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Abstract

We consider the task of auditing ML models
for individual bias/unfairness. We formalize
the task in an optimization problem and de-
velop a suite of inferential tools for the op-
timal value. Our tools permit us to obtain
asymptotic confidence intervals and hypoth-
esis tests that cover the target/control the
Type I error rate exactly. To demonstrate
the utility of our tools, we use them to reveal
the gender and racial biases in Northpointe’s
COMPAS recidivism prediction instrument.

1 Introduction

Machine learning (ML) models are finding their way
into high-stakes decision making tasks such as housing
(Angwin and Parris Jr, 2016; Angwin et al., 2017) and
recidivism prediction (Angwin et al., 2016). Although
replacing humans with ML models eliminates human
biases in the decision-making process, the models may
perpetuate or even exacerbate biases in their train-
ing data. Such biases in ML systems are especially
objectionable if they adversely a↵ect minority and/or
underprivileged groups of users (Barocas and Selbst,
2016). For example, in 2016 and 2017, ProPublica re-
ported that Facebook allows advertisers to filter users
by attributes protected by federal anti-discrimination
law (Angwin and Parris Jr, 2016; Angwin et al., 2017).
Similar reports eventually prompted state and federal
level investigations into Facebook’s advertising plat-
form (Tobin, 2019a,b). Other high-profile examples of
algorithmic bias/unfairness include racial bias in al-
gorithms for estimating defendants’ chances of com-
mitting another crime (Angwin et al., 2016), gender
biases in resume screening systems for technical posi-
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tions (Dastin, 2018), and racial bias in image search
results (Allen, 2016).

In response, the data science community has proposed
many formal definitions of algorithmic fairness and
methods to train ML models that abide by the def-
initions. However, a notable gap in the literature re-
mains: calibrated methods for detecting and localiz-
ing bias/unfairness in ML models. For example, in
the aforementioned investigations of bias/unfairness in
ML models, investigator study discrepancies between
summary statistics of the output of ML models on sub-
groups (e.g. false positive rates on black and white de-
fendants) (Angwin et al., 2016; Dastin, 2018), but they
lack statistical tools to ascertain whether the discrep-
ancies they observe are systemic or due to the inherent
randomness in the data. In other words, the investi-
gators lack tools to calibrate the statistics so that the
chance of a false alarm is controlled.

In this paper, we address this issue by providing a
suite of inferential tools for detecting and localizing
bias/unfairness in ML models. The main benefits of
the methods are

1. the methods only require black-box or query ac-
cess to the ML model: an auditor only has to
observe the output of the ML model;

2. the methods are computationally e�cient : the
main computational expense is solving a convex
optimization problem;

3. the methods provide an interpretable pairing be-
tween inputs that localize the bias/unfairness in
an ML system.

The basis of the proposed suite of inferential tools is
a result on the asymptotic distribution of the optimal
value of a convex optimization problem. Due to the
lack of regularity in the value function of the prob-
lem, the asymptotic distribution of the optimal value
is non-Gaussian. This result may be of independent
interest to researchers.
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1.1 Related work

Generally speaking, there are two kinds of mathemat-
ical definitions of algorithmic fairness: group fairness
and individual fairness. Most prior work on algo-
rithmic fairness focuses on group fairness because it
is suitable for statistical analysis. Despite its preva-
lence, group fairness su↵ers from two critical issues.
First, it is possible for an ML model that satisfies
group fairness to be blatantly unfair from the perspec-
tive of individual users (Dwork et al., 2012). Second,
there are fundamental incompatibilities between intu-
itive notions of group fairness (Kleinberg et al., 2016;
Chouldechova, 2017).

In light of the issue with group fairness, we focus on in-
dividual fairness in this paper. At a high-level, the idea
of individual fairness is a fair algorithm ought to treat
similar users similarly. This idea is intuitive and has a
strong legal basis. Despite its benefits, individual fair-
ness has been dismissed as impractical because there
is no consensus on which users are similar. Although
this is a critical issue, it is not the focus of this paper,
and we assume there is a similarity function that de-
termines which users are similar and which users are
dissimilar in the rest of the paper. Our tools make
no restrictions on the similarity function, so auditors
are free to customize the similarity function for their
applications. In our computational results, we follow
Yurochkin et al. (2020) by adopting a data-driven sim-
ilarity function.

There is a parallel vein of work in Wasserstein distri-
butionally robust optimization (DRO) (Blanchet and
Murthy, 2019; Lee and Raginsky, 2018; Sinha et al.,
2017; Blanchet et al., 2019) on obtaining confidence
intervals for the population optimal value. The lat-
est in this line of work (Blanchet et al., 2019) also
obtains asymptotic distributional results on the distri-
butionally robust optimal value. The key distinction
between this line of work and our work is the robust-
ness radius " is fixed in our work and shrinking (usu-
ally at a 1

n -rate) in the DRO literature. As we shall
see, this leads to qualitatively di↵erent distributional
results: the asymptotic distribution under a fixed ra-
dius is generally non-Gaussian, while the distribution
under a shrinking radius is Gaussian.

