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Abstract

Structured convex optimization on weighted
graphs finds numerous applications in ma-
chine learning and computer vision. In this
work, we propose a novel adaptive precon-
ditioning strategy for proximal algorithms
on this problem class. Our preconditioner is
driven by a sharp analysis of the local linear
convergence rate depending on the “active
set” at the current iterate. We show that
nested-forest decomposition of the inactive
edges yields a guaranteed local linear conver-
gence rate. Further, we propose a practical
greedy heuristic which realizes such nested
decompositions and show in several numerical
experiments that our reconditioning strategy,
when applied to proximal gradient or primal-
dual hybrid gradient algorithm, achieves com-
petitive performances. Our results suggest
that local convergence analysis can serve as
a guideline for selecting variable metrics in
proximal algorithms.

1 Introduction

Preconditioning, as a way of transforming a difficult
linear system into an easier one to solve, enjoys a rich
history. Recently, proximal algorithms (Combettes and
Pesquet, 2011; Parikh and Boyd, 2013; Chambolle and
Pock, 2016a) have received a surge of popularity in
solving structured non-smooth convex optimization
problems. Unlike in the case of linear systems, putting
forward a satisfactory theory and implementation of
preconditioning in the general non-smooth setting re-
mains an unsolved challenge (Pock and Chambolle,
2011; Giselsson and Boyd, 2014a,b; Lee et al., 2014;
Bredies and Sun, 2015; Fougner and Boyd, 2015; Gisels-
son and Boyd, 2015; Becker et al., 2018).
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This is mainly due to two obstacles:

(i) The non-linear dynamics of proximal algorithms,
as well as the geometry of the non-smooth energy are
more involved than in the quadratic case. A precise
characterization of the convergence behavior, which
could guide the proper choice of metric (preconditioner),
is challenging.

(ii) In cases where the proper choice of metric is clear,
non-diagonal preconditioners typically make the proxi-
mal operators in the algorithm much more expensive
to evaluate. While reducing the number of outer it-
erations, each inner iteration could be even of similar
complexity as the original problem (Lee et al., 2014).

In this vein, numerous efforts have been devoted to
achieve a better understanding of the dynamics of
proximal algorithms (see, e.g., Nishihara et al. (2015);
Garrigos et al. (2017)), and exploring scenarios where
non-diagonally scaled proximal mappings are still effi-
cient to evaluate (Friedlander and Goh, 2017; Becker
and Fadili, 2012; Becker et al., 2018).

In this paper we take a novel perspective, circumventing
issue (i) by resorting to the local convergence analysis.
This does not yield provable guarantees on the global
iteration complexity. Nevertheless, we show empirically
that the local analysis yield an improvement long be-
fore the local linear convergence regime is entered (see
Fig. 3).To overcome difficulty (ii) we consider struc-
tured convex problems on weighted graphs, where met-
rics based on tree decompositions are amenable to effi-
cient proximal evaluation by recent message-passing al-
gorithms (Kolmogorov et al., 2016). Specifically, given
an undirected weighted graph G = (V, E , ω), whose
edges are weighted by a function ω : E → R>0, we
consider the structured convex optimization on G:

min
u∈RV

G(u) + TVG(u), (1)

where TVG is the graph total variation

TVG(u) =
∑

e=(i,j)∈E

ωe |ui − uj |. (2)
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The function G : RV → R ∪ {+∞} is assumed to be
proper, lower semi-continuous and convex.

We define the vertex-to-edge map K : RV → RE by
K = diag(ω)∇,

where ∇ is the (transposed) incidence matrix of G, i.e.,

(∇u)e = ui − uj , ∀e = (i, j) ∈ E ,
with arbitrarily fixed orientation. With this notation
we can succinctly write TVG(u) = ‖Ku‖1.

Problems of form (1) are relevant in computer vi-
sion (Gilboa and Osher, 2008; Lou et al., 2010; Cham-
bolle and Pock, 2011; Newcombe et al., 2011), unsuper-
vised and transductive learning (Hein and Setzer, 2011;
Hein et al., 2013; Bresson et al., 2013; Garcia-Cardona
et al., 2014), collaborative filtering (Benzi et al., 2016)
and clustering (Garcia-Cardona et al., 2014).

