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Abstract

This paper studies online kernel learning (OKL)
for graph classification problem, since the large
approximation space provided by reproducing ker-
nel Hilbert spaces often contains an accurate func-
tion. Nonetheless, optimizing over this space is
computationally expensive. To address this is-
sue, approximate OKL is introduced to reduce
the complexity either by limiting the support vec-
tor (SV) used by the predictor, or by avoiding
the kernelization process altogether using em-
bedding. Nonetheless, as long as the size of
the approximation space or the number of SV
does not grow over time, an adversarial environ-
ment can always exploit the approximation pro-
cess. In this paper, we introduce an online kernel
sampling (OKS) technique, a new second-order
OKL method that slightly improve the bound
from O(d log T ) down to O(r log T ) where r is
the rank of the learned data and is usually much
smaller than d. To reduce the computational com-
plexity of second-order methods, we introduce
a randomized sampling algorithm for sketching
kernel matrix Kt and show that our method is
effective to reduce the time and space complexity
significantly while maintaining comparable per-
formance. Empirical experimental results demon-
strate that the proposed model is highly effective
on real-world graph datasets.

1 Introduction

Graph-structured data is becoming more widespread: ex-
amples are social networks, knowledge graph, protein or
gene regulation networks, or the growing body of research
in program flow analysis. For instance, a typical problem
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of recommendation in social networks: Given a number of
users in tweets, the model aims to predict whether users
would purchase a product or not. In this problem, one needs
data analysis and machine learning methods that can handle
large-scale datasets (Bottou et al., 2007; Bottou and Bous-
quet, 2007; Bottou et al., 2018; Yang and Li, 2020a). This
problem has been studied in the setting of online learning
(OL) with Laplacian regularization on graphs (Ando and
Zhang, 2006). In such setting, the graph structure is pro-
vided and a model is learned incrementally in the input from
a sequence of T streaming nodes. Pioneer work usually
learned a linear predictor in the node-embedded space or
graph-embedded space (Herbster and Pontil, 2006; Shri-
vastava and Li, 2014; Rahmani and Li, 2019). As we can
explicitly store and update the d-dimensional linear predic-
tor, total runtime of this algorithm is O(Td), allowing it
to scale to large problems. Unfortunately, it is sometimes
the case that no good predictor can be learned starting from
linear combination of the input features.

For this reason, online kernel learning (Kivinen et al., 2001)
(OKL) first maps the points into a high-dimensional re-
producing kernel Hilbert space (RKHS) using a nonlinear
feature map φ, and then runs gradient descent (GD) on
the projected points. With the kernel approach, each gra-
dient step does not update a fixed set of weights, but in-
stead introduces feature-mapped points in the predictor as
a support vector (SV). Zinkevich et al. (Zinkevich, 2003)
showed that first-order GD is flexible and data adaptive,
but the number of parameters, and therefore the per-trial
space and time cost, now scales with O(t), the number of
SVs included after t steps of GD. When the losses posse
a certain directional curvature properties, kernel-recursive
least squares (Zhdanov and Kalnishkan, 2010) or kernelized
online Newton step (Calandriello et al., 2017), which ex-
ploits second-order (second derivative) information on the
losses, can achieve a logarithmic regret O(d log T ). The
drawback of second-order methods is that they have to store
and invert the t× t covariance matrix between all SVs in-
cluded in the predictor. This requires O(t2) space and time
per-step, resulting in an even more infeasible T 3 runtime,
which prevents the standard OKL methods from scaling to
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large problems.

Contribution We propose an online kernel algorithm, de-
rived from the Laplacian regularized least square. The re-
gret of the objective function is minimized by an adaptive
convex-concave optimization framework. The derived al-
gorithm achieves a regret of O(r log T ), and runs in O(t2)
time and space. To reduce runtime complexity, we consider
a confidence-based sampling technique to approximate the
Hessian matrix and predictor with adaptive sketching. By
adaptively increasing the size of its sketch, this method pro-
vides a favorable accuracy-complexity trade-off, where we
can maintain a comparable mistake bound while obtaining a
significant improvement in runtime, thereby reducing label-
ing cost and achieving smaller space and time per iteration.
To accelerate the learning process, we further propose an
adaptive technique by performing explorative updates over
the points of high predicted variance. We empirically evalu-
ate the algorithm on real-world datasets and experimental
results demonstrate that this model is highly effective.