2 The auditor’s problem

Imagine an investigator evaluating the fairness of an
ML model. The auditor wishes to detect and localize
violations of individual fairness in the ML models. In
this section, we formalize the auditor’s task in a con-
vex optimization problem. We start by recalling the
definition of individual fairness by Dwork et al. (2012).

Definition 2.1. An ML model h : X ! Y is individ-
ually fair if there is L > 0 such that

dy(h(x1), h(x2))  Ldx(x1, x2) for all x1, x2 2 X ,

where dx and dy are metrics on the input space X and
the output space Y.

The fair metric dx in Definition 2.1 encodes our intu-
ition of which samples should be treated similarly by
the ML model. We emphasize that dx(x1, x2) being
small does NOT imply x1 and x2 are similar in all
respects. Even if dx(x1, x2) is small, x1 and x2 may
di↵er in certain attributes that are irrelevant to the
ML task at hand, e.g., protected attributes.

At a high-level, we envision the auditor collects a set
of audit data and evaluates the performance of the ML
model on the audit data and checks for discrepancies
between the performance of the model on similar sam-
ples. The presence of large discrepancies suggests the
ML model violates individual fairness. This type of
audit is known as a correspondence study in the em-
pirical literature in social sciences; Bertrand and Mul-
lainathan (2004)’s celebrated study of discrimination
in the US labor market is a prominent example.

Mathematical preliminaries Denote the input
and output space of the ML model by X and Y re-
spectively and the sample space by Z , X ⇥ Y . We
equip X with a metric dx : X ⇥X ! R+. This metric
is the metric appearing in Definition 2.1; it encodes
our intuition of which samples are similar and which
are dissimilar. To keep things simple, we assume Y is
a discrete set (i.e. the ML model is a classifier). We
equip Z with the metric

dz((x1, y1), (x2, y2)) , dx(x1, x2) +1⇥ 1{y1 6= y2},

The metric dz encodes our intuition of which sam-
ples are similar and which are dissimilar: (x1, y1) and
(x2, y2) similar if and only if (i) they share a label and
(ii) x1 and x2 are similar according to dx. Finally, we
equip �(Z), the set of probability distributions on Z,
with the 1-Wasserstein distance. Recall the Wasser-
stein distance between two probability distributions P
and Q on Z is

W (P,Q) = inf
⇧2C(P,Q)

Z

Z⇥Z
c (z1, z2) d⇧ (z1, z2) ,

where c : Z⇥Z ! R+ is a transportation cost function
and C(P,Q) is the set of couplings between P and Q.
To encode our intuition of fairness in the Wasserstein
distance, we use d2z as the transportation cost function.
This Wasserstein distance considers two distributions
close if the mass they put on comparable segments
of the sample space is similar (the placement of mass
within comparable segments may di↵er).



Songkai Xue, Mikhail Yurochkin, Yuekai Sun

Returning to the auditor’s task, let h be the ML
model under audit. To detect and localize disparate
treatment by the ML model, the auditor picks a loss
function `h : Z ! R+ to measure the performance
of the model and evaluates the risk of the model
EZ⇠P? [`h(Z)], where P? is the data generating distri-
bution. If there is no bias/unfairness in the ML model,
then it is not possible for the auditor to increase the
risk by moving (probability) mass to similar areas of
the sample space. In other words, if the ML model is
fair, then the value of the optimization problem

max
P2�(Z)

EZ⇠P [`h(Z)]� EZ⇠P? [`h(Z)]

subject to W (P, P?)  ",

(2.1)

where " � 0 is a transportation budget parameter and
should be small. The constraint on the transportation
budget compels the auditor to move mass to similar
areas of the sample space.

In practice, P? is unknown, so the auditor collects a
set of audit data {(xi, yi)}ni=1 and solves the empirical
version of (2.1):

max
P2�(Z)

EZ⇠P [`h(Z)]� EZ⇠Pn [`h(Z)]

W (P, Pn)  ",

(2.2)

where Pn is the empirical distribution of the audit
data. A large optimal value is evidence that the ML
model is unfair. This suggests the optimal value of this
optimization problem as a test statistic. We call the
optimal value of (2.2) the Fair Transport Hypothesis
(FaiTH) test statistic. In summary, if the ML model
is fair, then the FaiTH statistic is small.