For separable convex G(u) =
∑

i∈V gi(ui), problem
(1) can be efficiently solved in polynomial time by
parametric max-flow methods (Chambolle and Dar-
bon, 2009; Hochbaum, 2001). To handle non-separable
but differentiable G, Xin et al. (2014) proposed a (pri-
mal) proximal gradient iteration, reducing (1) to a
sequence of separable problems which are solved by
parametric max-flow. For problems on regular grids,
Condat (2013); Barbero and Sra (2014); Kolmogorov
et al. (2016) proposed a splitting into chains, lead-
ing to 1D total variation subproblems which can be
solved efficiently. Kumar and Bach (2017) proposed an
active-set method for submodular minimization (which
includes the graph total variation as a special case),
which is different from the active-set strategy pursued
here. Landrieu and Obozinski (2017); Raguet and Lan-
drieu (2018) recently proposed a fast method for graph
total variation by assuming that the solution is piece-
wise constant and refining that partition by solving
a sequence of max-flow problems. Closely related to
the present approach are projected Newton methods
(Schmidt et al., 2012), which have also been applied to
the total variation (Barbero and Sra, 2011).

In contrast, the main focus of this paper is to advance
the understanding of preconditioning in proximal algo-
rithms. We consider two types of algorithms:

(1) (Dual) proximal gradient (PG). Assume G∗

is C2 such that lG∗I � ∇2G∗(·) � LG∗I for some
constants lG∗ , LG∗ > 0. Based on the (Fenchel) dual
formulation of (1), written

min
p∈RE

G∗(−K>p) + δ{‖p‖∞ ≤ 1}, (3)

one can apply the proximal (or projected) gradient:

pk+1 = arg min
p∈RE

−
〈
K∇G∗(−K>pk), p

〉
+ δ{‖p‖∞ ≤ 1}+

t

2
‖p− pk‖2Tk

. (4)

Here Tk ∈ R|E|×|E| is a symmetric positive definite
matrix which induces a scaled norm ‖ · ‖Tk

defined by
‖u‖2Tk

= 〈u, u〉Tk
= u>Tku.

(2) Primal-dual hybrid gradient (PDHG). An-
other equivalent formulation of (1) is the following
convex-concave saddle-point problem:

min
u∈RV

max
p∈RE

〈Ku, p〉+G(u)− δ{‖p‖∞ ≤ 1}, (5)

to which one can apply the primal-dual hybrid gradient
(PDHG) algorithm:

uk+1 = arg min
u∈RV

G(u) + 〈pk,Ku〉+
s

2
‖u− uk‖2, (6)

pk+1 = arg min
p∈RE

−
〈
K(2uk+1 − uk), p

〉
+ δ{‖p‖∞ ≤ 1}+

t

2
‖p− pk‖2Tk

. (7)

1.1 Related work on preconditioning

The (vanilla) PG and PDHG (typically with Tk ≡ I),
as special instances of proximal algorithms, are widely
applied in convex optimization – we refer to Com-
bettes and Pesquet (2011); Parikh and Boyd (2013);
Chambolle and Pock (2016a) for the surveys contain-
ing relevant historical accounts and interconnection
of algorithms. Acceleration of these algorithms is of
significant research and practical interests. To this end,
momentum-based acceleration techniques, which are
traced back to the seminal works by Nesterov (1983)
and Polyak (1964), were recently developed for PG
(Beck and Teboulle, 2009; Ochs et al., 2014) and PDHG
(Chambolle and Pock, 2016b) and achieved impressive
performances (Chambolle and Pock, 2016a).

In contrast to momentum methods, preconditioning
techniques for proximal algorithms are less developed
and understood, as previously discussed in the intro-
duction. To clarify further, in the context of proximal
methods there are roughly two separate streams of
ideas referred to as preconditioning.

In the first one, the aim is to make the individual
update steps in the algorithm easier while retaining a
convergent method (Bredies and Sun, 2015; Chambolle
and Pock, 2011). While making each iteration faster,
the effect on the overall complexity is unclear.

