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Abstract

Classical approaches for approximate infer-
ence depend on cleverly designed variational
distributions and bounds. Modern approaches
employ amortized variational inference, which
uses a neural network to approximate any pos-
terior without leveraging the structures of the
generative models. In this paper, we pro-
pose Amortized Conjugate Posterior (ACP),
a hybrid approach taking advantages of both
types of approaches. Specifically, we use the
classical methods to derive specific forms of
posterior distributions and then learn the vari-
ational parameters using amortized inference.
We study the effectiveness of the proposed
approach on the NOISY-OR model and com-
pare to both the classical and the modern
approaches for approximate inference and pa-
rameter learning. Our results show that the
proposed method outperforms or are at par
with other approaches.

1 INTRODUCTION

Classical techniques in probabilistic graphical models
exploit (tractable) structures heavily for approximate
inference (Koller et all |2009). Well-studied examples
are mean-field approaches by assuming factorized forms
of posteriors (Jordan et al., [1999), (conjugate) varia-
tional bounds on likelihoods (Jaakkola and Jordan,
1999, [2000), and others (Saul et al., 1996} [Saul and
Jordan, [1996)). In these methods, the forms of the ap-
proximate posteriors depend on the model structures,
the definitions of the conditional probability tables or
distributions, and the priors. For instance, deriving
variational bounds often requires identifying special
properties such as convexity and concavity of likeli-
hood (or partition) functions. And in some cases, the
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derivation also depends on whether an upper-bound or
lower-bound is needed (Jebara and Pentland) [2001)).

In contrast, recent approaches in amortized variational
inference (AVT) use neural networks to represent pos-
teriors and reparameterization tricks to compute the
likelihoods with Monte Carlo samples (Kingma and
Welling}, 2013; Mnih and Gregor} 2014). Even earlier,
neural networks were applied to approximate poste-
rior distribution in a supervised manner (Morris, 2001)).
What is appealing in this type of methods is that select-
ing the inference neural network requires significantly
reduced efforts, and the structure of the generative
model (and the corresponding likelihood function) does
not directly come into play in determining the infer-
ence network. In other words, the inference network
(i.e. the encoder) and the generative model (i.e. the
decoder) are parameterized independently, without ex-
plicitly sharing information. As such, with a large
amount of training data, a high-capacity inference net-
work is able to approximate the posterior well, and
learning the generative model can be effective as the
variance of the Monte Carlo sampling can be reduced.
However, when the amount of the training data is small,
the inference network can overfit and estimating the
generative model has a high variance.

Is there a way to combine these two different types
of approaches? In this paper, we take a step in this
direction. Our main idea is to use the above-mentioned
classical methods to derive approximate but tractable
posteriors (and approximate likelihood functions) and
then identify the optimal variational parameters by
learning a neural network.

The key difference from the classical approaches is that
the variational parameters are not optimized to give
the tightest bounds on the likelihood functions but to
maximize the evidence lower bound (ELBO). On the
other hand, the key difference from the AVI is that the
posterior and the generative model share information
such that the posterior contributes explicitly to the
gradient of the ELBO with respect to the generative
model parameters.

We apply this new hybrid approach to the NOISY-OR



Amortized Inference of Variational Bounds for Learning Noisy-OR

model, which has been studied for binary observations
and latent variables. Earlier work such as (Jaakkola
and Jordan, 1999; [Singliar and Hauskrecht, 2006)
proposed classical variational inference approaches.
More recently, polynomial-time algorithms are designed
to learn the structure and parameters of NOISY-OR
model (Halpern and Sontag [2013; |Jernite et al., 2013).
However they require strong assumptions on the struc-
ture of the graph. Halpern (Halpern, 2016) studied
semi-supervised method with stochastic variational
learning on NOISY-OR and achieved good performance
in parameter recovering. Moreover, stochastic varia-
tional inference (SVI) has been designed for hierarchical
NOISY-OR (Ji et al., [2019) for faster convergence and
achieved on-par performance with its batch counter-
part. Taking advantages of the conjugate bounds, the
proposed approach generalizes better than AVI and SVI
when there is limited data for fitting while remaining
equally competitive when there is more data.