2 Related Work

OKL has been proposed, such as functional GD (Kivinen
et al., 2001; Zinkevich, 2003) which achieves a O(

√
T )

regret with a O(t) space and time cost per iteration. For
second-order methods, several studies (Cesa-Bianchi et al.,
2002; Orabona and Crammer, 2010; Yang and Li, 2020b)
for generic curved losses and the others (Zhdanov and
Kalnishkan, 2010; Gammerman et al., 2004) for the specific
case of `2 losses provide bounds that scale with the log-
determinant of the kernel-matrix. Sketched methods have
been proposed to make OKL methods scale to large datasets,
which usually take one of two approaches, either performing
Sketched Gradient updates in the true RKHS (Cesa-Bianchi
and Gentile, 2006; Kushnir, 2014), e.g., projectron (Orabona
et al., 2008), forgetron (Dekel et al., 2005)), which prevent
support vectors (SVs) from entering the predictor, or exact
gradient updates in an sketched RKHS (Nystrom (Williams
and Seeger, 2000; Yang et al., 2012; Lu et al., 2016; Calan-
driello et al., 2017; Li and Zhang, 2017), random Fourier
feature expansion (Rahimi and Recht, 2007; Li, 2017)),
where the points are embedded in a finite-dimensional space
and the curse of kernelization does not apply. This paper
proposes a second-order OKL and exploits the mean and
variance of prediction for kernel sketching.

Notation. We use upper-case bold letters A for matrices,
lower-case bold letters a for vectors, lower-case letters a for
scalars. We denote Aij as the (i, j)-th element of A and ai
as the i-th element of a. With an appropriate size, we denote
by I and 0 as the identity matrix and a vector of all zeros,
respectively, and by diag(a) ∈ Rd×d as the diagonal matrix
with the vector a on the diagonal. The transpose of a vector
x is denoted as x>, the inverse of a matrix A as A−1, and
the pseudo inverse of A as A†. We use A � B to indicate

that A−B is a positive semi-definite (PSD) matrix. With
‖ · ‖op we indicate the operator norm.

3 Problem Setting

Given a reproducing kernel Hilbert spaceH and an arbitrary
input space X (Schölkopf and Smola, 2002), we can find an
associated feature map ϕ : X → H and a positive definite
kernel function K : X × X → R, such that K(xi,xj) =
〈ϕ(xi), ϕ(xj)〉H is an inner product of feature mapping.
For any point xi ∈ X , we shorten ϕ(xi) = φi and define
feature matrix as Φn = [φ1, . . . , φn] ∈ RD×n, where D is
very large or potential infinite. For any function f ∈ H,
it is explicitly represented as u such that f(xi) = u>φi.
With this notation, the empirical kernel matrix is defined
as Kn = Φ>nΦn, the vector with all similarities between
old points and a new one as k[n−1],n = Φ>n−1φn, with its
element as ki,n = φ>i φn. Throughout the rest of the paper,
we assume that K is normalized and ki,i = 1.

In the setting of classification, the real-valued function satis-
fies: the label prediction should be close to the given labels
for that instances, while the model parameter should be
generalized to solve ill-posed problem without overfitting.
Given a regularized parameter b > 0, this work solve a
regularized least square function,

min
u

n∑
i=1

`(u; (φi, yi)) + b‖u‖2. (1)

We solve this problem in a setting of online kernel learning.

4 Online Kernel Optimization

The objective of online kernel learning aims to achieve a
low regret compared to the best predictor in H. Given an
arbitrary node-label sequence {(xt, yt)}Tt=1 (T ≤ n), an
algorithm receives an input xt ∈ X at round t, and predicts
ŷt = sgn[u>t φt], where the model ut is learned from the pre-
vious t rounds. Then true label yt is revealed, the algorithm
uses it to update model and then proceeds to next round. For
any weight u ∈ H, we denote by `t(u) as the instantaneous
loss of xt, and by LT (u) =

∑T
t=1 `t(u) as the cumulative

loss over T rounds. Specifically, we propose an adaptive
cumulative loss function, LT (u) =

∑T
t=1 at(yt − u>φt)

2,
where {at}Tt=1 ≥ 0 are the input-dependent weights. For-
mally, we define the objective function of an algorithm as

F (u) = min
u

(
b‖u‖2 +

T∑
t=1

at(yt − u>φt)
2

)
,

which aim to let the weighted cumulative loss and its regu-
larization term.

4.1 Kernel Learning

Calculating the solution requires performing operations on
Φt ∈ RD×t where D is very large and potentially infinite
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and vector φt cannot be explicitly represented. To derive
a feasible solution, we show that the prediction ft can be
conveniently computed using only inner products.