The second line of works, aims at improving the theoret-
ical convergence rate and thereby reducing the number
of outer iterations, see Giselsson and Boyd (2014a,b,
2015). However, these works make very restrictive as-
sumptions on the problem class and do not apply to
our setting. A consensus among these works is to min-
imize the (finite) condition number κ(T−1/2K), which
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Figure 1: Local vs global analysis of the linear conver-
gence of the PG iteration (4). The local linear rate
sharply matches the observed convergence behaviour,
while the global rate based on Hoffman’s bound is not
informative. We guide the construction of our precon-
ditioner based on the local convergence theory.

is defined by

κ(·) =
σmax(·)
σmin>0(·)

, (8)

as a reasonable heuristic in practice. This was pur-
sued for general problems in Pock and Chambolle
(2011); Fougner and Boyd (2015); Diamond and Boyd
(2017). Recently, Möllenhoff et al. (2018) proposed
forest-structured preconditioners for K = diag(ω)∇
which are provably optimal in terms of κ(T−1/2K).

2 Local convergence analysis

While the condition number κ(T−1/2K) has proven
to be reasonable heuristic in practice, a more quanti-
fied connection between the convergence rate and the
preconditioner T would be desirable.

For problems of form (1), global linear convergence of
PG (4) can be established using Hoffman’s bound (Hoff-
man, 1952; Klatte and Thiere, 1995; Necoara et al.,
2015; Karimi et al., 2016). However, the linear rate
obtained from that bound is mainly of theoretical inter-
est, as it does not really inform us about the practical
performance of the method but rather gives a (weak)
upper bound. Secondly, Hoffman’s bound is an inher-
ently combinatorial expression that is very challenging
to compute even for small problem instances.

Instead, we aim to choose the preconditioner to improve
the local convergence behaviour of the method. It turns
out that for a wide range of partly smooth functions
the local dynamics of the PG, PDHG and accelerated
variants thereof are well understood, see Liang et al.
(2014, 2017, 2018). This will be a basis for our theory.

In Fig. 1 we show the linear rate predicted by Hoffman’s
bound to the local rate on a small 4× 3 grid graph for
which Hoffman’s bound is still tractable to compute.
As discussed above, the global rate by Hoffman’s bound
is not informative. The local analysis we present in
Theorem 2 below (which proceeds similar to Liang et al.
(2014)) is sharp, matches the empirical performance
and will be the guide of our preconditioners.

Lemma 1. Let h be C2 with lhI � ∇2h(·) � LhI
for some constants lh, Lh > 0. Then the gradient
descent on minx h(Ax + b) with step size 1/t =
2/(Lhσmax(A)2 + lhσmin>0(A)2) satisfies

‖xk+1 − x∗‖ ≤ ϕ− 1

ϕ+ 1
‖xk − x∗‖, (9)

with ϕ = κ(A)2 · κ(h), κ(h) := Lh/lh.

Proof. See the supplementary material.

The analysis in Theorem 2 below hinges on finite iden-
tification of the active set define as

A(p) = {e ∈ E : |pe| = 1} . (10)

The associated projection matrix is defined as

(PAp)e =

{
pe if e ∈ A,
0 if e /∈ A.

(11)

Correspondingly, let I(p) := E\A(p) be the inactive
set and PI := I − PA.

Theorem 2. Suppose that (4) generates a sequence
{pk} which converges to a minimizer p∗ ∈ RE of (3).
Under the assumptions that

(A1) For each e ∈ E,
(
K∇G∗(−K>p∗)

)
e

= 0 ⇒
|p∗e| < 1;

(A2) For each k ∈ N, tI � Tk � t̄I with fixed t, t̄ > 0;

(A3) Tk depends on pk only through A(pk);

there exists k̄ ∈ N such that for all k ≥ k̄:

(i) Finite identification, i.e.,

A(pk) = A(p∗) ≡ A∗, Tk ≡ T. (12)

(ii) Local linear convergence, i.e.,

‖pk − p∗‖T ≤
(
ϕ− 1

ϕ+ 1

)k−k̄

‖pk̄ − p∗‖T , (13)

with

ϕ = κ(ΠU(A∗)T
−1/2K)2 · κ(G∗), (14)

and ΠU(A∗) the orthogonal projection onto the sub-

space U(A∗) := ker(PA∗T
−1/2).
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Proof. (i) Finite identification of the active set follows
by invoking Burke and Moré (1988, Corollary 3.6). The
strict complementary condition at p∗ required by that
corollary is (A1). Further, the corollary requires

dist(0,∇J(pk) +N(pk))→ 0, (15)

where J = G∗ ◦ (−K>) and

N(p̄) =
{
p ∈ RE : pe = 0 if e /∈ A(p̄),

sgn(p̄e) · pe ≥ 0 if e ∈ A(p̄)
}
,

(16)

denotes the normal cone at p̄. From the optimality
conditions of (4) it follows

tTk(pk − pk+1)−
(
∇J(pk)−∇J(pk+1)

