
Songkai Xue, Mikhail Yurochkin, Yuekai Sun

Supplementary Materials for

“Auditing ML Models for Individual Bias and Unfairness”

A Proofs

A.1 Proof of Proposition in Section 2

Proof of Proposition 2.2. For the simplicity of notations, we drop the subscript of the loss function picked by
the auditor, that is, we denote `h by `. Furthermore, let

`
c
�(z) = `

c
�(x, y) , sup

x22X
{`(x2, y)� �c((x, y), (x2, y))} .

By the duality result of Blanchet and Murthy (2019), for any " > 0, we have

sup
P :W (P,Pn)"

EZ⇠P [`(Z)] = inf
��0

{�"+ EZ⇠Pn [`
c
�(Z)]}

and
sup

P :W⇤(P,Pn)"
EZ⇠P [`(Z)] = inf

��0
{�"+ EZ⇠Pn [`

c⇤
� (Z)]} .

Let �⇤ 2 argmin��0 {�"+ EZ⇠Pn [`
c⇤
� (Z)]}. Then we have

sup
P :W (P,Pn)"

EZ⇠P [`(Z)]� sup
P :W⇤(P,Pn)"

EZ⇠P [`(Z)]

= inf
��0

{�"+ EZ⇠Pn [`
c
�(Z)]}� �⇤"� EZ⇠Pn [`

c⇤
�⇤
(Z)]

 �⇤"+ EZ⇠Pn [`
c
�⇤(Z)]� �⇤"� EZ⇠Pn [`

c⇤
�⇤
(Z)]

= EZ⇠Pn [`
c
�⇤(Z)� `c⇤�⇤

(Z)].

By Assumption A3, we have

`
c
�⇤(z)� `

c⇤
�⇤
(z) = sup

x22X
{`(x2, y)� �⇤c((x, y), (x2, y))}� sup

x22X
{`(x2, y)� �⇤c⇤((x, y), (x2, y))}

 �⇤ sup
x22X

|c((x, y), (x2, y))� c⇤((x, y), (x2, y))|

 �⇤⌘D2
.

Thus, we conclude that

sup
P :W (P,Pn)"

EZ⇠P [`(Z)]� sup
P :W⇤(P,Pn)"

EZ⇠P [`(Z)]  �⇤⌘D2
.

Similarly, we have
sup

P :W⇤(P,Pn)"
EZ⇠P [`(Z)]� sup

P :W (P,Pn)"
EZ⇠P [`(Z)]  �†⌘D2

,

where �† 2 argmin��0 {�"+ EZ⇠Pn [`
c
�(Z)]}.

Now, it su�ces to show that �⇤  Lp
"
(and similarly �†  Lp

"
). By the optimality of �⇤,

�⇤"  �⇤"+ EZ⇠Pn [ sup
x22X

{`(x2, Y )� �⇤d2x⇤(X,x2)}� `(X,Y )]

= �⇤"+ EZ⇠Pn [`
c⇤
�⇤
(Z)� `(Z)]

 �"+ EZ⇠Pn [`
c⇤
� (Z)� `(Z)]

= �"+ EZ⇠Pn [ sup
x22X

{`(x2, Y )� `(X,Y )� �d2x⇤(X,x2)}]
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for any � � 0. By Assumption A2, the right-hand side is at most

�⇤"  �"+ EZ⇠Pn [ sup
x22X

{Ldx⇤(X,x2)� �d2x⇤(X,x2)}]

 �"+ sup
t�0

{Lt� �t2}.

We minimize the right-hand side with respect to t (set t = L
2� ) and � (set � = L

2
p
"
) to obtain �⇤"  L

p
", or

equivalently �⇤  Lp
"
. ⇤

A.2 Proofs of Theorems in Section 3

Proof of Theorem 3.1. We are working with Euclidean space D = RK and E = R.

By Theorem 3.4,  : RK ! R is Hadamard directionally di↵erentiable at f? (tangentially to RK).

Since fn is the empirical version of f?, by central limit theorem, we have
p
n(fn � f?)

d! N (0,⌃(f?))
d⇠ Z,

which is tight and supported in RK .

Via delta method (Theorem 3.3) with  (·) and the derivative formula given by Theorem 3.4, we conclude

p
n{ (fn)�  (f?)}

d!  
0
f?(Z) = inf{(�+ l)>Z : (⌫, µ,�) 2 ⇤}.

