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1 Derivation of variational posterior

In this section we provide detailed derivation for varia-
tional posterior.
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The approximate joint probability p̃(x, z,ψ) is
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where C = −
∑D
i=1 xig(ψi).

The normalized term Z is the marginal likelihood
p̃(x,ψ), which can be computed as
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We substitute eq. (3) and (4) to eq. (1), and obtain the

variational posterior
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2 Pseudocode for parameter
estimation using ACP

Algorithm 1: Parameter estimation of ACP
Input: training set of binary vectors
X = {x(n), n = 1, 2, . . . , N};
Initialization: initialize the noisy-or model
parameters θ and µ, and parameters φ of mlp;
while not converge do

Randomly get a batch x from X;
Obtain variational parameters ψ = mlp(x;φ);
for each latent variable k do

Compute the parameter of approximate
posterior qk = q(zk = 1|x,ψ) =
σ
(∑

i:xi=1 ψiθik −
∑
i:xi=0 θik + log µk

1−µk

)
;
for m in 1 . . .M do

Sample latent variable zkm from
q(zk|x,ψ) using gumbel softmax
reparametrization trick;

end
Compute loss using eq. (16)
L(x;θ,φ) = 1
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;

Update θ, µ and φ through back
propagation

end
end
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(a) LB-CDI, Ntrain = 1000 (b) SVI, Ntrain = 1000

Figure 1: The recovered parameters after training with
1000 data points using LB-CDI and SVI.

3 Implementation details

All our experiments were performed using Adam op-
timizer [1] with a batch size of 128. During training,
we set the number of Monte Carlo samples to L = 10
for each data point to compute the ELBO. We rely on
Gumbel-softmax reparametrization trick [2] to approxi-
mate sampling latent variables z using continuous value
to back-propagate gradients. Following [2], we schedule
exponential temperature decay, with the initial tem-
perature to be 0.5 and the minimum temperature to
be 0.2. While during testing, we use the true discrete
samples from the posterior and sample 100 times to
compute ELBO. For ACP, the variational parameter ψ
is the output of a neural network, which is constrained
to be greater than 0. Thus we use a softplus layer as
the last layer of the neural network. The architecture
(number of hidden layers and hidden dimensions) of the
inference model for both AVI and ACP, as well as other
hyperparameters including learning rate, momentum,
temperature decay rate and temperature decay step,
are sampled randomly for 100 times. We only report
the result with the best hyperparameters. All exper-
iments results are averaged from 5 different random
initializations.

4 Experiments

4.1 Parameter Estimation

Fig. 1 shows the recovered parameters using LB-CDI
and SVI. Even with sufficient training data (Ntrain =
1000), both methods achieved bad estimation results.
Both of them are able to learn the parameter patterns
to some extend. However all the patterns are merged
together. Hence we conclude ACP and AVI achieve
better parameter estimation results comparing to the
two non-amorized methods when we have sufficient
training data.

Additionally, we did the parameter estimation experi-
ments on multi-mnist dataset. And the experiment
results are depicted in Fig. 2. Here, since the training

set of multi-mnist is large, we did not do LB-CDI.

In Fig. 2, similar phenomenon has been observed.
When we have large amount of training data, both
AVI and ACP (Fig. 2a and 2b) recovered parameters
well. Even though AVI did not capture pattern “1”,
it is indeed not trivial to separate pattern “1” and
“7” in this dataset. However, SVI did not recover the
parameters well.

When we reduce the amount of training data, the
number of patterns detected by AVI decreased largely,
as three weight patterns are recovered as “0”, which also
indicates worse latent representation learning. However
for ACP, although it messed up pattern “4” and “5”,
it recovered all other patterns, even with small amount
of training data.

5 Additional experiments

5.1 Document classification

Herein, we aim to assess the impact of our inference
method on noisy-or model’s learned representations.
In particular, we rely on document classification task
to evaluate the quality of the features learned by our
model. To this end, we use the Reuters corpus1 from
NLTK, which consists of 1.3 million words and 10, 788
news articles organized into 90 categories. For this ex-
periment, we retain the top 3 categories,2 namely acq,
earn and money-fx. Each document is represented by
its headline. We lemmatize the words, remove stop
words, and remove words with less than 5 occurrences.
We obtain a final corpus of 839 unique words and
7030 documents, including 5048 for training and 1982
for test. Similar to topic modeling, each document is
represented by a binary vector where each dimension
indicates a word presence/absence.

After training AVI and ACP, we take the approximate
posterior distribution

{
q(z

(n)
k = 1|x(n);φ)

}K
k=1

as the
latent representation of document x(n). We evaluate
the quality of learned representations on the test set.
More specifically, we train a linear multilabel classifier,
which takes the posterior distribution as input and
predicts the document classes. We perform 5-fold cross-
validation and report the average EM scores.

Fig. 3 shows the classification performance with dif-
ferent amount of training data and different dimen-
sionality of latent variables. The black dashed line
corresponds to the results obtained when performing
classification on the original space X. We notice that
when using a training set of more than 1000 documents,
AVI achieves higher classification accuracy owing to its

1https://www.nltk.org/book/ch02.html
2the 3 classes containing the most documents.
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(a) AVI, Ntrain = 50K (b) ACP, Ntrain = 50K (c) AVI, Ntrain = 8K (d) ACP, Ntrain = 8K (e) SVI, Ntrain = 50K

Figure 2: The recovered parameters of multi-mnist after training with 50K and 8K data points using AVI, ACP and
SVI.

(a) (b) (c)

Figure 3: EM scores of AVI and ACP with different amount of training data and different hidden dimensions. The black
dashed line indicates the classification performance with x in test set as input.

larger inference capacity and flexibility. However, its
performance drops quickly as we reduce the size of the
training set. In contrast, our ACP inference offers more
stability w.r.t. to the amount of training examples, and
reaches higher classification performance when using
smaller training sets.

We present in Fig. 4, 5 and 6 the t-SNE visualizations of
the approximate posterior distributions learned by each
model using 50, 100 and 150 hidden dimensions respec-
tively. We observe that when using a small training set
(middle and right columns), the acq and money-fx fea-
tures learned by AVI tend to fuse together, while with
ACP, we can still distinguish the three categories. This
observation confirms our previous results and claims
about the effectiveness of our model when lacking train-
ing data.
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Figure 4: t-SNE visualization on latent representations on held out set when latent dimension is 50.

Figure 5: t-SNE visualization on latent representations on held out set when latent dimension is 100.
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Figure 6: t-SNE visualization on latent representations on held out set when latent dimension is 150.
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