)
∈ ∇J(pk+1) +N(pk+1). (17)

Then we have

dist(0,∇J(pk+1) +N(pk+1))

≤ ‖tTk(pk − pk+1)− (∇J(pk)−∇J(pk+1))‖
≤
(
t‖Tk‖+ LG∗λmax(K>K)

)
‖pk − pk+1‖. (18)

Convergence of {pk} to p∗ implies ‖pk−pk+1‖ → 0 and
(15) follows by (A2). Since the active set is constant
for k ≥ k̄ we have by (A3) that Tk ≡ T .

(ii). Assume in the following that k ≥ k̄. Since Tk = T
due to (i), (4) is equivalent the projected gradient
descent applied to

min
q∈RE

J̃(q) s.t. ‖T−1/2q‖∞ ≤ 1, (19)

under the change of variable p = T−1/2q, J̃ = J ◦T−1/2.
The iteration in q is given by

qk+1 = arg min
‖T−1/2q‖∞≤1

〈∇J̃(qk), q〉+
t

2
‖q − qk‖2, (20)

whose optimality condition reads

t(qk − qk+1) ∈ T−1/2N(T−1/2qk+1) +∇J̃(qk). (21)

From (i) we know that PA∗p
k+1 = PA∗p

k, which yields

PA∗T
−1/2qk+1 = PA∗T

−1/2qk,

⇒ qk+1 − qk ∈ ker(PA∗T
−1/2) = U(A∗). (22)

In addition, in view of (16) we have

T−1/2N(T−1/2qk) ⊂ U(A∗)⊥. (23)

Thus, applying ΠU(A∗) on both sides of (21) yields an
equivalent characterization:

0 = ΠU(A∗)∇J̃(qk) + t(qk+1 − qk). (24)

Indeed, this is the gradient descent on J̃ restricted to
U(A∗), which we rewrite as

qk+1 = qk + t−1ΠU(A∗)T
−1/2K>∇G∗(−K>T−1/2qk)

= qk + t−1ΠU(A∗)T
−1/2K>∇G∗(−K>T−1/2

(ΠU(A∗)q
k + ΠU(A∗)⊥q

k̄)). (25)

Hence (20) is equivalent to gradient descent on the
function G∗ ◦ (A · + b) with A = −K>T−1/2ΠU(A∗),

b = −K>T−1/2ΠU(A∗)⊥p
k̄. Using Lemma 1 yields the

linear convergence in {qk}. As ‖qk‖ = ‖T 1/2pk‖ =
‖pk‖T , we achieve the linear convergence, with respect
to the T -norm, of the original sequence {pk}.

Corollary 3. Let ϕ be given as in (14). Locally (i.e.,
for k ≥ k̄), with fixed T ≡ Tk̄ we have ‖pk − p∗‖ ≤ ε
whenever

k ≥ k̄ +
ϕ+ 1

2
log

(
‖pk̄ − p∗‖

√
κ(T )

ε

)
. (26)

We remark that there are bounds in literature on k̄,
see Liang et al. (2017, Prop. 3.6) or the recent works
(Nutini et al., 2017b,a). Analyzing which choice of
variable metric Tk lead to fast identification of A∗ is
beyond the scope of this work.

3 Combinatorial preconditioner

Suggested by the local convergence analysis and Corol-
lary 3 from the previous section, an ideal precondi-
tioner T ought to minimize the condition number
κ(ΠU(A∗)T

−1/2K) once the active set A∗ is identified.
In practice, however, computationally amenable choices
of T are rather constrained due to a generic trade-off
between convergence speed of (outer) iterations and
per-iteration cost, i.e., the T -scaled proximal evalu-
ation in (4) or (7). A dense matrix T , in general,
will render inner iterations expensive, as in the case
of proximal Newton method (Lee et al., 2014). For
this reason, Pock and Chambolle (2011); Giselsson and
Boyd (2014a,b); Becker and Fadili (2012); Becker et al.
(2018) consider diagonal or low-rank preconditioners
to keep the inner iterations fast and tractable.