The FaiTH statistic is robust to small changes in the
similarity functions. Let dx, dx⇤ : X ⇥X ! R+ be two
di↵erent similarity metrics on X . Let c, c⇤ : Z ⇥ Z !
R+ be the transportation cost functions on Z induced
by dx, dx⇤ . Let W,W⇤ : �(Z) ⇥ �(Z) ! R+ be the
Wasserstein distances on�(Z) induced by dx, dx⇤ . We
start by stating the following assumptions:

(A1) the feature space X is bounded:

D , max{diam(X ), diam⇤(X )} < 1;

(A2) the loss function is non-negative and bounded:
0  `h(z)  M for all z 2 Z, and L-Lipschitz
with respect to dx and dx⇤ :

supy:(x1,y),(x2,y)2Z |`h(x1, y)� `h(x2, y)|
 Ldx(x1, x2) ^ dx⇤(x1, x2);

(A3) the discrepancy between the transportation cost
functions is uniformly bounded:

sup
(x1,y),(x2,y)2Z

�����
c((x1, y), (x2, y))�
c⇤((x1, y), (x2, y))

�����  ⌘D
2
.

The following proposition shows the robustness of the
FaiTH statistic with respect to changes in the similar-
ity functions.

Proposition 2.2. Under Assumptions A1–A3, the
di↵erence between the FaiTH statistics induced by dx

and dx⇤ satisfies
�����
maxP :W (P,Pn)" EZ⇠P [`h(Z)]�
maxP :W⇤(P,Pn)" EZ⇠P [`h(Z)]

����� 
L⌘D

2

p
"

.

In the subsequent sections, we develop a suite of infer-
ential tools based on the FaiTH statistic. We empha-
size that

1. the auditor only needs to be able to query the
output of the ML model to collect the audit data;

2. (2.2) is a linear program, so it is possible to eval-
uate the FaiTH statistic e�ciently.

Inference for the optimal value of an optimization
problem (2.2) is generally a hard task, and we focus on
finite sample spaces. This simplification is common in
the literature on inferential tools for optimal transport
problems (Sommerfeld and Munk, 2018; Klatt et al.,
2018). As we shall see, the restriction of finite spaces is
su�cient for many practical problems, including eval-
uating the algorithmic fairness of the COMPAS recidi-
vism prediction instrument. For a finite sample space,
the auditor’s problem is

max
⇧2R|Z|⇥|Z|

+

l
>(⇧>

1|Z| � fn)

hC,⇧i  "

⇧1|Z| = fn,

where l 2 R|Z|
+ is the vector of losses and its i-th entry

is `h(zi), C 2 R|Z|⇥|Z|
+ is the matrix of transportation

costs and its (i, j)-th entry is c(zi, zj), and fn 2 �|Z|
is the empirical distribution of the data {(xi, yi)}ni=1.

3 Asymptotic distribution of the

FaiTH statistic

In this section, we establish our main result on the
asymptotic distribution of the FaiTH statistic. We
state the main result and provide a sketch of the proof.
For completeness, we also describe the key ingredients
of the proof along the way.

3.1 Asymptotic distribution

The sample space of our interest is discrete: Z =
{z1, · · · , zK}, where K = |Z|, and the data gener-

ating distribution is P? =
PK

k=1 f
(k)
? �zi , where f? =

(f (1)
? , · · · , f (K)

? )> 2 �K , {x 2 RK
+ : 1>

Kx = 1} and
�z is the Dirac measure at z. The auditor observes
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an empirical measure Pn =
PK

k=1 f
(k)
n �zi based on fre-

quency summary of IID samples Z1, · · · , Zn ⇠ P?, i.e.,

f
(k)
n = |{i 2 [n] : Zi = zk}|/n for k = 1, · · · ,K, and

fn = (f (1)
n , · · · , f (K)

n )> 2 �K . Hereafter, we do not
distinguish between measures P?, Pn and their corre-
sponding probability vectors f?, fn.

Consider the audit value function  : �K ! R+ de-
fined as

 (f) , max
⇧2RK⇥K

+

l
>(⇧>

1K � f)

subject to hC,⇧i  "

hD,⇧i = 0

⇧1K = f

(3.1)

where C 2 RK⇥K
+ is the cost matrix, D 2 {0, 1}K⇥K

is the indicator matrix. The FaiTH statistic is the op-
timal value  (fn). The second constraint hD,⇧i = 0
explicitly encodes any restrictions on the transporta-
tion plan implicit in the transportation cost function.
If Di,j = 1, then moving mass from zi to zj is prohib-
ited. This is equivalent to c(zi, zj) = 1.

Theorem 3.1 (Asymptotic distribution of the FaiTH
statistic). Let f? 2 �K and nfn ⇠ Multinomial(n; f?).
Let l = (l1, · · · , lK) 2 RK

+ , " � 0, C 2 RK⇥K
+ , and

D 2 {0, 1}K⇥K . Define the set

⇤ = argmax
⌫,µ�0,�2RK

{"⌫ + f
>
? � :

⌫C + µD + �1
>
n �RK⇥K

+
�1nl

>}
(3.2)

and the multinomial covariance matrix

(⌃(p))i,j =

(
pi(1� pi), if 1  i = j  K;

�pipj , if 1  i 6= j  K.