In the following, we will describe related work by review-
ing different types of variational inference techniques
in Section [2] for the NOISY-OR model. We describe
our approach in Section [3] In Section [4] we show our
experiment results, followed by discussion in section [f]

2 VARIATIONAL INFERENCE FOR
NOISY-OR

2.1 Basic Ideas

We are interested in modeling a random variable x with
a generative latent variable model, where z denotes the
latent variables. @ denotes the model parameter and N
denotes the total number of data points in the training
set X = {x(™ n=1,2,...,N}. The log-likelihood is
defined as

L= Zlog/p(x("),z;B)dz
=Y tog [ oV (o)t (1)

For discrete latent variables, the integral is interpreted
as summing over all possible configurations of z.

Due to the logarithm before the integral, estimating 6
is intractable. We introduce a variational distribution
q(z|x; @) to approximate the posterior p(z|x). This
gives rise to maximizing the ELBO,

‘C(X(n); 07 ¢) = Eq(z\x(");q{)) [logp(x(n) ‘Z; 0)]

~ Dict (a(zx"); 9)[p(2:6) ) < logp(x;6)  (2)

where the Dk, (q||p) denotes the Kullback-Leibler (KL)
divergence between the distributions ¢ and p, and ¢ is

Figure 1: No1sy-oR model in plate notations.

the variational parameter. To avoid notation clutter-
ing, we will drop the subscript (™ and omit 6 and ¢
whenever the context is clear.

Classical approaches restrict the distribution family for
q(z|x; ¢) so that the expected conditional likelihood
(the first term in the ELBO) can be computed. For
example, mean-field approximation assumes a factor-
ized form of the variational distribution. Unfortunately,
even for some common likelihood functions p(x|z), the
factorized form does not turn the expectation tractable.
We describe one such model and then describe how the
classical and recent approaches tackle such challenges.

2.2 NOISY-OR

NOISY-OR is a bipartite directed graph modeling the
dependencies among binary observations. The struc-
ture is shown in Fig. [1} where x € {0, 1} represents
the observed D-dimensional data, z € {0,1}%+! are
the latent variables (with zp = 1). The model defines
the distribution

D

K
p(x,2) = [ p(xilz) [ ] p(ze) (3)

i=1 k=0

where p(x;|z) and p(zy) are Bernoulli distributions. In
particular,

K
plzi =0lz) = (1—pio) [[(1 = pi)™  (4)

=1

ko

where p;, = p(z; = 1lzx = 1). Redefining 6;, =

—log(1 — p;), we have
plas = 0fz) = e Rim fusn = 2002 (5)

where we slightly abuse the notation on 6; =
{0i0,0i1,...,0:k} and z = {1, 21, 29,..., 2Kk }. In more
compact form, we have

p(xilz) = p(x; = 1]z)"p(x; = 0]z)' . (6)
where x; takes value of either 0 or 1.

The form of the likelihood of positive observation
p(z; = 1|z) makes it intractable for computing its
expectation of logarithm, even when the posterior is
approximated in factorized form.
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2.3 Conjugate Dual Inference

The conjugate dual for approximating p(z; = 1|z) of
NOISY-OR model was first introduced in (Jaakkola and
Jordan) 1999), where an approximate upper-bound of
likelihood is:

plaz; = 1|z) = elosl—¢") = ¢f(a)

< ebiai—g(Wi) — b =1z, ;) (7)

Here f(a;) is a concave function with a; = 07z, ; is a
variational parameter associated with a;, and g(-) is the
conjugate dual function of f(-). For f(s) = log(l—e™*),
we have

g(t) = —tlogt + (t+ 1) log(t + 1) (8)

The detailed derivation can be found in (Jaakkola and
Jordanl, [1999)).