Towards yet better balance of this trade-off, Möllenhoff
et al. (2018) made use of fast TV solver on trees (Con-
dat, 2013; Kolmogorov et al., 2016) and proposed a
class of block diagonal preconditioners via graph parti-
tioning (aiming at optimizing κ(T−1/2K) heuristically,
however). The optimal condition number κ(T−1/2K)
is achieved by matroid partitioning. As a remark, com-
binatorial preconditioners for solving linear systems
involving graph Laplacians date back to Vaidya (1991);
refer to Spielman (2010) for a more detailed survey.



Zhenzhang Ye, Thomas Möllenhoff, Tao Wu, Daniel Cremers

In this section, we construct combinatorial precondi-
tioners which are more faithful, compared to the ones
from Möllenhoff et al. (2018), to the (local) convergence
analysis. In a nutshell, given the current active/inactive
sets of edges, we partition the graph into inactively
nested forests in the sense of (37), so that the resulting
preconditioner yields a guaranteed (local) convergence
rate, which is made precise in Theorem 5.

To construct our preconditioner, let the edge set E be
partitioned into L mutually disjoint subsets, i.e., E =⊔L

l=1 El, such that each subgraph Gl = (V, El, ω|El) is a
forest. Correspondingly, we define Pl as the canonical
projection from RE to REl , i.e., Plp = p|El for any
p ∈ RE . Thus, the matrix K can be decomposed into
submatrices {Kl}Ll=1 where each Kl = PlK ∈ R|El|×|V|.
Analogously, let ∇l = Pl∇. Note that each ∇>l (or
K>l ) has full column rank, and hence

Tl := KlK
>
l , ∀l ∈ {1, ..., L}, (27)

is symmetric positive definite.

We then define our preconditioner as

T :=

L∑
l=1

P>l TlPl. (28)

In view of Theorem 2, we analyze in the following the
condition number of the following matrix:

ΠI := K>T−1/2ΠU(A)T
−1/2K

= K>T−1/2(I − T−1/2PA(T−1/2PA)†)T−1/2K.
(29)

As a preparatory result, the following lemma decom-
poses ΠI into orthogonal projections onto subspaces.

Lemma 4. Given E = AtI, let G be partitioned into
L nonempty forests {Gl}Ll=1. Then the matrix defined
in (29) can be characterized as

ΠI =

L∑
l=1

ΠI,l, (30)

where each ΠI,l is the orthogonal projection onto the
linear subspace SI,l defined by

SI,l := span{∇>e : e ∈ I ∩ El}. (31)

Proof. (i) We show the identity (30) with Il := PlIP
>
l ,

PA,l := PlPAP
>
l , PI,l := PlPIP

>
l , and

ΠI,l :=K>l T
−1/2
l (Il − (T

−1/2
l PA,l)(T

−1/2
l PA,l)

†)

T
−1/2
l Kl. (32)

Note that

K>T−1/2 =

L∑
l=1

K>P>l T
−1/2
l Pl

=

L∑
l=1

K>l T
−1/2
l Pl, (33)

T−1/2PA =

(
L∑

l=1

P>l T
−1/2
l Pl

)(
L∑

l′=1

P>l′ PA,l′Pl′

)

=

L∑
l=1

P>l T
−1/2
l PA,lPl, (34)

(T−1/2PA)† =

L∑
l=1

P>l (T
−1/2
l PA,l)

†Pl. (35)

By plugging (33)–(35) into (29), we accomplish (i).

(ii) We show each ΠI,l is the orthogonal projection
onto SI,l. First, it is easy to see ΠI,l is symmetric
and Π2

I,l = ΠI,l, and hence an orthogonal projection.

Secondly, note that rank ΠI,l = |I ∩El| = rankK>l PI,l.
Furthermore, we have the following equation:

ΠI,lK
>
l PI,l =K>l PI,l −K>l T

−1/2
l

(T
−1/2
l PA,l)(T

−1/2
l PA,l)

†T
1/2
l PI,l

=K>l PI,l, (36)

which completes step (ii).