The asymptotic distribution of  (fn) is
p
n{ (fn)�  (f?)}

d! inf{(�+ l)>Z : (⌫, µ,�) 2 ⇤},
where Z ⇠ N (0K ,⌃(f?)).

The set ⇤ in Theorem 3.1 is the set of optimal points
of the dual problem of  (f?), which coincides with the
set of Lagrange multipliers of  (f?) satisfying the op-
timality conditions. It is generally a convex set. How-
ever, if ⇤ is a singleton, then the asymptotic distri-
bution is Gaussian. This is the generic case, as the
inequality constraint in the auditor’s problem is gen-
erally active. The dual optimum is only non-unique
when the inequality constraint is redundant. The left
panel of Figure 1 shows a histogram of the values ofp
n{ (fn)�  (f?)} and its asymptotic distribution.

3.2 Directionally di↵erentiable statistical

functionals and delta method

A standard tool for deriving the asymptotic distribu-
tion of a statistical functional is the delta method.

Figure 1: Asymptotic approximation (left panel) and
bootstrap approximation (right panel) to the sampling
distribution of the FaiTH statistic.

However, the delta method requires the statistical
functional to be di↵erentiable (van der Vaart, 1998).
Although the audit value function is not di↵erentiable,
it is convex and directionally di↵erentiable. As we
shall see, this allows us to appeal to a version of the
delta method for directionally di↵erentiable functions.

Definition 3.2 (Hadamard directional derivatives). D
and E are Banach spaces. A map � : D� ✓ D ! E is
called Hadamard directionally di↵erentiable at ✓0 2 D
tangentially to D0 ✓ D if there is a map �0✓0 : D ! E
such that

limh0!h,t!0+
1
t (�(✓0 + th

0)� �(✓0)) = �
0
✓0
(h)

for any h 2 D0

The audit value function is closely related to the op-
timal value function of the auditor’s problem. The
optimal value function describes the sensitivity of the
optimal value of an optimization problem to pertur-
bations of the problem parameters. Under suitable
conditions, the optimal value function is directionally
di↵erentiable.

There is a more general version of the delta method
for directionally di↵erentiable statistical functionals
(Shapiro, 1991; Dümbgen, 1993; Römisch, 2014). Al-
though this version is common in the stochastic opti-
mization literature, it rarely appears in the statistics
literature.

Theorem 3.3 (Delta method). Suppose the following
assumptions hold:

1. D and E are Banach spaces;
2. � : D� ✓ D ! E is Hadamard directionally di↵er-

entiable at ✓0 tangentially to D0;
3. ✓0 2 D� and ✓̂n : {Xi}ni=1 ! D� satisfies rn{✓̂n �

✓0}
d! G0 in D for some rn " 1;

4. G0 is tight and its support is included in D0.

Then, we have

rn{�(✓̂n)� �(✓0)}
d! �

0
✓0(G0) in E.

3.3 Proof sketch of Theorem 3.1

Since  (f) can be viewed as the optimal value function
of a class of maximization problems parameterized by
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f , we can show  (f) is Hadamard directionally di↵er-
entiable at f?, and give an exact derivative formula by
using Proposition 4.27 in Bonnans and Shapiro (2000).

Theorem 3.4. Under the same assumptions of Theo-
rem 3.1,  (f) is Hadamard directionally di↵erentiable
at f?. Furthemore, the derivative is given by

 
0
f?(h) = lim

h0!h
t!0+

 (f? + th
0)�  (f?)

t

= inf{(�+ l)>h : (⌫, µ,�) 2 ⇤},

where the convex set ⇤ is defined by (3.2).

With Theorem 3.4, we can directly show the asymp-
totic distribution result by applying delta method for
Hadamard directionally di↵erentiable functionals.

4 Testing whether an ML model is fair

Theorem 3.1, while insightful, is not immediately use-
ful for inference because the asymptotic distribution
depends on the unknown f⇤. In this section, we show
that a bootstrap approximation to the asymptotic dis-
tribution is valid, so it is possible to perform inference
with the bootstrap. Due to the non-di↵erentiability of
the audit value function (3.1), Efron’s non-parametric
boostrap (Efron, 1979) is generally invalid. Instead, we
consider m-out-of-n bootstrap (Dümbgen, 1993) and a
numerical bootstrap (Hong and Li, 2018, 2020).