The resulting upper-bound log p(x; = 1|z,;) has an
appealing property that it is linear in a; (hence, z).
Thus after applying the Bayes rule, we achieve a fac-
torized (variational) posterior distribution

D
alzlx, ) x ] pla: = Lz, vy)-

i:m;:l p
I1 @i =02) [[pze) (9
1:x,=0 k=0

Note that we only use the upper-bound for positive
observations where x; = 1. For negative observations,
we use the true likelihood. After re-organizing the
terms, we observe that

K
a(zlx,9) = [ ] alzrlx. %) (10)
k=1

Namely, the variational posterior factorizes. And each
factor is

q(zk:1|x,¢):¢7< Z Yilip, — Z 0;r, + log Kk )

iy =1 iy =0 1= Hk

(11)

where o(+) is the sigmoid function and py is the param-
eter of prior distribution py = p(zx = 1). The detailed
derivation can be found in supplementary material.

Moreover, computing the expectation of variational
upper-bound p(z; = 1|z,1;) with respect to the fac-
torized (variational) posterior distribution ¢(z|x, ) is
trivial. And the gradients can be computed directly
without sampling. Hence we take p(z; = 1|z,;) as the
approximation to p(xz; = 1|z). Similarly, the likelihood
conjugate lower-bound can be applied for variational

inference. Interested readers could refer to (Jaakkola
and Jordan| 1999} Singliar and Hauskrecht|, [2006)).

The conjugate dual inference (CDI) choose the best v;
to achieve the tightest upper-bound

Yj = arg qupiin{ﬁ(xi =1}

= argmin{Ey ) [pe: = 1|z, )]} (12)

However, in the next section, we will show that we
can choose v} differently, leading to a different type of
inference technique.

2.4 Stochastic Variational Inference

Recently, SVI has been proposed for (hierarchical)
NOISY-OR model (Ji et al.l 2019)). Similar to CDI,
the conjugate lower-bound in (Jaakkola and Jordan)
1999; [Singliar and Hauskrecht, 2006) is applied to ap-
proximate the positive likelihood for its tractability
of taking expectation. Different from CDI, where the
variational posterior is constructed as eq. , the
parameters of variational posterior are treated as free-
parameters and optimized directly. In other words, two
sets of variational parameters are introduced:

- ap: variational parameters introduced by the con-
jugate bound (eq. )
- ¢: parameters of variational posterior distribution

q(zlx; d) = [Tr— a(zxlx; @).

Comparing to CDI, the unconstrained posterior gives
higher inference capacity. Meanwhile, SVI can handle
large-scale datasets and converges faster by taking mini-
batches while CDI considers the whole batch during
learning.

2.5 Amortized Variational Inference

Under the auto-encoding variational Bayes frame-
work (Kingma and Welling} 2013), AVI uses global pa-
rameters to predict the parameters of approximate pos-
terior distribution directly. For instance, (Kingma and
Welling}, 2013)) predicts the parameters ¢ of q(z|x"); ¢)
as ¢ = f(x(™; ). Here, X is the global trainable pa-
rameter, which is shared across all x(™, n=1,---, N.
As a special case, f(-) can be a neural network and
¢ = MLP(x; A).

The expectation of log-likelihood requires sampling
the latent variable z ~ ¢(z|x; ¢). However, the gra-
dients cannot be back-propagated though stochastic
random variable z. Hence for certain types of distri-
butions ¢(z|x; ¢), the reparametrization trick can be
applied to reparameterize the random variable z us-
ing a differentiable function (such as neural network)
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z = gx(x, €), where € ~ p(e) (a known and easily sam-
pled distribution). Then the expected log-likelihood
can be rewritten as

Eqy(z/x;0) [log p(x|z)] = Epe) [logp (x|ga(x, e))] (13)

which can then be computed with Monte Carlo sam-
pling from p(e).