To solve these issues above, we derive a closed-form
solution which can be computed in practice. Using a
rescaled variant of feature vectors φt, i.e., φt =

√
atφt

and Φt = [φ1, . . . , φt], we can write empirical kernel ma-
trix Kt = Φ

>
t Φt using a rescaled kernel K(xi,xj) =√

ai
√
ajK(xi,xj) instead of original K, while the rescaled

label yt = [
√
a1y1, . . . ,

√
atyt]

> is under the same setting.

We show that, by appropriately setting the adaptive weight
aT , the optimization problem could be convex in ŷT . The
optimal solution of the adaptive optimization problem is
summarized as follows.

Theorem 1. For any t > 1, Φt = [φ1, . . . , φt] ∈ RD×t,
Kt = Φ

>
t Φt ∈ Rt×t, yt = [y1, . . . , yt]

> ∈ Rt, and b > 1.
then the F (u) could be minimized with an optimal solution,

ŷt = sgn
(
u>t φt

)
. (2)

where the model parameter can be computed in practice

ut = Φt−1

(
Kt−1 + bI

)−1
yt−1,

In this way, the model can be updated iteratively with com-
putational complexity O(t2).

Remark: Theorem 1 shows that the prediction ŷt+1 can be
computed by the kernel matrix Kt = Φ

>
t Φt ∈ Rt×t and

the similarity vector k[t],t+1 = Φ
>
t φt+1 ∈ Rt. When its

true label yt+1 is revealed, the model can be updated effi-
ciently in terms of (Kt + bI)−1 in a recursive way with the
complexity O(t2) in space and time (Laskov et al., 2006).

Proof.

F (u) = b‖u‖2 +

T∑
t=1

at(yt − u>φt)
2

=

T∑
t=1

at
[
y2
t − 2

(
u>φtyt

)
+ u>φtφ

>
t u
]

+ bu2)

=u>

(
bID +

T∑
t=1

φtφ
>
t

)
u +

T∑
t=1

y2
t − 2u>

(
T∑
t=1

φtyt

)

=

T∑
t=1

y2
t − 2u>(ΦTyT ) + u>(bID + ΦTΦ

>
T )u,

it follows that ∇F (u) = 2(bID + ΦTΦ
>
T )u − 2ΦTyT ,

∇2F (u) = 2(bID+ΦTΦ
>
T ). Thus F (u) is convex and it is

minimal if∇F (u) = (bID + ΦTΦ
>
T )u− ΦTyT = 0 with

u = (bID + ΦTΦ
>
T )−1ΦTyT .

Algorithm 1 OKL: Online Kernel Learning
1: Input: {xt, yt}Tt=1, parameters b and h.
2: Output: uT
3: Initialize: M0 = bI with b > 1, Φ0 = ∅
4: for t = 1, . . . , T do
5: Receive xt ∈ Rd
6: Predict ft = y>t−1M

−1

t−1kt−1(φt)
7: Query the true label yt and ŷt = sgn(ft)
8: if ŷt 6= yt then
9: Update Φt = [Φt−1, φt] and yt = [yt−1, yt]

10: Update Mt = bI + Φ
>
t Φt

11: else
12: Mt = Mt−1,Φt = Φt−1,yt = yt−1

13: end if
14: end for

For any ΦT = [φ1, . . . , φT ] ∈ RD×T matrix and b > 1,

ΦTΦ
>
T (ΦTΦ

>
T + bID)−1 =ΦT (Φ

>
T ΦT + bIT )−1Φ

>
T

=ΦT (KT + bIT )−1Φ
>
T ,

and we compute

(ΦTΦ
>
T + bID)−1 =

1

b
bI(ΦTΦ

>
T + bID)−1

=
1

b

(
ΦTΦ

>
T − ΦTΦ

>
T + bID

)(
ΦTΦ

>
T + bID

)−1

=
1

b

(
ID − ΦTΦ

>
T

(
ΦTΦ

>
T + bID

)−1
)

=
1

b

(
ID − ΦT

(
KT + bIT

)−1
Φ
>
T

)
.

So that we can obtain

u = (ΦTΦ
>
T + bI)−1ΦTyT

=
1

b

(
ID − ΦT

(
KT + bIT

)−1
Φ
>
T

)
ΦTyT

=
1

b
ΦT

(
yT −

(
KT + bIT

)−1
KTyT

)
=

1

b
ΦT

(
IT −

(
KT + bIT

)−1
KT

)
yT

=
1

b
ΦT

((
KT + bIT

)−1 (
KT + bIT −KT

))
yT

= ΦT
(
KT + bIT

)−1
yT .

Substituting the solution u = ΦT
(
KT + bIT

)
back to

F (u), we have

F (u) =

T∑
t=1

y2
t − y>T (KT + bIT )−1KTyT .