Hence we complete the proof of Theorem 3.1. ⇤

The next theorem adapted from from Bonnans and Shapiro (2000) will turn out to be useful.

Theorem A.1 (Proposition 4.27 in Bonnans and Shapiro (2000)). A, B and V are Banach spaces. f : A ! R
is continuously di↵erentiable. G + • : A ⇥ V ! B is continuously di↵erentiable. K is a closed convex subset of
B. Consider a class of problems

(Pv) : min
x2A

f(x)

subject to G(x) + v 2 K
parameterized by v 2 V. Let '(v) be the optimal value of the problem Pv. Suppose that

1. for v = 0, the problem P0 is convex;

2. '(0) is finite;

3. 0 2 int{G(A)�K}.

Then the optimal value function '(v) is Hadamard directionally di↵erentiable at v = 0. Furthermore,

lim
h0!h,t!0+

'(th0)� '(0)
t

= sup{�>h : � 2 �}

for any h 2 V, where � is the set of optimal solutions of the dual problem of P0.

Proof of Theorem 3.4. We first prove the theorem without constraint hD,⇧i = 0. In order to employ Theorem
A.1, the result of canonical perturbation, we introduce a parameter t 2 R, and the optimization problem  (f?)
can be equivalently rewritten as

(P1) : max
t2R,⇧2RK⇥K

+

l
>(⇧>

1K � f?) + t

subject to hC,⇧i  " : ⌫

⇧1K = f? : �

t = 0 : ⌘
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where ⌫,�, ⌘ are Lagrange multipliers.

The canonical perturbation of problem (P1) is then given by

(Pu,v,w) : max
t2R,⇧2RK⇥K

+

l
>(⇧>

1K � f?) + t

subject to hC,⇧i+ u  "
⇧1K + v = f?

t+ w = 0,

which outputs its optimal value '(u, v, w). Thus ' is a function from RK+2 to R.

Let A = RK⇥K
+ ⇥ R, B = V = RK+2, and K = {(x, f>

? , 0)> : x  "} ⇢ RK+2. Consider function f : A! R such
that (⇧, t) 7! �{l>(⇧>

1K � f?) + t}, and function G : A! B such that (⇧, t) 7! (hC,⇧i, (⇧1K)>, t)>.

Then, the class of maximization problems (Pu,v,w) is equivalent to the following class of minimization problems

(Qu,v,w) : min
(⇧,t)2A

f(⇧, t)

subject to G(⇧, t) + (u, v>, w)> 2 K.

Denote the optimal value function of Qu,v,w by �(u, v, w).

(i) To check item 1 in Theorem A.1, we note that Q0,0K ,0 is a problem of linear programming, and thus a convex
optimization problem.

(ii) Item 2 in Theorem A.1 is guaranteed by

" � 0 = min{hC,⇧i : ⇧ 2 RK⇥K
+ ,⇧1K = f?},

which implies that Q0,0K ,0 has a solution, and thus �(0,0K , 0) is finite.

(iii) f? 2 RK
+ ensures that item 3 in Theorem A.1 holds.

Now applying Theorem A.1 to (Qu,v,w), we conclude that � is Hadamard directionally di↵erentiable at the origin.
Note that ' = ��, we can further conclude that ' is also Hadamard directionally di↵erentiable at the origin,
and

lim
⇠0!⇠
t!0+

'(0, t⇠0)� '(0,0K+1)

t
= � lim

⇠0!⇠
t!0+

�(0, t⇠0)� �(0,0K+1)

t
= � sup{h(�>, w)>, ⇠i : (⌫,�, w) 2 �},

where � is the set of optimal solutions of the dual problem of (P1).

Furthermore, one can check that � = ⇤ ⇥ {�1}, where ⇤ is the set of optimal solutions of the dual problem of
 (f?).

Specifically, the dual problem of  (f?) is given by

min
⌫�0,�1,··· ,�K

� "⌫ �
KX

k=1

f
(k)
? �k

subject to cij⌫ + �i  �lj , for 1  i, j  K.