AVT utilizes the advantages of deep neural networks
as inference model without explicitly deriving complex
conjugate dual functions for likelihoods, and has the
power of approximating posterior flexibly. However,
when there is not enough training data, the inference
model might overfit and leads to a large variance in
estimating the generative model. We will introduce our
method in the next section to tackle this problem.

3 AMORTIZED CONJUGATE
POSTERIOR

In this section, we introduce our inference strategy,
Amortized Conjugate Posterior (ACP), a hybrid ap-
proach combining the classical CDI and the recent AVI
approaches.

Instead of seeking the tightest upper-bounds for the
likelihood function (for positive observations), we pro-
pose to optimize ¥ to maximize the ELBO in eq. .
Moreover, to amortize the inference, we parameterize

1 as in AVI,
¥ = MLP(X; @) (14)
where the parameters ¢ of the neural network are

shared by all data points. Namely, for each x(™, its
variational distribution is

q(z[x™; ") = g(2[x™; MLP(x"); §))
q(z[x™; ¢) (15)

As in AVI, to optimize both 8 and ¢, we use Monte
Carlo sampling to compute the ELBO (and its gradients
with respect to the parameters). Note that in NOISY-
OR, the ELBO can be written as

D
[:(X§ 07 ¢) = Z Eq(z|x;¢))[logp(xi = 1|Z; 0)]
;=1
D
+ Y By logp(zi = 0[z; 0)]
1:x;=0

~ Dicr(a(zlx; $)l|p(z:0) ) <logp(x:6)  (16)

where the expectation of the positive log-likelihood
(the first term in eq. (L6)) is intractable while the
negative log-likelihood (the second term) and the KL
divergence can be computed analytically. Hence, we

Table 1: Contrast of variational inference approaches

objective | constrained posterior | amortized
AVI ELBO no yes
LB-CDI LB yes (LB) no
UB-CDI UB yes (UB) no
SVI LB no no
ACP (ours) | ELBO yes (UB) yes

need to estimate the first term using Monte Carlo
sampling.

Specifically, for each training data point x, we use
eq. to compute the variational parameters, and
use the form of posterior as eq. . We then sample
from the posterior — since ¢(z|x; ¢) is Bernoulli, we use
the Gumbel-Softmax reparameterization trick (Jang
et al.l 12016)). The samples are then used to compute
the expectation of true positive likelihoods p(z; = 1|z)
(and their gradients). The pseudo-code for parameter
estimation of ACP is presented in the supplementary
material.

The key difference from AVI is that the (variational)
posterior has also dependency on the generative model
parameters 8. While they contribute indirectly to the
gradients of the expected conditional likelihoods for
positive observations in the ELBO, the expected likeli-
hoods for negative ones and the KL divergence between
the posterior and the prior are analytically tractable
and the gradients with respect to 6 are directly used
to optimize the parameters. In AVI, the expected
conditional likelihood is a constant with respect to the
generative model parameters and it does not contribute
to the update.

In Table we summarize various approaches. LB
and UB in the parenthesis stand for whether the con-
strained posterior is derive from the lower-bound or
upper-bound of the ELBO. Comparing to AVI, the
specific form (eq. (I1))) of the variational posterior —
how evidence x is incorporated and the architecture
is formed — contains model-specific knowledge, which
could prevent overfitting and improve generalization.
Comparing to CDI and SVI, ACP optimizes ELBO di-
rectly instead of optimizing the lower-bound or upper-
bound of ELBO, which gives better performance. Our
empirical results support this claim.