In Theorem 1, we obtain an optimal solution uT for regular-
ized online learning. Nonetheless, it is inefficient for online
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algorithm to update in each iteration. To address this issue,
we make use of a conservative strategy to perform an up-
date when an error (yt 6= ŷt) occurs. We call the algorithm
OKL, online kernel learning in Algorithm 1. Note that our
update format is different from OLLGC (Gu et al., 2013),
SOP (Cesa-Bianchi et al., 2002) and others (Orabona and
Crammer, 2010), since we derive a kernelized model that is
able to to search for the non-linear hypothesis.

When an error occurs at round t, i.e., ftyt ≤ 0, the model
has to update the inverse of kernel matrix (Kt + bI)−1 with
a computational complexity of O(t3). To address this issue,
we provide an efficient solution to update (Kt + bI)−1. We
begin with additional annotations:

dt−1 = (Kt−1 + bI)−1k[t−1],t,

γt = (kt,t + b− k
>
[t−1],tdt−1)−1.

According to Woodbury formula, we obtain

(Kt + bI)−1 =

[
Kt−1 + bI k[t−1],t

k
>
[t−1],t kt,t + b

]−1

=γt ·

[
γ−1
t (Kt−1 + bI)−1 + dt−1d

>
t−1 −dt−1

−d>t−1 1

]

=

[
(Kt−1 + bI)−1 0t−1

0>t−1 0

]
+ γt ·

[
dt−1

−1

] [
d
>
t−1 − 1

]
In this way, the kernel model can be updated iteratively
with computational complexity O(t2).

5 Online Kernel Sampling

For the proposed algorithm, storing and updating the inverse
of the Kt matrix requires a complexity O(t2) regrading the
space and time, which becomes quickly unfeasible as t
grows. Moreover, this algorithm assumes that true labels
are provided to each instance, which results in expensive
labeling cost in practice.

To improve computational efficiency, we adapt the selec-
tive sampling algorithm of (Cesa-Bianchi et al., 2006; Rudi
et al., 2018) into the kernel setting and propose randomized
sampling for kernel selection. Unlike online algorithm that
samples all labels, selective sampling has to decide whether
to query label or not for each point xt. If a label yt is queried
of, the algorithm can perform a update with yt; otherwise,
no action is conducted and the learner proceeds next one.
Query and update decisions at round t are denoted as binary
variable Qt and Zt, respectively. When Qt = 1 iff true
label yt is queried of; Qt = 0, no query conducted. The up-
date decision Zt is under similar setting. Generally, online
sampling is a semi-supervised online learning algorithm.
Thus, its best predictor could be derived in a form of online
learning with query/update choice on each round.

5.1 Adaptive Kernel Sampling

The goal of online kernel sampling is to achieve few mis-
takes

∑
t I[yt 6= ŷt] with small sampled number

∑
t ZtQt.

To achieve this goal, we propose a randomized sampling
technique tuned by a confidence score Θt: a coin with bias

h
h+max(0,Θt)

is flipped; if the coin turns up heads, then ac-
tual label yt is sampled, otherwise Qt = 0 and no action
performed.

Definition 1. At round t, an algorithm predicts with ft =
ut ·φt where ut = y>t−1(Kt−1 +bI)−1Φt−1, and computes
τt, the projection of current instance to the inverse of the
learned kernel matrix, as below,

τt = φ
>
t (Φt−1Φ

>
t−1 + bID)−1φt

=
1

b

(
at − k

>
[t−1],t(Kt−1 + bI)−1k[t−1],t

)
.

(3)

Then, the true label is queried by a Bernoulli trial with a
probability h

h+max(0,Θt)
(h > 0), where Θt is defined as

Θt = |ft| − 1
2atτt, which can be regarded as the lower

confidence bound.

Our basic idea is to maintain a tradeoff between exploitation
and exploration (Crammer and Gentile, 2011). Intuitively,
an algorithm should exploit current hypothesis to decide
a query, i.e., sample an input when it is closed to current
hypothesis (Gu et al., 2014) (|ft| = |φ>t wt| → 0). How-
ever, the hypothesis is usually biased towards the observed
points, especially in a dynamic environment of online learn-
ing when model has little knowledge of the latest data. To
solve this issue, the algorithm tracks the spectrum structure
of observed points and explores whether current learner is
uncertain to current prediction (Calandriello et al., 2017),
measured by σt. Generally, a large σt indicates a high pre-
diction variance. While intensive studies have been done
in both directions, few methods leverage two quantities to-
gether to make a sampling decision. To fill this gap, we
propose an adaptive-margin confidence, Θt, acting as the
lower confidence bound of the predicted margin. Different
from (Hoi et al., 2012), Θt is derived from online adversarial
setting for kernel sketching. We summarize this algorithm,
namely OKSG, in Algorithm 2. We next theoretically ana-
lyze the effectiveness of the OKSG.