4.1 Boostrapping the asymptotic

distribution of the FaiTH statistic

We start by describing the failure of Efron’s non-
parametric bootstrap. Let f

⇤
n be the empirical dis-

tribution of n independent samples from fn. The
non-parametric bootstrap approximates the distribu-
tion of the FaiTH statistic with the distribution ofp
n( (f⇤

n)� (fn)). This distribution is known as the
bootstrap distribution, and the non-parametric boot-
strap is consistent if the bootstrap distribution con-
verges weakly to the asymptotic distribution:

sup
g2BL1(R)

����
E⇤ [g (

p
n { (f⇤

n)�  (fn)}) |fn]
�E [g (

p
n { (fn)�  (f?)})]

����
p! 0,

where BL1(R) is 1-Lipschitz subset of the k · k1 ball.
Unfortunately, if  is only directionally di↵erentiable
(but not di↵erentiable), then the non-parametric boot-
strap may fail (Bickel et al., 2012; Andrews, 2000).
In fact, it is known that if

p
n(fn � f⇤) has a Gaus-

sian asymptotic distribution, then the non-parametric
bootstrap is consistent if and only if  is (Hadamard)
di↵erentiable (Fang and Santos, 2019). Unfortunately,
as saw in Section 3, the FaiTH statistic is a generally
non-di↵erentiable function of the empirical distribu-
tion.

Before discussing alternatives to the non-parametric
bootstrap, we observe that the audit value function
is di↵erentiable at f⇤ whenever ⇤ is a singleton. In
such problems,

p
n(fn�f⇤) has a Gaussian asymptotic

distribution, so the non-parametric bootstrap is con-
sistent. One practical heuristic to check for failure of
the non-parametric bootstrap is checking whether the
bootstrap distribution is Gaussian: non-Gaussianity
suggests failure of the non-parametric bootstrap.

Fortunately, there are several alternatives to the non-
parametric bootstrap that remain consistent for non-
di↵erentiable statistical functionals. We refer to these
methods as non-standard bootstrap methods. Three
promiment methods are the m-out-of-n bootstrap
(Dümbgen, 1993; Shao, 1994; Bickel and Sakov, 2008),
subsampling (Politis et al., 1999), and the numerical
bootstrap (Hong and Li, 2018, 2020). In our compu-
tational results, we rely on the m-out-of-n bootstrap
and the numerical bootstrap. We provide detailed de-
scriptions of both methods in Section B of the Supple-
mentary Materials.

Theorem 4.1 (Consistency of m-out-of-n bootstrap).
Let mf

⇤
n,m ⇠ Multinomial(m; fn). As long as m =

m(n) ! 1 and m/n ! 0, we have

sup
g2BL1(R)

����
E⇤ ⇥

g
�p

m
�
 (f⇤

n,m)�  (fn)
 �

|fn
⇤

�E [g (
p
n { (fn)�  (f?)})]

����
p! 0.

Theorem 4.2 (Consistency of numerical derivative
method). Let z⇤n ⇠ N (0K ,⌃(fn);T), a Gaussian dis-
tribution truncated in T, where T = T(fn, ✏) = {x 2
RK : fn + ✏x 2 RK

+ }. As long as ✏ = ✏(n) ! 0 andp
n✏! 1, we have

sup
g2BL1(R)

����
E⇤ ⇥

g
�
✏
�1 { (fn + ✏z

⇤
n)�  (fn)}

�
|fn

⇤

�E [g (
p
n { (fn)�  (f?)})]

����
p! 0.

4.2 Inference for the audit value

The preceding bootstrap methods complete our suite
of inferential tools for the audit value. In this subsec-
tion, we demonstrate the utility of the tools by forming
confidence intervals and testing restrictions on the au-
dit value.

One of the most basic inferential tasks is forming a
confidence interval of the audit value. Such confidence
intervals may be used to give an asymptotically exact
certificate of individual fairness for ML models. Let c⇤q
be the q-th quantile of the bootstrap distribution:

c
⇤
q = inf{c 2 R : P(

p
m{ (f⇤

n,m)�  (fn)}  c) � q},

where 0  q  1. In practice, c⇤q is estimated by q-th
quantile of output S of Algorithm 1 in the Supplemen-
tary Materials. Since the approximation error can be
made arbitrarily small by increasing number of boot-
strap iterations B, we ignore this error in our results.
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The two-sided equal-tailed confidence interval for the
audit value  (f?) with asymptotic coverage probabil-
ity 1� ↵ is

CItwo-sided =
h
 (fn)�

c⇤1�↵/2p
n

, (fn)�
c⇤↵/2p

n

i
. (4.1)

Theorem 4.3 (Asymptotic coverage of two-sided con-
fidence interval). For any f? 2 �K , we have

lim inf
n!1

P ( (f?) 2 CItwo-sided) � 1� ↵.

Compared to other certificates of individual fairness
(e.g., the certificate in Yurochkin et al. (2020)), our
certificate is asymptotically exact. This is a conse-
quence of the asymptotic exactness of the coverage of
the confidence interval (4.1).

Another basic inferential task is testing restrictions on
the audit value. In light of the (asymptotic) validity
two-sided confidence region (4.1), it is possible to test
simple restrictions of the form  (f⇤) = �, for some
� > 0, by checking whether � falls in the (1� ↵)-level
confidence region. By the duality between confidence
intervals and hypothesis tests, this test has asymptotic
Type I error rate at most ↵. In the rest of this sub-
section, we consider the task of testing a compound
hypothesis of the form  (f⇤) < �.