Theorem 5. Given E = A t I, let G be partitioned
into L nonempty, inactively nested forests {Gl}Ll=1 in
the sense that

SI,1 = ... = SI,l̂ ) SI,l̂+1 ⊇ ... ⊇ SI,L ) {0}, (37)

with the subspaces defined in (31). Then we have

λmin>0(ΠI) = l̂ and the (local) convergence rate in

Theorem 2 is ϕ = (L/l̂) · κ(G∗).

Proof. By Lemma 4, we have λmax(ΠI) ≤∑L
l=1 λmax(ΠI,l) ≤ L. In fact, the equality holds

since ΠIv = Lv for some nonzero v ∈ SI,L. On the
other hand, for any v ∈ ran ΠI , we have 〈v,ΠIv〉 ≥∑l̂

l=1 〈v,ΠI,lv〉 = l̂‖v‖2. The equality holds for
some nonzero v ∈ ran ΠI ∩ (SI,l̂+1)⊥. This yields

λmin>0(ΠI) = l̂.

4 Implementation

In this section, we specify how to construct our pre-
conditioner and apply active-set-based reconditioning
to both PG and PDHG algorithms. We only trigger
reconditioning every n iterations. When reconditioning
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is performed at iteration k, a greedy heuristic is used
for constructing the preconditioner Tk; see Section 4.1.
Then, using the separability of ‖ · ‖∞, we perform the
updates across the subgraphs {Gl}Ll=1:

pk+1|El = arg min
p∈REl

−
〈
Kūk|El , p

〉
+ δ{‖p‖∞ ≤ 1}+

t

2
‖p− pk‖2Tk,l

, (38)

where ūk is defined as:

ūk =

{
∇G∗(−K>pk), for PG,

2uk+1 − uk, for PDHG.
(39)

The proximal evaluation required by (38) is detailed
in Section 4.2, which invokes the message-passing algo-
rithm on trees. The overall complexity of the recondi-
tioned algorithm is discussed in Section 4.3.

4.1 Constructing preconditioner

Following Theorem 5 we aim to find a preconditioner
Tk which minimizes the condition number ϕ = (L/l̂) ·
κ(G∗), and hence the local linear convergence rate.
Theoretically, optimal Tk can be found in polynomial
time by Matroid partitioning as in Möllenhoff et al.
(2018). The computation time is prohibitively large
for the graphs in practice, however. Here we present a
greedy heuristic to find inactively nested forests.

Given an input graph G we partition the graph based
on the active set at the current dual variable pk.
We assign to each edge e ∈ E an additional weight
ρe = 1−

∣∣1− ∣∣pke ∣∣∣∣. Then, a minimum spanning forest
according to that weight is generated using Kruskal’s
algorithm (Kruskal, 1956). This spanning forest is then
subtracted from current graph and is added to the set
{Gl}Ll=1. We perform this generation and subtraction
iteratively until no edges remain in the original graph.

The partitioning weight is introduced for two reasons:
Firstly, we found it unstable to determine the active set
A(pk) numerically according to a threshold; Secondly,
computing the preconditioner Tk is quite expensive for
large graphs. This strategy could extend the suitable
duration of current preconditioner since a potential
active edge often has a larger partitioning weight.

4.2 Backward solver

The introduction of the proposed preconditioner Tk
makes the backward update (38) more expensive.
Here we describe how to solve it efficiently, follow-
ing Möllenhoff et al. (2018). Combining the linear and
the quadratic term, (38) can be re-written as:

pk+1|El = arg min
‖p‖∞≤1

1

2
‖K>l p+ fl‖2, (40)

where fl = −K>l pk|El − ūk/t. The (Fenchel) dual
problem of (40) is given by

vl = arg min
u∈RV

1

2
‖u− fl‖2 + ‖Klu‖1, (41)

which is simply a weighted total variation problem
on the individual trees in the forest Gl. We solve
the problem (41) using the message-passing algorithm
introduced in Kolmogorov et al. (2016). To retrieve
pk+1|El from vl one can use the optimality condition:

K>l p
k+1|El = vl − fl. (42)

4.3 Discussion on complexity

For non-preconditioned proximal gradient, the com-
plexity of each iteration is O(|E|). The preconditioned

variant has complexity O(
∑T

t=1 |Et| log(|Et|)) where T
is the number of trees using the message-passing algo-
rithm (Kolmogorov et al., 2016). The preconditioned
update can still be parallelized, as the message-passing
can run for each tree in parallel. Construction of the
preconditioner Tk based on the greedy inactively nested
forest strategy with Prim’s or Kruskal’s algorithm is
O(|E|2 log(|E|)/|V|) (Cheriton and Tarjan, 1976).