Thus, we have

⇤ = argmax
⌫,�0,�2RK

{"⌫ + f
>
? � : cij⌫ + �i  �lj , 1  i, j  K}
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Note that  (f) = '(0, f? � f, l
>(f � f?)), we conclude that  (f) is Hadamard directionally di↵erentiable at f?,

and the derivative formula is given by

 
0
f?(h) = lim

h0!h
t!0+

 (f? + th
0)�  (f?)
t

= lim
h0!h
t!0+

'(0,�th0
, tl

>
h
0)� '(0,0K , 0)

t

= lim
⇠0!⇠
t!0+

'(0, t⇠0)� '(0,0K+1)

t

⇥
where ⇠ = (�h>

, l
>
h)>

⇤

= � sup{h(�>, w)>, ⇠i : (⌫,�, w) 2 �}
= � sup{h(�>,�1)>, (�h>

, l
>
h)>i : (⌫,�) 2 ⇤}

= � sup{�h�+ l, hi : (⌫,�) 2 ⇤}
= inf{h�+ l, hi : (⌫,�) 2 ⇤}.

For the case with constraint hD,⇧i = 0, note that the dual problem of  (f?) changes slightly into

min
⌫,µ�0,�1,··· ,�K

� "⌫ �
KX

k=1

f
(k)
? �k

subject to cij⌫ + dijµ+ �i  �lj , for 1  i, j  K,

and
⇤ = argmax

⌫,µ�0,�2RK

{"⌫ + f
>
? � : cij⌫ + dijµ+ �i  �lj , 1  i, j  K}.

Hence we complete the proof of Theorem 3.4. ⇤

A.3 Proofs of Theorems in Section 4

The following lemma adapted from Hong and Li (2018) provides a general recipe for the consistency of our two
bootstrap strategies.

Lemma A.2 (Theorem 3.1 in Hong and Li (2018)). Suppose D and E are Banach Spaces and � : D� ✓ D 7! E
is Hadamard directionally di↵erentiable at ✓0 tangentially to D0. Let ✓̂n : {Xi}ni=1 7! D� be such that for some

rn " 1, rn

n
✓̂n � ✓0

o
 G0 in D, where G0 is tight and its support is included in D0. Then

rn

⇣
�

⇣
✓̂n

⌘
� � (✓0)

⌘
 �

0
✓0 (G0) .

Let Z⇤
n  G0 satisfy regularity of measurability 1. Then for ✏n ! 0, rn✏n !1,

�̂
0
n (Z⇤

n)
def
==

�

⇣
✓̂n + ✏nZ⇤

n

⌘
� �

⇣
✓̂n

⌘

✏n
 �

0
✓0 (G0) .

Proof of Theorem 4.1. Hereafter, G0 refers to N (f?,⌃(f?)). By central limit theorem, we have
p
n{fn � f?} G0 and

p
m{f⇤

n,m � f?} G0.

Since m/n! 0, we have

p
m{f⇤

n,m � fn} =
p
m{f⇤

n,m � f?}�
r

m

n

p
n{fn � f?} G0.

1Z⇤
n is asymptotically measurable jointly in the data and the bootstrap weights; g (Z⇤

n) is a measurable function of the
bootstrap weights outer almost surely in the data for every bounded, continuous map g : D ! R; G0 is Borel measurable
and separable.
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Let rn =
p
n, ✏n = 1/

p
m and Z?n =

p
m{f⇤

n,m � fn}. Then ✏n ! 0, rn✏n !1, and Z?n  G0. Applying Lemma
A.2, we conclude

p
m
�
 (f⇤

n,m)�  (fn)
 
=
 

⇣
fn + 1p

m

p
m{f⇤

n,m � fn}
⌘
�  (fn)

1/
p
m

=
 (fn + ✏nZ⇤

n)�  (fn)
✏n

  
0
f?(G0).

Finally, note that
p
n{ (fn)�  (f?)}  

0
f?
(G0), we have

sup
g2BL1(R)

���E
⇥
g
�p

m
�
 (f⇤

n,m)�  (fn)
 �

|fn
⇤
� E

⇥
g
�p

n { (fn)�  (f?)}
�⇤ ���

 sup
g2BL1(R)

���E
⇥
g
�p

m
�
 (f⇤

n,m)�  (fn)
 �

|fn
⇤
� E

⇥
g
�
 
0
f?(G0)

�⇤ ���

+ sup
g2BL1(R)

���E
⇥
g
�
 
0
f?(G0)

�⇤
� E

⇥
g
�p

n { (fn)�  (f?)}
�⇤ ���

= op(1) + op(1) = op(1)

by triangle inequality. Hence we complete the proof of Theorem 4.1. ⇤

Proof of Theorem 4.2. By central limit theorem, we have
p
n{fn � f?} G0 ⇠ N (0k,⌃(f?)).