In the randomized query, the mistake trials can be parti-
tioned into two disjoint sets, set S = {t : h

h+max(0,Θt)
< 1}

includes indices on which a stochastic sampling is conduct,
while set I = {t : h

h+max(0,Θt)
= 1} includes indices

when there is a deterministic sampling. We denote by
M = {t : ytft ≤ 0} as the set of mistake trials and let
M = |M|, and by ZT = {t ≤ T : QtZt = 1} as the set of
sampled kernels and `(x) as a hinge loss over x.

For any data sequence DT = {xt}Tt=1 and any b > 1, the∑
t τt is closely related to kernel matrix: log(det(KT /b+
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Algorithm 2 OKSG: online kernel sampling algorithm
1: Input: {xt, yt}Tt=1, parameters b and h.
2: Output: uT
3: Initialize: M0 = bI, and Φ0 = ∅
4: for t = 1, . . . , T do
5: Receive xt and ut = Φt−1M

−1
t−1yt−1

6: Compute ft = u>t φt and τt in Eq. (3)
7: Calculate Θt = |ft| − τt
8: Generate Qt ∼ h

h+max(0,Θt)

9: if Qt = 1 then
10: Query the actual label yt and ŷt = sgn(ft)
11: if ŷt 6= yt then
12: Set Zt = 1; Otherwise, Zt = 0
13: end if
14: end if
15: Update Φt = [Φt−1, Ztφt] and yt = [yt−1, Ztyt]

16: Update Mt = bI + Φ
>
t Φt

17: end for

I)). Using Sylvester’s determinant identity,

det(ΦTΦ
>
T + bI) = det(Φ

>
T ΦT + bI) = det(KT + bI).

Then, we have that

T∑
t=1

φ
>
t

(
ΦtΦ

>
t + bI

)−1

φ
>

=

T∑
t=1

(
φ
>
t /
√
b
)(

ΦtΦ
>
t /b+ I

)−1 (
φt/
√
b
)

≤ log

det
(

ΦTΦ
>
T + bI

)
det
(

Φ0Φ
>
0 + bI

)
 = log det

(
KT /b+ I

)
(4)

where the first inequality holds due to(
ΦtΦ

>
t + bI

)
=
(

Φt−1Φ
>
t−1 + bI

)
+ φtφ

>
t ⇒

τt = φ
>
t

(
ΦtΦ

>
t + bI

)−1

φt = 1−
det
(

Φt−1Φ
>
t−1 + bI

)
det
(

ΦtΦ
>
t + bI

)
≤ − log det

det
(

Φt−1Φ
>
t−1 + bI

)
det
(

ΦtΦ
>
t + bI

)
 .

We notice that in first inequality we relate τt to the log-
determinant of the kernel matrix KT . This quantity appears
in a large number of works on online linear prediction (Cesa-
Bianchi et al., 2006) where they were connected to maximal
mutual information gain in Gaussian processes. In general,
τt has been used to measure the correlation between a point
t and the other t− 1 points, indicating how essential it is in
characterizing the dataset. If φi is completely orthogonal
to the other data, τt → 1/(1 + b) is maximized; while in

the case where all the points are identical, τt → 1/(t + b)
is minimized. At time point, we can generate the mistake
bounds of online kernel sampling.

Theorem 2. Assume an arbitrary node-label sequence
{(xt, yt)}Tt=1, the OKSG learns on only sampled trails

{t : Qt = 1, s.t. Qt ∼ B
(

h
h+max(0,Θt)

)
} with h > 0.

Assume that CZ = |Z|maxt∈Z at + b, the mistake bound
holds for any u ∈ H,

E[M ] ≤E

[∑
t∈ZT

at`(ytu
>φt)

]
+
hCZT

2
‖u‖2

+
maxt at

2h
log det(KE[M∩I]/b+ I).

The expectation of sampling is upper bound by
E
[
|I|+

∑
t∈S

h
h+max(0,Θt)

]
.