Definition 4.4. (�–fairness). For a constant � � 0,
an ML system is called �–fair if  (f?)  �.

In order to test whether or not an ML system is �–fair,
the auditor considers hypothesis testing problem

H0 :  (f?)  � versus H1 :  (f?) > �. (4.2)

The one-sided confidence interval for the audit value
 (f?) with asymptotic coverage probability 1� ↵ is

CIone-sided =
h
 (fn)�

c⇤1�↵p
n
,1

⌘
.

We reject the null hypothesis H0 if the one-sided con-
fidence interval does not cover �, i.e.,

� 62
h
 (fn)�

c⇤1�↵p
n
,1

⌘
.

Theorem 4.5 (Asymptotic validity of test). For any
� � 0, we have

lim sup
n!1

sup
f?2�K : (f?)�

Pf? (� 62CIone-sided)  ↵.

If  (f?) > �, then limn!1 P (� 62CIone-sided) = 1.

The choice of threshold � is application dependent, and
there is no generic recipe to pick �. It reflects the au-
ditor’s tolerance on fairness level of an ML system.
For example, in recidivism prediction, a reasonable
threshold may be the rate of miscarriage of justice.
In other words, the auditor expects the performance
of the recidivism prediction instrument to deteriorate
by no more than the inherent error rate in the criminal
justice system. We demonstrate the suitability of this
choice in our computational results.

5 Computational results

We shall verify correctness of our methodology us-
ing widely studied COMPAS dataset (Angwin et al.,
2016). Originally it was shown that COMPAS score
used for providing recommendation to the judge if a
person will recommit or not is biased against certain
groups of individuals. In Angwin et al. (2016), it was
shown that COMPAS score is strongly biased against
men and minorities.

To apply our methodology it remains to choose met-
ric and loss function for the auditor’s problem. We
make choices to facilitate simplicity and interpretabil-
ity of the analysis. For the metric we consider any
two observations which only di↵er in race or gender
to have distance zero between each other and infinity
otherwise. For the loss we shall consider 0-1 loss, then
FaiTH value can be understood as missclassification
rates induced by the solution of the auditor’s prob-
lem (2.2) and threshold � corresponds to the amount
of classification errors that the auditor believes it is
justified for the problem. Here we choose � = 0.0365,
which is the midpoint of the results reported by vari-
ous studies on the number of innocent prisoners in the
United States (Wikipedia).

5.1 Audit guidelines and interpretation

In this subsection we give practical guidelines for an
auditor wishing to assess performance of an ML sys-
tem. We will investigate performance of a vanilla lo-
gistic regression (LR) classifier trained on COMPAS
dataset to predict if a person will re-o↵end. We use
70% of the COMPAS dataset to train the classifier and
the remaining 30% to audit it using black-box access
to the trained model. To determine if an ML system is
individually fair we compute the FaiTH value and re-
port lower and upper bounds of the 95% two-sided con-

fidence interval (CI(2)lower and CI(2)upper) and lower bound

of the 95% one-sided confidence interval (CI(1)lower) us-
ing methodology described in the preceding sections.
We fail to reject the hypothesis that a classifier is in-
dividually fair if a pre-specified value of � is contained
in the confidence interval.

We repeat the experiment 50 times and summarize the
results in Table 1. Common group-fairness metrics are
reported and FaiTH is applied to test previously pro-
posed fair classification techniques motivated by the
notion of group fairness. Before discussing the relation
to group fairness, we complete the audit analysis of the
logistic regression. Both one- and two-sided confidence
intervals lower bounds are equal to 0.05 > � on aver-
age, meaning that auditor should reject the individual
fairness hypothesis of the logistic regression classifier.
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Figure 2: Transport map of vanilla logistic regression on audit dataset. (Number in each grid shows the change
in total number of individuals after transport.)

Table 1: Numerical comparisons of multiple fairness methods.

FaiTH CI(2)lower CI(2)upper CI(1)lower Accuracy AOD EOD SPD
LR .06± .02 .05± .02 .07± .03 .05± .02 .67± .01 �.23± .04 �.19± .04 �.26± .03
ADB .18± .06 .16± .05 .20± .06 .16± .05 .65± .01 �.05± .13 �.01± .12 �.08± .13
RWT .15± .02 .13± .02 .17± .02 .14± .02 .66± .01 �.02± .04 .01± .04 �.06± .04
LFR .07± .05 .06± .04 .08± .05 .06± .05 .66± .01 �.09± .09 �.06± .07 �.13± .08
RLR .02± .02 .01± .02 .02± .02 .01± .02 .66± .01 �.19± .03 �.15± .03 �.22± .03