4 EXPERIMENTS

We compare the performance of different inference
methods on both synthetic and real-world datasets.
The synthetic datasets are described in section[4.1] We
use them as the ground-truth is known. We investi-
gate how the characteristics of different approaches
vary with respect to the amount of training data in
section The real-world dataset is described in
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Table 2: Parameters for synthetic datasets of patterned
weights

Dataset D K I Niest  Sparsity
SYN-PATTERN 64 8 0.125 1000 89.0%
MULTI-MNIST 784 10 0.2 5000 80.3%

Table 3: Parameters for synthetic datasets of random
weights (SYN-RANDOM)

size as Po an  Bu s Niest  Sparsity
b _ 1 5 1 10 095 1000 94.2%
POy 25 2 5 095 1000 7L8%

=100 o 5 o 5 09 1000 51.4%
b T 5 1 20 0995 2000 98.4%
P01 20 10 200 095 2000 95.3%

=500 1 190 1 10 095 2000 73.6%
D =500
mee L5 15 095 5000  89.2%

section [.5] and is used to illustrate one of the prac-
tical uses of the inference methods in topic modeling.
Our experiments show that the proposed ACP method
outperforms other variational approaches in most cases.

4.1 Synthetic Datasets

For reproducibility, we detail the learning and optimiza-
tion hyperparameters in the Supplementary Materials.

Data with Patterned Weights We created this
type of synthetic datasets with the following recipe:

e Select the parameters uy of the prior distributions
plzk=1)=pp, k=1--- K.

e Select the generative model parameter € RP*K
and the “leak” probability 8, € R”. 6 and 6,
needs to be non-negative.

e Sample N latent variables 2™, n =1,--- | N from
the prior distribution p(z).

e Sample N observed data points x(™ from the con-
ditional probability p(x(™|z(™).

where K is the number of latent variables and D is
the number of observed variables. The two types of
datasets are described below.

We generated two datasets: SYN-PATTERN and MULTI-
MNIST. The configurations of D, K and uj are spec-
ified in Table 2] The model parameters 8 and 6y
are reshaped from the patterns depicted in Fig. [2a]
(SYN-PATTERN) and [2b| (MULTI-MNIST). Each pattern
is reshaped to a D-dimensional vector representing
0, € RP, where the white pixels in the kth pattern in-
dicates the corresponding parameters 6;; to be 0. And

[o Ol
[
> 9

ININ

e RIS
C sy

—
o
s

|l O

[
lam
NI

[N I

(©)

Figure 2: (a) and (b). The patterns of the parameters 6 for
the SYN-PATTERN and MULTI-MNIST datasets, respectively.
(c) and (d). Several observed x, sampled from the syN-
PATTERN and MULTI-MNIST datasets.

—
[=
=

the last pattern refers to the pattern of “leak” proba-
bility. The values of non-zero 0, (i.e. , black pixels)
are —log(1 — 0.8) which means p(z; = 1|z = 1) = 0.8.
Fig. 2d and 2d] show some data points sampled from
the two datasets. Each data point is a combination of
their parameter patterns with missing parts. We use
Nyest data points for validation and another Ny for
testing. The values of N4 are reported in Table

Data with Random Weights We also built a syn-
thetic datasets with random sampled weights, namely
SYN-RANDOM. Concretely, 8, 8y and p are sampled
from distributions BETA(ag, Se) and BETA(ay, Bu)-
Moreover, the sparsity of the dataset is controlled by
constraining the sparsity degree s to be 0 < s < 1,
which can be viewed as the probability of removing
the connection between z; and x; by setting ;. = 0,
to enforce the sparse connections between latent and
observed variables. The random removal of those con-
nections can create orphaned variables without any
connections. Thus, we randomly add connections to
the latent and observed variables which do not have
any connection. We describe the configurations of SYN-
RANDOM in Table [3l

The SPARSITY is defined as the percentage of
negative observations in the dataset SPARSITY =
N—lDZg:l Z£1 ]I(xgn) = 0) where lower SPARSITY
value indicates denser dataset.