Proof. According to Algorithm 2, if the trails is such that
QtZt = 0, then ut = ut−1 with no update, which yields
minu Ft(u) = minu Ft−1(u). Hence the equality,

min
u
Ft(u)−min

u
Ft−1(u)

=QtZt
[
(yt − ft)2 − (atτt − at + 1)y2

t

]
,

holds for all trial t. Summing over t = 1, . . . , T and ex-
panding the squares in both sides with slightly manipulation,
we obtain

T∑
t=1

QtZt

(
−ytft −

1

2
atτt

)
≤ −

T∑
t=1

QtZt
1

2
f2
t

1

2
u>

(
bI +

∑
t

QtZtatφtφ
>
t

)
u−

T∑
t=1

QtZtatytu
>φt.

holding for any u. We add h on both sides where h > 0
and replace u with hu since u is a random variable. Using
inequality 1− x ≤ max(1− x, 0) yields

hQtZt − hQtZtatytu>φt
≤hQtZtat − hQtZtatytu>φt ≤ hQtZtat`(ytu>φt),

where `(·) is hinge loss. Observing −ytft = +|ft| when-
ever an errorQtZt = 1 while we omit the terms−

∑T
t=1 f

2
t

that do not affect the bound, we simplify with the notations
Mt and Θt,

T∑
t=1

E [QtZt(Θt + h)]

≤1

2
h2u>E[MZT

]u + hE

[∑
t∈ZT

at`(ytu
>φt)

]

When an error incurs at trial t ∈ M, the function Θt can
be positive (t ∈ M ∩ S) or negative (t ∈ M ∩ I): In the
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former subcase, Qt is a random variable with expectation
E[Qt] = h

Θt+h
and thus

E [QtZt(Θt + h)] = E[Zt]E[Qt(Θt + h)] = hE[Zt];

In the later subcase, E[Qt] = 1. We bound

E
[
ZtQt(h+ |ft| −

1

2
atτt

]
≥E

[
Zt(h−

1

2
atτt

]
≥ hE[Zt]− E

[
1

2
atτt

]
.

To summarize,

T∑
t=1

E [QtZt(Θt + h)]

≥
∑

t∈M∩S
hE[Zt] +

∑
t∈M∩I

(
hE[Zt]− E[

1

2
atτt]

)

=hE[M ]− E

[ ∑
t∈M∩I

1

2
atτt

]

Summarizing above equations, we complete the proof. Note
that labels are selected randomly, so that all expectations
occurring are with respect to the randomization.

Remark: By recalling the regret term in Eq. (4), we notice
that there is a deep connection between the mistake bound
and cumulative sum of the τt. The τt captures how much
the adversary can increase the mistake bound by picking
orthogonal directions that have not been observed before.
While in linear model, this can happen at most d times (the
rank of matrix

∑
t xtx

>
t is at most d); In kernel model, it

can grow linearly with time, since largeH can have infinite
dimensions. Nonetheless, the actual growth rate is directly
related to the complexity of sequential points chosen by the
adversary and kernel space. While the matrix Kt captures
the capability of the RKHSH on the points Dt, we see that
the bound in Theorem 2 is rather related to

∑
t τt, and we

show that the two quantities are also related to each other.

5.2 Exploration Learning

Although OKSG is efficient, it uses an exploitation rule to
update model when an error occurs (e.g., ftyt ≤ 0). In this
section, we propose an adaptive kernel sampling algorithm,
namely AKSG in Algorithm 3, to achieve an exploitation-
exploration tradeoff. To achieve this, it explores the hypoth-
esis based on the lower confidence bound (LCB) of model
prediction. At each round t, the actual label yt is revealed
based on the confidence bound Θt = |ft| − 1

2atτt, which
yields to a stochastic sampling and deterministic sampling.
In stochastic sampling, update is driven by mistake. We ob-
serve that a deterministic query is issued whenever Θt ≤ 0.
In this case, an aggressive update is performed, i.e., we
update model even if no error occurs.

Algorithm 3 AKSG: adaptive kernel sampling algorithm
1: Input: {xt, yt}Tt=1, parameters b and h
2: Output: uT
3: Initialize: M0 = bI, and Φ0 = ∅
4: for t = 1, . . . , T do
5: Receive xt ∈ Rd, predict ft and τt
6: Calculate Pt = h

h+max(0,Θt)

7: if Pt < 1 then
8: Generate Qt by a Bernulli trail with Pt
9: if Qt = 1 then

10: Query the actual label yt and ŷt = sgn(ft)
11: Set Zt = 1 if ŷt 6= yt; otherwise Zt = 0
12: end if
13: else
14: Set Zt = 1 for any prediction ŷt
15: end if
16: Update Φt = [Φt−1, Ztφt] and yt = [yt−1, Ztyt]

17: Update Mt = bI + Φ
>
t Φt

18: end for

Remark: To further understand the aggressive method, we
compute under what condition a deterministic query will
be issued. A query is issued with a probability 1 when
Θt = |ft| − 1

2atτt ≤ 0. By solving for |ft|,

Θt ≤ 0⇒ |ft| ≤ θ(τt) =
1

2
atτt.