In this situation auditor may utilize the adversarial
distribution computed to evaluate the FaiTH statistics
in (2.2) to investigate the patterns of individual fair-
ness violation. We present such analysis in Figure 2.
On the left heat map we show the change in distribu-
tion of the features of individuals labeled as recidivists
in the audit data (counts of the distribution maximiz-
ing (2.2) minus counts of the audit dataset distribu-
tion). We can interpret the figure column-wise: there
are 31 black males and 19 white males older than 45
that were correctly classified as recidivists, but would
be misclassified as non-reo↵enders if they were to be
white females (or black females for the 4 of them);
similar argument holds for recidivists with more than
3 prior crimes and/or a felony charge. In summary, we
see that white females are treated by the classifier as
a privileged group. The right figure shows analogous
heat map for individuals labeled as non-reo↵enders in
the audit data. Among others we see that young white
males and females, and black females correctly classi-
fied to not commit recidivism would be classified as
recidivists if they were to be black males. Previous
study of the COMPAS dataset reports white females
as the privileged group and black males as unprivileged
(ProPublica), aligning with our findings. We can also
make an additional observation based on our analy-
sis: people in the age group of 25 to 45 and/or those
with 1 to 3 prior crimes were treated individually fair
by the classifier. Auditor may utilize such findings to

provide recommendations to the ML system provider
if the system fails to pass the FaiTH test without dis-
closing the audit data.

Relation to group fairness We proceed to eval-
uate the individual fairness hypothesis for several
group fairness approaches proposed in the literature.
We consider three algorithms available in the IBM
AIF360 toolkit (Bellamy et al., 2018). Two pre-
processing techniques: Reweighting (RWT) (Kami-
ran and Calders, 2012) that modifies data weights in
the training loss, and Learning Fair Representation
(LFR) (Zemel et al., 2013) that finds transformed fea-
ture space obfuscating information about protected at-
tributes. And an in-processing technique: Adversarial
Debiasing (ADB) (Zhang et al., 2018) that learns a
group-fair predictor by reducing the ability of a cor-
responding adversary to predict protected attributes.
We also report common group fairness metrics (for all
prefered value is close to 0): average odds di↵erence
(AOD), equal opportunity di↵erence (EOD) and sta-
tistical parity di↵erence (SPD). Results are summa-
rized in Table 1: all of these methods succeed in re-
ducing the group biases, however they tend to exacer-
bate individual fairness violations as can be seen from
the FaiTH value. For example, Reweighting method
appears to mitigate most of the group biases, but in-
vestigating corresponding logistic regression fit we find
that it assigns large coe�cient to the race variable. In
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other words, decision of the corresponding classifier is
majorly a↵ected by the race, which is not permissi-
ble from the perspective of individual fairness and an
alarm is raised by FaiTH.

5.2 Model selection under FaiTH constraint

In this subsection, we propose a generic model selec-
tion strategy under �-fairness constraint, and present
the strategy by logistic regression with `1 penalty.

The idea of strategy is to select candidates of models
which pass the fairness hypothesis testing (4.2). To be
precise, we filter all models through comparison be-
tween the fairness threshold � and the CI lower bound
of audit value evaluated on validation dataset. Then
among these candidates, we select the model which has
the lowest validation error.

The dataset is splited into training, validation, and
audit dataset. We fit `1-regularized logistic regression
(RLR) by minimizing L(Z,�)+�k�k1, where � is vec-
tor of regression coe�cients, Z is the training set, L is
the logistic loss, and � > 0 is a tuning parameter.

Figure 3 demonstrates trade-o↵ between accuracy and
fairness. Strong penalty (i.e., small value of 1

� ) results
in tiny FaiTH statistic but huge validation error, and
on the contrary, weak penalty (i.e., large value of 1

� )
leads to undesirable fairness level but satisfactory ac-
curacy. The broken orange line shows lower bounds of
95% confidence interval (one-sided) of validation au-
dit value for each �. Note that a tuning parameter �
passes the �–fairness test if and only if its correspond-
ing CI lower bound is smaller than �, so the range of
that orange broken line lies under green dotted line
determines all candidates of �–fair tuning parameters.
Choosing the tuning parameter which has lowest val-
idation error among these candidates outputs the se-
lected 1

� = 0.0145. We note that gender is not selected
so that prediction without using gender can e↵ectively
ensure model’s individual fairness and keep compara-
ble prediction accuracy at the same time.

Figure 3: Performance of logistic regression with `1

penalty on validation dataset.

Solution pathes of regression coe�cients are depicted
in Figure 4. The vertical dotted line 1

� = 0.0145 shows
the selected model. Whether or not an individual has
prior crimes is of the greatest significance for predict-
ing recidivism since the corresponding coe�cient pops
out firstly. The other five selected variables are “more
than 3 prior crimes”, race, “age greater than 45”, “mis-
conduct charge”, and “age less than 25” in sequence.

Figure 4: Solution pathes of logistic regression with `1
penalty.