After entering the local linear convergence phase, the
overall iteration complexity is O(ϕ log(1/ε)) to find
an ε-accurate solution (see Corollary 3). While each
iteration of this algorithm is slighty more costly (by
roughly a factor of log(|E|)), the condition number ϕ is
drastically reduced. For regular grids we have that ϕ ∈
O(|V|) (cf. Möllenhoff et al. (2018, Theorem 4)) in the
non-preconditioned case. The proposed preconditioner
improves this to a constant ϕ ∈ O(1), independent of
problem size at the expense of a slightly more expensive
dual update step (up to a logarithmic factor).

5 Applications

In the following experiments we compare four strategies:
non-preconditioned Tk = I, diagonally scaled Tk =
diag(KK>), nested (linear) forest from Möllenhoff et al.
(2018) and the proposed “inactively nested forest” for
both PG and PDHG. In PG, the step size is t = 1/(L ·
LG∗), for PDHG we set s = 0.11, t = 10 · L.

5.1 Numerical validation on synthetic data

As a first numerical example, we consider the fused
Lasso (Tibshirani et al., 2005) (also called ROF model
in imaging (Rudin et al., 1992))

min
u∈RV

1

2
‖u− f‖2 + ‖Ku‖1. (43)
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Figure 2: We show log10-iterations required by PG to reach a primal-dual gap smaller than 10−10 over percentage
of active edges at the optimal solution for random graphs with varying edge-to-vertex ratio. The reconditioning
strategy requires several orders of magnitude less iterations than no preconditioner and the nested-forest
preconditioner (Möllenhoff et al., 2018).
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Figure 3: We show log10-primal dual gap vs itera-
tions for PG (4) with various choices of Tk. The non-
preconditioned choice Tk = I performs the worst, fol-
lowed by the preconditioners proposed in Möllenhoff
et al. (2018). We indicate reconditioning by a dot and
carry it out every n iterations for n ∈ {20, 10, 5, 1}.
Smaller n leads to an improved performance.

We solve (43) on random graphs with fixed |V| = 512
using proximal gradient (PG) with f chosen uniformly
random in [0, 1]. Here, we consider two factors: edge-
to-vertex ratio and percentage of active edges at the
optimal solution. For the proposed reconditioning we
set the frequency to n = 1.

The results are shown in Fig. 2. For reasonable amounts
of active edges at the solution (30% – 80%) the pro-
posed preconditioning strategy requires orders of mag-

nitude less iterations to reach a primal-dual gap under
10−10. Moreover, it is shown that we require the fewest
iterations across all scenarios.

In Fig. 3 we show log10-primal-dual gap over iterations
for PG applied to (43) on a 100× 100 grid graph with
different choices of Tk and moderate regularization
strength (30% of active edges at the optimal solution).
The proposed preconditioner outperforms vanilla PG
(Tk = I) and the recent preconditioners proposed in
Möllenhoff et al. (2018). Reconditioning more often
leads to faster convergence, but as recomputing the
preconditioner is expensive there is a trade-off between
reducing the number of iterations and fast updates. In
practice, a choice of the reconditioning frequency n
between 5 and 30 leads to the best performance.

5.2 Fused Lasso on real-world graphs

To consider a more realistic scenario, we solve the
model (43) on real-world graphs from a popular graph-
cut benchmark considered in Goldberg et al. (2011).
Furthermore, instead of using standard PG we used
the accelerated FISTA variant (Chambolle and Dossal,
2015; Attouch et al., 2015; Liang et al., 2017) with
overrelaxation parameter βk = (k − 1)/(k + 2). Recon-
ditioning takes place at every 30 iterations. We discard
the momentum for one iteration after reconditioning,
which improved the stability. In Table 1, we show the
running time and number of iterations of FISTA with
non-preconditioned, diagonal preconditioner, nested
forest (Möllenhoff et al., 2018), linear forest (Möllenhoff
et al., 2018) and the proposed inactively nested forest.

