Appendices

A RKHS-based Independence Measures

Al RKHS

A Hilbert space H is a complete inner product space. An RKHS is a Hilbert space where point
evaluation is a continuous linear functional. Thus, by the Riesz representation theorem [1] which
states that any functional mapping H into R can be represented by an inner product, an RKHS has
the Reproducing Property that f(z) = (f, ¢(x))s, where f : X — R is a functional in the RKHS,
2 belongs to X’ and ¢(x) is a feature map from X’ to H. The feature map takes the canonical form
o(x) = k(z,-), where k(x1,z2) : X X X — R s a positive definite kernel. In other words, the inner
product of two feature map can be evaluated by a kernel: {(¢(x), d(y))y = k(z,y).

A.2 MMD

Let x and y be random variables defined on a topological space &X', with respective Borel probability
measures p and g. Let 7 be a class of functions f : X — R. The Maximum Mean Discrepancy
(MMD) is defined as [2]:

MMD(T,p,q) = ;gpr (Ex[f(2)] = Ey[f()]), 1)

where E,[f(x)] and E,[f(y)] denote expectations with respect to p and g.

The MMD can be considered as an integral probability metric [3]. Let (&X', d) be a metric space.
We have p = ¢ if and only if E,[f(z)] = E,[f(y)] for all f € C(X), where C(X) is the space of
bounded continuous functions on X.

In real life, it is not practical to work with a rich function class like C(X). The MMD requires a
function class that is rich enough to identify p = ¢ uniquely, yet restrictive enough so that the MMD
can be estimated by finite samples. It turns out that the unit ball in an RKHS H can satisfy both
conditions.

Define the mean embedding of p in an RKHS as i, € H such that E, f = (f, yt,)%. The formula
for the MMD in Equation[2T|can be rewritten as:

MMD?(T, p, q)
2
= [ sup (E.[f(z)] — Ey [f(y)])] (22)
Il fll5 <1
= l sup  {pp — Hgs f)u (23)
Il Fll <1
=[lttp — tall3 (24)
= (ip, tp)r + (fqs Bg)H — 2(tps Hq)H (25)
=By 0 (¢(2), 8(2"))n + By, (6(y), 9(y))
—2E; (6(2), (y))n- (26)

Let X := {x1, -, } and Y := {y1, -+ ,y,} be observations independently and identically
drawn from p and ¢q. By using the empirical estimates of the feature space based on X and Y, we
obtain

m,n n

1 « 2
MMD?(T, X,Y) = — Z (s, 27) = — > k(i y;) Z (yi> ;) 27)

7,7=1 ,j=1



A.3 More Details on HSIC

A.3.1 Proof for the Cross-Covariance Operator

Coy 1= By y[0(2) @ Y(y)] — pra @ iy (28)

Proof.
(f,Cayg)r = (Cay, [ © g)us
)

=E; y((8(2) — pz) @ (W(y) — 11y), f @ g)ms

=E,,[(f, o(z) — pa) (9,9 (y) — /ty>]

=E,,[((f,0(x)) — (f, 1)) ({9 L (y)) — (9, 11y))]

=E,,[(f(=) = E[f(2)])(9(y) — Eylg(y )D]

=E.,[f(2)9(y)] — Ex[f(2)]E,[g(y)]

=E;,(0(z) @ YY), f @ 9) — (tta @ py, f @ g)

=E; 4(0(2) @Y(y), f @ 9) — Eay (pa @ py, f @ g)

=E; y(0(z2) @ Y(y) — ptz ® py, [ @ g)- O

A.3.2 Proof for Equivalence between MMD and HSIC

Proof. Define a kernel v in the tensor product space F X G as v((z,y)(2',y")) = k(z, 2")l(y,y').
The RKHS associated with v is H,,. We have:

MMD?(T, Py, P, P,) = ||1pPsy — quPyH;

= y0(@ ). )~ BaByo((a. ). )3,
qmwmu>EEmm%m
= |[Esyk(z, )y, ) = Bok(a, YEyl(y, )5,
= <Em,yk(xa ) ( Y, )7EI y/k( )l(y/’ )>
+ (Eck(z, ) Eyl(y, ), B k(2 ) By l(y/, )>nu
— 2(E,  k(z, )(y,), z/k( )Ey Uy )m,
= E, yEo [k, 2)l(y,y)] + ELE Ew By [k(z, 2)(y,y)]
—2E, Wy BBy [k(z, )y, y')].