If |ft| is less than θ(τt), a deterministic update is conducted,
while |ft| is above θ(τt), i.e., Θt > 0, a update will be
issued with a probability strictly less than 1. The upper
bound of θ(τt) increases with τt. If all points are identical,
i.e., τt ≈ 1

t+b → 0, a deterministic update is issued only
when an input lies on the boundary (i.e. |ft| ≤ θ(0) = 0).
However, if current input is completely different from other
data, i.e., τt ≈ 1

b , this implies that an deterministic update
is issued whenever |ft| is less than θ(τt) = at/2b.

Remark: Given {λt} the eigenvalues of KT , we no-
tice that log det(KT /b + I) = log

(∏T
t=1(λt/b+ 1)

)
=∑T

t=1 log(λt/b+ 1). Next, we can decompose this as

T∑
t=1

log(λt/b+ 1) =

T∑
t=1

log(λt/b+ 1)(
λt/b+ 1

λt/b+ 1
)

=

T∑
t=1

log(λt/b+ 1)
λt/b

λt/b+ 1
+

T∑
t=1

log(λt/b+ 1)

λt/b+ 1

≤ log(‖KT ‖op/b+ 1)

T∑
t=1

λt/b

λt/b+ 1
+

T∑
t=1

λt/b+ 1− 1

λt/b+ 1

≤(log(‖KT ‖op/b+ 1) + 1)r,

where the first inequality is due to ‖KT ‖op ≥ maxt λt and
the second inequality is due to log(x) ≤ x− 1. We observe
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that it is smaller than the rank r of kernel matrix KT for
any b > 1 (This can be seen as

∑
t

λt

λt+b
≤ rank(KT )).

We slightly improve the bound of (Luo et al., 2016) from
O(d log T ) down to O(r log T ) where r is the rank of the
learned points. For the kernel models, simple functional gra-
dient descent (e.g., NORMA (Kivinen et al., 2001)) achieves
a O(
√
T ) regret regardless of the loss function.

6 Empirical Experiments

In this section, we introduce empirical results to validate
the proposed algorithms. Our experiments shows that he
proposed kernel sampling algorithm is effective to reduce
the time and space complexity significantly while main-
taining comparable performance; Meanwhile the adaptive
update strategy achieves a better predictive performance via
exploring more informative kernels.

6.1 Data Sets and Evaluation Metrics

We introduce three real-world online datasets to evaluate our
algorithms: 1) Coauthor1 extracted from DBLP database
is an undirected co-author graph in which 1711 authors
are denoted as nodes while the co-authored relationship
are regarded as the edges. The authors are classified in
four classes in terms of research topic: “data mining”, “ma-
chine learning”, “information retrieval”, and “databases”. 2)
Cora2 is a citation network including 2485 scientific publi-
cations and 5429 citation links. The publications regarded
as nodes are related to seven domains: “Case based”, “Ge-
netic Algorithms”, “Rule Learning”, “Probabilistic Meth-
ods”, “Neural Networks”, “Reinforcement Learning”, and
“Theory”. 3) IMDB3 is a movie organization that presses
up-to-date movie information. IMDB connects total 17046
movies with the co-actor associations. The movies as nodes
in graph are categorized into four genres: “Action”, “Ro-
mance”, “Animation”, and “Thriller”.

The graph data is supposed to be undirected and connected.
If the edges are directed, we transform them into undirected
graphs via S ← max(S,S>). If the graphs are discon-
nected, the biggest connected subgraph is chosen for study.

We evaluated the performance of baselines and our algo-
rithms with two measurements: i) cumulative error rate,
reflects the prediction accuracy of online algorithm; ii) num-
ber of queried nodes, reflects the computational efficiency of
sampling method. Note that small value of above measures
indicates a better performance of a method.

6.2 Baselines and Parameter Setting

We compared the proposed algorithms with state-of-the-art
baselines. The algorithms and their parameter settings are

1https://snap.stanford.edu/data/com-DBLP.html
2http://www.cs.umd.edu/ sen/lbc-proj/data/
3http://www.imdb.com/

summarized as follows.