Our preconditioner outperforms the other methods
in all cases on number of iterations, despite a rather
large choice of n = 30. However, the linear forest
from Möllenhoff et al. (2018) performs better with
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Instance None Diagonal Nest. Forest Lin. Forest Inact. NF

name |A∗|
|E| it[103] time[s] it[103] time[s] it[103] time[s] it[103] time[s] it[103] time[s]

rmf-long 0.02 – – 19 473 12 2539 18 233.3 1.9 474.9
rmf-wide 0.19 – – 62 665 27 2274 43 213.1 0.19 18.54
horse 0.02 – – – – 2.9 340.8 37 355.6 0.73 155.3
alue 0.03 – – – – 4.5 117.2 100 270.9 0.71 155.3
lux 0.01 – – – – 13 1254 – – 0.40 54.34
punch 0.01 488 968 – – 14.9 1445 203 872.1 0.34 62.66
BVZ* 0.35 27 74.0 22 730 1.12 434.8 0.57 6.59 0.49 261
manga* 0.05 – – – – 38 48591 5.3 230 1.41 4609
KZ2 0.5 419 3042 1.6 159 0.43 614.1 0.6 56.0 0.42 965.9
ferro 0.09 9.25 186 5.83 639.6 0.36 430.3 0.93 86.23 0.27 609.3

Table 1: We show the number of iterations and running time to reach a relative primal dual gap less than 10−10

on (43) on real-world graphs. FISTA with various choices of Tk is used to solve these problems. “–” means the
algorithm failed to reach the tolerance within 5× 105 iterations. “*” means that graph has a grid structure.
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Figure 4: log10-optimality gap over iterations (left) and
time (right) for PDHG with various preconditioners
applied to a TV deconvolution problem.

respect to the running time on 5 out of 10 datasets.
The two datasets with grid structures leads to chain
partition on which message-passing is much faster
than on trees. The sizes of last two graphs are huge
(|V| ≈ 250.000, |E| ≈ 600.000) and therefore partition-
ing is quite expensive. To summarize, the proposed
preconditioning strategy improves the number of itera-
tions, but to ensure a shorter overall running time, an
efficient implementation or improved strategy on recon-
structing the tree decomposition might be required.

5.3 Linear inverse problems

In this image processing experiment we consider a
TV deconvolution problem on a regular 2D grid of size
116×87. The data term is given by G(u) = 1

2‖Au−f‖
2,

where the forward model A is a convolution with motion
blur kernel with radius 3. We construct f by applying
the forward model and adding Gaussian noise. The
overall problem is solved using PDHG. The primal up-

date is a quadratic problem and we use a few iterations
of (warm started) conjugate gradient. Considering the
size of the problem, we set the reconditioning frequency
to n = 5 for the proposed approach.

In Fig. 4 we show the log10-optimality gap over itera-
tions and time for various choices of preconditioners.
The diagonal preconditioner is the one from Pock and
Chambolle (2011) with α = 1. The forest precon-
ditioners perform comparably when the accuracy is
lower. Once the local convergence regime is entered,
the proposed algorithm achieves linear convergence rate.
Especially for high accuracies, the proposed recondi-
tioning strategy outperforms the other approaches with
respect to overall running time and iterations.

6 Discussion and conclusion

We presented an efficient reconditioning strategy for
proximal algorithms on graphs. By relying on a sharp
analysis of the local linear convergence rate we proposed
an edge partitioning of the graph into forests which
provably boosts the linear convergence rate. The scaled
dual updates are still efficiently computable thanks to
a message-passing algorithm on trees.

While one is tempted to commit to a super-linearly
convergent solver once the optimal active set is iden-
tified (as e.g., mentioned in Liang et al. (2014, 2017,
2018); Nutini et al. (2017b)), it is unfortunately dif-
ficult to verify in practice whether the current active
set is the optimal. Furthermore, as observed in the
numerical experiments, the adaptive preconditioning
strategy practically improves the convergence to some
extent also before the local linear convergence regime
is entered. The result suggests that local convergence
analysis can serve as a practical guideline for construct-
ing preconditioners for proximal algorithms.
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identification and local linear convergence of forward–
backward-type methods. SIAM J. Optim., 27:408–
437.

Liang, J., Fadili, J., and Peyré, G. (2018). Local
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