A.3.3 Empirical HSIC

Let Z C X x Y be samples independently drawn from P,,. Let us use shorthand notations
kij = k(z;,x;) and ;; = l(y;,y;). Gram matrices K and L can be defined by K;; = k;; and
L;; = l;;. The empirical HSIC is given by:

HSIC(Z, F,G)

i=1 j=1

2 n n n
— s 222D it

i=1 j=1 q=1
1 1 . 2 .,
= (KL + — (1TKL)(1]LL,) — 517 KLL,
= —u(KHLH), (29)

where 1,, is an n X n matrix of ones and H := I — 71 lT



A.4 More Details on FSIC

A4.1 Assumptions of FSIC

A positive definite kernel £ : X' x X — R is said to be analytic on its domain X’ x X if forall v € &,
f(x) := k(x, v) is an analytic function on X [4]. Denote & the set of all Borel probability measures
on a topological space (M, A). Foraset & C &2, (P, Q) is a metric for any P, Q € .. A bounded
measurable positive definite kernel k is characteristic if v(P,Q) = 0 < P = Q [5].

FSIC is a novel approach to measure independence in a linear time manner. It evaluates a random
metric between two probability distributions at a finite number of points [6, 4]. This is possible when
FSIC satisfies the assumption that the kernels k£ : X x X — Rand [ : ) x ) — R are bounded by By,
and B, respectively, and the product kernel g((x,y), (x',¥’)) := k(x,x')l(y,y’) is characteristic
and analytic on (X x ) x (X x V) [5].

A.4.2 Empirical FSIC

Let X := {x1,...,2p} and Y := {y1, ..., y» } be observations independently and identically drawn
from P, and P,. The empirical estimate of FSIC can be written as:

J
2 1 . )
FSIC (X,Y) = 5 ;u(vi,wi) , where (30)
(v, W) = flgy (v, W) — iy (v, W) 31
1 n 1 n n
P ) . R ) . . 2
. ;k(x,,v)l(yz,w ; ;k(axz,v);l(%,m (32)

B FBIC Experiments

B.1 Probability Density Functions for Signal Generation

Table 1: This table lists the probability density functions used for signal generation. The kurtosis of
each probability density function is also presented. Degree of Freedom is denoted DOF.

Probability Density Function Kurtosis
Student, 3 DOF 00
Double exponential 3.00
Uniform -1.20
Student, S DOF 6.00
Exponential 6.00
2 double exponential 1.11
Symmetric 2 Gaussians, multimodal -1.68
Symmetric 2 Gaussians, transmodal -0.74
Symmetric 2 Gaussians, unimodal -0.50
Asymmetric 2 Gaussians, multimodal -0.53
Asymmetric 2 Gaussians, transmodal -0.67
Asymmetric 2 Gaussians, unimodal -0.47
Symmetric 4 Gaussians, multimodal -0.82
Symmetric 4 Gaussians, transmodal -0.62
Symmetric 4 Gaussians, unimodal -0.80
Asymmetric 4 Gaussians, multimodal -0.77
Asymmetric 4 Gaussians, transmodal -0.29
Asymmetric 4 Gaussians, unimodal -0.67
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B.2 Number of Basis Functions

To illustrate how the number of basis functions can affect the quality of approximation, 100 experi-
ments were performed on two-channel mixtures of randomly selected distributions. Mixtures had
length 250. We fixed Gaussian RBFs with shape parameter 200 and varied the number of basis
functions only. We set the number of basis functions to be 5, 10, 15 and 20. The Amari distances
resulting from the selected number of basis functions were 8.77, 6.20, 5.92 and 8.34 respectively.
When the number of basis functions increased from 5 to 10 then to 15, the quality of approximation
indicated by the Amari distance improved alongside. However, when the number of basis functions
further increased to 20, the quality of approximation started to degrade.

B.3 RBFs vs Shifted Legendre Polynomial Basis Functions

Legendre polynomials have a fixed region of support whereas RBFs utilized in FBIC have infinite
support. Initially we thought that the approximation quality of Legendre polynomials would be better
than those of RBFs when applied to variables with finite support. However, the experimental results
for data generated from uniform distributions favored RBFs. Therefore, pinpointing the scenario
where Legendre polynomials in FBIC can work best remains an open problem.

C FSIC-based ICA

A novel FSIC-based ICA algorithm was implemented to compare with its FBIC counterpart. The
neural network used for demixing matrix estimation shared the same architecture with that of the
FBIC-based algorithm. The difference was that the neural network cost function was replaced with

the NFSIC? statistic proposed in [6]. As there was no training stage in our ICA experiments, test
locations of NFSIC were randomly picked from Gaussian distributions with corresponding mean and
variance of signal samples. The number of test locations were set to 10, 50 or 100. For 2-channel
signal mixtures with sample length 250, the best results were achieved when there were 50 test
locations. For 2-channel signal mixtures with sample length 1000 and 4-channel signal mixtures with
sample length 1000, the best results were achieved when there were 100 test locations. For 4-channel
signal mixtures with sample length 4000, the best results were achieved when there were 10 test
locations.
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