4.2 Inference

Herein, we compare ACP with baselines on their abil-
ities of accurately approximating the posterior distri-
bution. We fix the generative model with its ground
truth parameters, and evaluate the accuracy of infer-
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Nirain | Method | NELBO Fl1 EM
1000 AVI 14.0 94.5 91.0
ACP 14.4 94.3  90.4

100 AVI 18.4 86.6  76.8
ACP 17.4 87.1 81.1

20 AVI 37.2 9.2 476
ACP 22.2 76.1  64.0

SVI 22.6 62.5  43.0

- LB-CDI 22.4 63.6  45.4
UB-CDI 96.6 24.6  39.0

(a)

o0 NN

— ELBO
—50 — L-uB
-75 —— GT likelihood

log-likelihood

0 5 10
iterations

(b)

Figure 3: Inference results on SYN-PATTERN. (a). NELBO: negative ELBO (lower is better). Higher F1 and EM are better.
(b). The learning curve of UB-CDI. It shows that tighter variational bound does not imply better approximate posterior.

ence by computing the ELBO with respect to differ-
ent approximate posterior distributions on the held-
out data. Since the generative model is fixed, the
ELBO is maximized when ¢(z|x; ¢) = p(z|x; ). Hence
higher ELBO indicates better inference performance.
Moreover, we compare the ground truth z(™ and
2" ~ q(z|x™;¢),n =1,--- , N using macro F1 and
Exact Match (EM) scores as inference accuracy.

We analyzed two types of CDI, namely UB-CDI and LB-
CDI as CDI with variational Upper-Bound and Lower-
Bound respectively. The parameters in CDI are opti-
mized following the optimization strategy in (Jaakkola,
and Jordan, [1999; Singliar and Hauskrecht|, 2006)),
where we find the tightest likelihood upper-bound (or
lower-bound) using fix-point optimization and use it to
compute posterior (eq. ) Similarly, SVI is trained
to maximize the lower-bound of the ELBO.

For AVI and ACP, the variational parameters ¢ are
optimized to maximize the ELBO. We report the results
of learned ¢ under different amount of training data.
For non-amortized methods SVI and CDI, we optimize
the variational parameter on samples from held-out set
directly.

Fig. shows the experiment results, where Ny qin
indicates the number of training data. We observe that
with a sufficient amount of training data (Nyeqin =
1000), AVT achieves slightly better performance due to
its high flexibility to approximate the posterior. Yet
when we have only limited amount of training data,
ACP gains huge advantages over AVI.

We observed that UB-CDI achieves very poor perfor-
mance. The learning curve of UB-CDI is depicted in
Fig. where LL-UB indicates the Log-Likelihood
Upper-Bound:

log p(x|¢) =log > [ plwi = 1lz, @)
11 »(a; =0lz)p(=).
J:x; =0

In the first 10 rounds of fix-point optimization, LL-UB
becomes tighter as we optimize more iterations and
then converges. However, with a tighter upper-bound,

the ELBO first drops quickly, and then improves only
slightly during optimization. The final ELBO after
convergence is much worse, even comparing to the
initial point. This observation indicates that a tighter
likelihood upper-bound is not necessarily equivalent
to a better approximate posterior. Thus we will not
compare to UB-CDI in the rest of our experiments.

Although LB-CDI is also optimized to obtain the tight-
est bound, its performance is much better than UB-CDI.
The reason is that LB-CDI optimizes the lower-bound
of ELBO. As it optimizes the lower-bound, the ELBO
is pushed up. However the performance of LB-CDI is
still much worse than amortized methods when train-
ing data is sufficient. Hence, optimizing the ELBO
directly is very helpful comparing to optimizing its
approximation. The low performance of SVI confirms
this observation.

Note that while SVI performance does not rely on
the number of training samples, ACP (and AVI) can
improve rapidly with the increasing number of training
data. In particular, since ground-truth parameters are
generally not known and need to be learned from data,
we anticipate ACP and AVI have more advantages in
the learning setting, which we describe below.