We run our model selection strategy for 50 times and
make comparison with other methods in Table 1. RLR
continues to have low FaiTH value when we computed
on the audit dataset and is the only method for which
we fail to reject the individual fairness hypothesis.
RLR also has better group fairness scores than the
baseline, however not as good as those of other group
fairness approaches. We note that RLR is a simple
model selection based approach that is plausible due
to the development of our FaiTH methodology. Com-
bining FaiTH with prior ideas used for group fairness
may layout a pass for training ML systems with strong
guarantees for both individual and group fairness.

6 Summary and discussion

In this paper, we developed a suite of inferential tools
for detecting and localizing individual bias/unfairness
in the ML model. Our tools only require black-box
access to the ML model and are computationally e�-
cient. Further, they allow auditors to control the false
alarm rate and provide asymptotically exact certifi-
cates of fairness. We demonstrated the utility of our
tools by using them to reveal the gender and racial bi-
ases in Northpointe’s COMPAS recidivism prediction
instrument.



Songkai Xue, Mikhail Yurochkin, Yuekai Sun

Acknowledgements

This work was supported by the National Science
Foundation under grants DMS-1830247 and DMS-
1916271.

References

Antoine Allen. The ‘three black teenagers’ search
shows it is society, not Google, that is racist — An-
toine Allen. The Guardian, June 2016. ISSN 0261-
3077.

Donald W. K. Andrews. Inconsistency of the Boot-
strap When a Parameter is on the Boundary of
the Parameter Space. Econometrica, 68(2):399–405,
2000. ISSN 0012-9682.

Julia Angwin and Terry Parris Jr. Facebook
Lets Advertisers Exclude Users by Race.
https://www.propublica.org/article/facebook-
lets-advertisers-exclude-users-by-race, October
2016.

Julia Angwin, Je↵ Larson, Surya Mattu,
and Lauren Kirchner. Machine Bias.
www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing, May 2016.

Julia Angwin, Ariana Tobin, and Madeleine
Varner. Facebook (Still) Letting Hous-
ing Advertisers Exclude Users by Race.
https://www.propublica.org/article/facebook-
advertising-discrimination-housing-race-sex-
national-origin, November 2017.

Solon Barocas and Andrew D. Selbst. Big Data’s
Disparate Impact. SSRN Electronic Journal, 2016.
ISSN 1556-5068. doi: 10.2139/ssrn.2477899.

Rachel K. E. Bellamy, Kuntal Dey, Michael Hind,
Samuel C. Ho↵man, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep
Mehta, Aleksandra Mojsilovic, Seema Nagar,
Karthikeyan Natesan Ramamurthy, John Richards,
Diptikalyan Saha, Prasanna Sattigeri, Moninder
Singh, Kush R. Varshney, and Yunfeng Zhang. AI
Fairness 360: An extensible toolkit for detecting,
understanding, and mitigating unwanted algorith-
mic bias, October 2018. URL https://arxiv.org/
abs/1810.01943.

Marianne Bertrand and Sendhil Mullainathan. Are
Emily and Greg More Employable Than Lakisha
and Jamal? A Field Experiment on Labor Market
Discrimination. American Economic Review, 94(4):
991–1013, September 2004. ISSN 0002-8282. doi:
10.1257/0002828042002561.

P. J. Bickel, F. Götze, and W. R. van Zwet. Re-
sampling Fewer Than n Observations: Gains,

Losses, and Remedies for Losses. In Sara van
de Geer and Marten Wegkamp, editors, Selected
Works of Willem van Zwet, pages 267–297. Springer
New York, New York, NY, 2012. ISBN 978-
1-4614-1313-4 978-1-4614-1314-1. doi: 10.1007/
978-1-4614-1314-1 17.

Peter J Bickel and Anat Sakov. On the choice of m in
the m out of n bootstrap and confidence bounds for
extrema. Statistica Sinica, pages 967–985, 2008.

Jose Blanchet and Karthyek Murthy. Quantifying dis-
tributional model risk via optimal transport. Mathe-
matics of Operations Research, 44(2):565–600, 2019.

Jose Blanchet, Karthyek Murthy, and Nian Si. Confi-
dence Regions in Wasserstein Distributionally Ro-
bust Estimation. arXiv:1906.01614 [math, stat],
June 2019.

Joseph Frédéric Bonnans and Alexander Shapiro.
Perturbation Analysis of Optimization Problems.
Springer Series in Operations Research. Springer,
New York, NY, 2000. ISBN 978-1-4612-7129-1 978-
0-387-98705-7. OCLC: 247674137.

Alexandra Chouldechova. Fair prediction with dis-
parate impact: A study of bias in recidivism pre-
diction instruments. arXiv:1703.00056 [cs, stat],
February 2017.

Je↵rey Dastin. Amazon scraps secret AI recruiting tool
that showed bias against women. Reuters, October
2018.
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