@0)] ~E[g (Vafoth) — ()] |

g€BL1 (R)
= o0p(1) + 0p(1) = 0p(1)

by triangle inequality. Hence we complete the proof of Theorem 4.2. O

Proof of Theorem 4.3. By standard results in Politis et al. (1999), under bootstrap consistency, we have

lim [ CT—a/Q 63/2- -
lnrgloréf]? w(f*)e /(b(fn)_Wﬂw(fn)_ \/’71 =l-a

if the limiting distribution is continuous at the boundary of quantiles;

* % =
C1-a/2 Ca/2

’(/}(fn)_ \/ﬁ 7w(fn)_ \/ﬁ-)>1—04

hH_l)ian (z/)(f*) €
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if the limiting distribution is discontinuous at the boundary of quantiles.

Proof of Theorem 4.5. For any f, € Ak such that ¢(fs) <9,

P (\/Ew(fn) > \/H(S + Cl—a)
=1 P (Vi (fa) < Vnd + c1-0)
=1 =P (Va{o(fn) = ¥(f)} < c1oa + V(0 =9 (£2))

<1- P(\/E{Qp(fn) - 1/J(f*)} <cla)
<l-(1-a)

:O[’
where ¢1_, is the (1 — a)-th quantile of \/n{¥/(f.) — ¥ (f+)}. With Bootstrap consistency,

lim sup sup Py, (vVno(fn) > V/nd +ci_,)
n—=00  fi€AR(fi)<d

<limsup sup Pr, (Vi (fn) > V0 +¢,_,) = o
n—=00  f,€Ar:Y(fi)<8

For any f, € Ak such that ¢¥(f,) > 9,

P (vVny(fn) > Vnd +¢i_y) — 1.

B Bootstrap methods

Algorithm 1 m-out-of-n bootstrap

1: require: m (rule of thumb: 24/n), B € N
2: set S=0

3: for:=1,2,---,B do:

4:  draw Y* ~ Multinomial(m; f,)

5 append ym{B(Y*/m) — b (fa)} to S
6: end for
7: output: S

Algorithm 2 numerical derivative method

require: ¢ (rule of thumb: n='/4), B€ N
set S=9,i=1
while ¢ < B do:
draw Z* ~ N (Og, 2(fn))
if f, +eZ* € Rf:
append e H{Y(fn + €2*) —(fn))} to S
11+ 1
else:
continue
output: S

H
e