4.3 Parameter Estimation

To further analyze the properties of ACP, we jointly
train the generative and inference models on SYN-
PATTERN and MULTI-MNIST dataset. The goal is to
recover the patterns of 6 in a fully unsupervised way,
and compare the performance of ACP over the baselines
with different amount of training data.

Fig. [ shows the results for AVI and ACP on SYN-
PATTERNB From Fig. and we observe that
both AVI and ACP recover all the patterns and achieve
similar performance. When reducing the amount of
training data to 200 (Fig. [4c| and , we observe that
ACP still reconstructs all the patterns with slightly
worse performance. In contrast, the performance of

'Due to the low performance of SVI and LB-CDI, their
results are moved to the Supplementary Materials.
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Figure 4: The recovered parameters of SYN-PATTERN after training with 1000 and 200 data points using AVI and ACP.

AVTI degrades more severely. Specifically, two patterns
out of the eight are not recovered (i.e. the middle left
and middle right patterns in Fig. . Additionally,
some patterns are merged (i.e. the upper right and
middle patterns in Fig. . This result indicates that
model dependent posterior form is helpful in structured
inference for learning useful latent representations, es-
pecially when we have small amount of training data.
Similarly, we perform experiments on MULTI-MNIST
dataset. The results are reported in the Supplementary
Materials.

4.4 Generative Modeling with Synthetic
Datasets

While the previous sections focus on comparing meth-
ods on inference accuracy and parameter recovery, this
section focuses on generative modeling and compares
methods in the metric of negative ELBO on held-out
set. According to eq. , sparse data requires less
parameter 1 to be approximated. Thus, in addition to
varying the amount of training data, we also control
the sparsity of the dataset and evaluate how it would
affect the generative modeling. We use SYN-RANDOM
datasets described in Table [2] for these studies.

Fig. [5| shows the experiment results with different
amount of training data in various degrees of sparsity.
ACP consistently outperforms competing methods. It
performs on-par or slightly better than SVI, AVI and
LB-CDI when using a large amount of data but per-
forms noticeably better when using a small amount
of data. Intuitively, denser data will result in worse
approximation as the variational bound is applied to
an increased number of positive observations. However,
in Fig. ] we observe that ACP is not affected much
by this phenomenon. An explanation is that ACP is
not optimized to achieve the tightest variational bound,
yet to improve the overall performance with respect to
the ELBO.

Table [] shows the modeling results on SYN-RANDOM
with 500 observed and 100 latent variables. Here we
did not experiment LB-CDI with large training size
(greater than 5k) due to the computational complexity.
From Table [4 we can observe that our ACP achieves

Table 4: Generative modeling on SYN-RANDOM, where
D =500, K = 100, sparsity = 89.2%

Nirain | AVI SVI | LB-CDI | ACP
40k 150.7 | 156.3 - 149.5
20k 151.0 | 156.5 - 149.8
10k 156.0 | 156.9 - 150.3
5k 157.6 | 157.4 - 151.2
1k 159.2 | 158.0 158.8 157.2

on-par or slightly better performance comparing with
AVI when we have sufficient training data, while SVI
is significantly worse than both amortized approaches.
When we have limited training data, the performance
of AVI degrades faster than ACP. The large variance of
AVTI leads to the worst performance when the training
set is limited. Our ACP method outperforms AVI and
SVI with both sufficient and limited training data.

4.5 Topic Models

We compare AVI and ACP on topic modeling. We use
the titles of all the Neural Information Processing Sys-
tems (NeurIPS) papers from 1987 to 2016 (nipj, 2019).
Each observed data point x(™ is a D-dimensional bi-
nary vector representing a paper’s title, where D is the
size of the vocabulary. The value of mgn), i=1,---,D
indicates the presence/absence of word w; in the n-th
title. After word lemmatization, removing stop words,
the 5 most common words and the words with less
than 5 occurrences in the whole corpus, we obtain a
dataset with 7241 data points and 1216 unique words.
The average length of the paper title is 4.49 after pre-
processing. We use 1000 data points for validation,
1000 for testing, and the remaining ones for training.
We model the data with K = 20 latent variables.