As ✏! 0, n!1, we have

T(fn, ✏)! RK and z
⇤
n ⇠ N (0K ,⌃(fn);T) N (0k,⌃(f?)) ⇠ G0.

Let rn =
p
n, ✏n = ✏, and Z⇤

n = z
⇤
n. Then ✏n ! 0, rn✏n !1, and Z?n  G0. Applying Lemma A.2, we conclude

✏
�1 { (fn + ✏z

⇤
n)�  (fn)} =

 (fn + ✏nZ⇤
n)�  (fn)
✏n

  
0
f?(G0).

Similar to the previous proof, note that
p
n{ (fn)�  (f?)}  

0
f?
(G0), we have

sup
g2BL1(R)

���E
⇥
g
�
✏
�1 { (fn + ✏z

⇤
n)�  (fn)}

�
|fn

⇤
� E

⇥
g
�p

n { (fn)�  (f?)}
�⇤ ���

 sup
g2BL1(R)

���E
⇥
g
�
✏
�1 { (fn + ✏z

⇤
n)�  (fn)}

�
|fn

⇤
� E

⇥
g
�
 
0
f?(G0)

�⇤ ���

+ sup
g2BL1(R)

���E
⇥
g
�
 
0
f?(G0)

�⇤
� E

⇥
g
�p

n { (fn)�  (f?)}
�⇤ ���

= op(1) + op(1) = op(1)

by triangle inequality. Hence we complete the proof of Theorem 4.2. ⇤

Proof of Theorem 4.3. By standard results in Politis et al. (1999), under bootstrap consistency, we have

lim inf
n!1

P
✓
 (f?) 2


 (fn)�

c
⇤
1�↵/2p

n
, (fn)�

c
⇤
↵/2p
n

�◆
= 1� ↵

if the limiting distribution is continuous at the boundary of quantiles;

lim inf
n!1

P
✓
 (f?) 2


 (fn)�

c
⇤
1�↵/2p

n
, (fn)�

c
⇤
↵/2p
n

�◆
> 1� ↵
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if the limiting distribution is discontinuous at the boundary of quantiles. ⇤

Proof of Theorem 4.5. For any f? 2 �K such that  (f?)  �,

P
�p

n (fn) >
p
n� + c1�↵

�

=1� P
�p

n (fn) 
p
n� + c1�↵

�

=1� P
�p

n{ (fn)�  (f?)}  c1�↵ +
p
n(� �  (f?))

�

1� P(
p
n{ (fn)�  (f?)}  c1�↵)

1� (1� ↵)
=↵,

where c1�↵ is the (1� ↵)-th quantile of
p
n{ (fn)�  (f?)}. With Bootstrap consistency,

lim sup
n!1

sup
f?2�K : (f?)�

Pf?

�p
n (fn) >

p
n� + c

⇤
1�↵

�

 lim sup
n!1

sup
f?2�K : (f?)�

Pf?

�p
n (fn) >

p
n� + c1�↵

�
= ↵.

For any f? 2 �K such that  (f?) > �,

P
�p

n (fn) >
p
n� + c

⇤
1�↵

�
! 1.

⇤

B Bootstrap methods

Algorithm 1 m-out-of-n bootstrap

1: require: m (rule of thumb: 2
p
n), B 2 N

2: set S = ?
3: for i = 1, 2, · · · , B do:
4: draw Y

⇤ ⇠ Multinomial(m; fn)
5: append

p
m{ (Y ⇤

/m)�  (fn))} to S
6: end for

7: output: S

Algorithm 2 numerical derivative method

1: require: ✏ (rule of thumb: n�1/4), B 2 N
2: set S = ?, i = 1
3: while i  B do:
4: draw Z

⇤ ⇠ N (0K ,⌃(fn))
5: if fn + ✏Z

⇤ 2 RK
+ :

6: append ✏�1{ (fn + ✏Z
⇤)�  (fn))} to S

7: i i+ 1
8: else:
9: continue

10: output: S