GPA (Herbster and Pontil, 2006) is a first-order linear learn-
ing algorithm on graph. Note that the perceptron algorithm
is not affected by the step-size. FOGD and NOGD (Lu et al.,
2016) are first-order kernel learning algorithms with kernel
functional approximation techniques. FOGD applies the
random Fourier features for approximating kernel function;
while NOGD applies the Nystrom method to approximate
large kernel matrices. Pros-KONS (Calandriello et al., 2017)
is a second-order online kernel algorithm with adaptive em-
bedding. It exploits confidence bound to sketch the embed-
ding space of the second-order updates. OKL, OKSG and
AKSG are the proposed second-order online kernel sampling
algorithms. OKL is an online kernel algorithm without a
constraint on kernel size. OKSG is an exploitive algorithm
that update model whenever an error occurs, while AKSG is
an adaptive algorithm that performs explorative updates on
the uncertain points. For all above methods, the parameter
d is set to 100 as the performance of algorithm reaches to
a convergence. We tune b with the grid {1, . . . , 10} on a
held-out random shuffle. For selective sampling strategy, we
set h = 0.01 for Cora and Coauthor, h = 0.001 for IMDB
due to graph structure variable.

In order to compare these algorithms fairly, we randomly
shuffled the ordering of samples for each dataset. We re-
peated each experiment 20 times and calculated the average
results. In addition, the above algorithms are designed for bi-
nary classification. In order to apply the algorithms to those
data sets with multiple classes, we use one-vs-rest scheme
to adapt the binary classifiers to the multi-class scenario.

6.3 Comparison Result

The experimental results are presented in Figure 1. The
improvement of AKSG and OKSG over NOGD and FOGD
is always consistant on the three datasets. This is consistent
with previous observations in online learning: the second-
order algorithms are generally better than the first-order
algorithms (Hoi et al., 2012). The reason is that the covari-
ance matrix At that encodes the confidence of parameters
can guide the direction of the parameter update in the learn-
ing process. In addition, the kernel-based algorithms, e.g.,
OKSG and Pros-KONS, always outperform the linear al-
gorithm GPA. This is consistent with existing research in
kernel learning: the kernel methods are often better than lin-
ear methods (Vapnik, 1995; Hastie et al., 2009). The reason
is that the kernel method can generate a high-dimensional
and implicit feature vector to learn a nonlinear decision
boundary of classification model.

AKSG enjoys fewer queried nodes and lower error rates
than Pros-KNOS. The reasons is that the AKSG exploits
the adaptive-margin confidence to aggressively sample the
points with lower confidence of predicted margin. In this
way, the queried number and the error rate can be reduced
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Figure 1: Comparison of the binary-class classification algorithms
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Figure 2: Sensitivity analysis of the update ratio.

further when the model has learned sufficient knowledge of
data. It demonstrates the efficacy of the proposed sampling
strategy in terms of computation complexity and labeling
cost. OKSG achieves a comparable result with OKL. This
is reasonable, since OKSG only samples a portion of inputs,
whereas OKL can query all inputs. Thus, the performance
of the kernel sketched algorithm should be no better than
that of the algorithm in fully-supervised setting. However,
OKL requires much more queried nodes than OKSG in
order to achieve a better accuracy, which is infeasible in
many practical scenarios.

6.4 Sensitivity Analysis on Update Ratio

We studied the impact of h with respect to sampling ratio of
the OKSG and AKSG. Basically, the smaller the parameter
h, the fewer the queried number of nodes. Specifically, we
set h to {10−4, 10−3, . . . , 1}, and ran algorithm for 20 times
under each h. We calculated the average ratio of queried
nodes under different values of h. The comparison results
in Figure 2 showed that AKSG achieved better performance
consistently under different ratios of queried nodes. This
validated the computational-efficiency of the proposed con-
fidence score Θt that could adaptively prioritize informative
kernels to benefit the learning process. We also observed

that the AKSG outperformed Pros-KONS significantly over
all sketched ratios. The reason was that AKSG maintains
a tradeoff between exploitation and exploration for kernel
selection. The better results in Figure 2 demonstrated the
effectiveness of the proposed sampling strategy.

7 Conclusion

In this paper, we propose a new framework for online kernel
learning, leading to a scalable algorithm to tackle binary-
class classification on graphs. To reduce the computational
complexity, we present a novel randomized kernel sketched
technique. Besides, we introduce an aggressive update rule
that takes full advantage of the inputs with high predicted
variance. The theoretical results demonstrated the efficacy
of the proposed algorithms in terms of the expected mistake
bound and sampling ratio. The encouraging empirical re-
sults on several real-world datasets also indicated that 1) the
proposed randomized sampling algorithm is able to achieve
comparable or better predictive performance by querying
a small amount of kernels; and that 2) the adaptive sam-
pling scheme can further reduce the sampling ratio with the
explorative update, showing a superiority of the proposed
explorative technique.
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