Each latent variable zj is interpreted as a topic cap-
turing a distribution of words. To further show the
semantic coherence of words in each topic, we report
the point-wise mutual information (PMI), which has
been shown to be highly correlated with human judg-
ment in assessing word relatedness (Newman et al.,
2009), between word pairs of each topic. To do so we
use the whole English WIKIPEDIA corpus, that consists
of approximately 4 millions of documents and 2 billions
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Figure 5: Comparison of AVI and ACP in NoISY-OR under different model structure and different data sparsity.

Table 5: Top 10 words inferred on NeurIPS Titles dataset for top 4 topics with 5241 and 2000 training data.

Nirqin = 5241, ACP (PMI = 2.78) Nirain = 5241, AVI (PMI = 2.49)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 3 Topic 4
classification bayesian sparse application process process multi sparse
application base analysis classification inference inference bayesian regression

via optimization deep process gaussian bayesian probabilistic gaussian
method adaptive datum linear markov analysis information via
process method method stochastic datum gaussian inference estimation
multi function estimation analysis mixture datum dynamic inference
bayesian object multi multi analysis mixture approach analysis
kernel estimation feature datum bayesian variational function linear
feature information convex time variational approach application process
image datum probabilistic via dynamic probabilistic process optimization
PMI : 3.82 PMI : 3.22 PMI : 3.18 PMI : 3.16 PMI : 3.74 PMI : 3.73 PMI : 3.69 PMI : 2.98
Nirqin = 2000, ACP (PMI = 2.75) Nirain = 2000, AVI (PMI = 2.55)
Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 3 Topic 4
image kernel method inference base optimization feature process
feature base estimation bayesian adaptive sparse function gaussian
optimization image sparse process process recognition base via
application process non classification kernel classification datum datum
recognition dynamic stochastic kernel method method information inference
fast estimation optimization multi linear base adaptive optimization
clustering classification application analysis datum adaptive reinforcement time
via deep gradient linear system linear search recognition
representation optimal multi fast sample function gaussian base
reinforcement sample fast application dynamic regression bound latent
PMI : 3.47 PMI : 3.40 PMI : 3.20 PMI : 3.19 PMI : 3.09 PMI : 3.00 PMI : 2.95 PMI : 2.91

of words. The PMI between two words w; and wyj is
given by PMI(w;,w;) = log %, where p(w;) is
the probability that word w; occurs in WIKIPEDIA, and
p(w;, w;) is the probability that words w; and w; co-
occur in a 5-word window in any WIKIPEDIA document.
Higher PMIs indicate higher semantic coherence.

Table [5] reports the results by each model. We report
the best 4 topics in terms of PMI and visualize their top-
10 words. The words w; for topic z; are selected with
the highest parameters 6;;, which corresponds to the
highest value p(x; = 1|z;). We also report the average
pairwise PMI between the top words within each topic,
and the mean of the average pairwise PMI across all
topics. With more training data (Ni.qi, = 5241),
ACP and AVI achieve similar average PMI. When
Nirain is reduced to 2000, all four selected topics in
ACP have better average pairwise PMI scores than
AVI. In Supplementary Materials, we report additional

experimental results of document classification and
latent representations of the learnt topics.

5 CONCLUSION

We proposed ACP for variational inference, which com-
bines the classical techniques of deriving variational
bounds over likelihoods and recent approaches using
neural networks for amortized variational inference.
We showed that by constraining the form of approxi-
mate posterior using classical methods and learning the
variational parameters to maximize ELBO, ACP can
generalize well even with a small amount of training
data. While with large amount of training data, our
approach retains the high capacity for better generative
modeling. Emprical studies have shown the advantages
of ACP. Our future direction is to extend this approach
to hierarchical models.
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