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Abstract

We consider a ranking regression problem in
which we use a dataset of ranked choices to
learn Plackett-Luce scores as functions of sam-
ple features. We solve the maximum likeli-
hood estimation problem by using the Al-
ternating Directions Method of Multipliers
(ADMM), effectively separating the learning
of scores and model parameters. This separa-
tion allows us to express scores as the station-
ary distribution of a continuous-time Markov
Chain. Using this equivalence, we propose
two spectral algorithms for ranking regression
that learn model parameters up to 579 times
faster than the Newton’s method.

1 Introduction
Learning from ranked choices has a long history in
domains such as econometrics (McFadden, 1973; Ryzin
and Mahajan, 1999), transportation (McFadden, 2000),
psychometrics (Thurstone, 1927; Bradley and Terry,
1952), and sports (Elo, 1978), to name a few. The
Plackett-Luce choice model (Plackett, 1975) is a popu-
lar parametric model used for inference in this setting:
each sample is parametrized by a score and the prob-
ability that a sample is ranked higher than a set of
alternatives is proportional to this score.

Plackett-Luce scores are traditionally learned from
ranking observations via Maximum Likelihood Es-
timation (MLE) (Dykstra, 1960; Hunter, 2004; Ha-
jek et al., 2014; Negahban et al., 2018); under a
reparametrization, the negative log-likelihood is convex
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and Plackett-Luce scores can be estimated via, e.g.,
Newton’s method (Nocedal and Wright, 2006). Never-
theless, for large datasets, Newton’s method can be pro-
hibitively slow (Hunter, 2004). Recently, Maystre and
Grossglauser (2015) proposed a highly efficient iterative
spectral method, termed Iterative Luce Spectral Rank-
ing (ILSR), that estimates Plackett-Luce scores signifi-
cantly faster than state-of-the-art methods. ILSR relies
on the fact that ML estimates of Plackett-Luce scores
constitute the stationary distribution of a Markov chain
with transition rates defined by ranking observations.

The above approaches learn Plackett-Luce scores in
the absence of sample features, which precludes rank
predictions on samples outside the training set. A nat-
ural variant of the above setting is ranking regression,
whereby Plackett-Luce scores are parametrized func-
tions of sample features. This problem has received
considerable attention in the literature, via both shal-
low (Joachims, 2002; Pahikkala et al., 2009; Tian et al.,
2019) and deep models (Burges et al., 2005; Chang
et al., 2016; Dubey et al., 2016; Han, 2018; Yıldız et al.,
2019). Nevertheless, virtually all existing work on rank-
ing regression relies on classic optimization methods for
parameter inference. To the best of our knowledge, the
opportunity to accelerate learning in ranking regression
via spectral methods has not yet been explored.

We make the following contributions.

• We solve the ranking regression problem by using
the Alternating Directions Method of Multipliers
(ADMM) (Boyd et al., 2011) to perform MLE, effec-
tively separating the learning of scores and model
parameters. This separation allows us to express
scores as the stationary distribution of a modified
Markov Chain, and to devise spectral algorithms for
ranking regression akin to ILSR.

• In particular, we propose two iterative algorithms,
PLADMM and PLADMM-log, that jointly estimate
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model parameters and Plackett-Luce scores via a
spectral method. Though the problems solved are
non-convex, we establish conditions that yield con-
vergence guarantees, as well as initializations tailored
to the Plackett-Luce objective.

• Our algorithms yield significant performance div-
idends in terms of both speed and accuracy on
synthetic and real-life datasets. PLADMM and
PLADMM-log are up to 579 times faster than tradi-
tional optimization methods regressing Plackett-Luce
scores from features, including Newton’s method.
Furthermore, for large datasets, PLADMM and
PLADMM-log outperform feature-less methods, in-
cluding ILSR, by 13% in maximal choice prediction
accuracy and 9% in ranking prediction Kendall-Tau
correlation.

From a technical standpoint, we show that the Plackett-
Luce negative log-likelihood augmented with a proximal
penalty has stationary points that satisfy the balance
equations of a Markov chain (c.f. Thm 4.2). In turn,
ADMM allows us to reduce ranking regression to a
regularized MLE with precisely such a penalty. The
remainder of this paper is organized as follows. We
review related literature in Sec. 2. We formulate our
problem in Sec. 3 and summarize ILSR. We describe our
main contributions and proposed algorithms in Sec. 4.
We present our experiments in Sec. 5 and conclude
with future work in Sec. 6.

2 Related Work
The problem of rank aggregation (Dwork et al., 2001),
in which a total ordering of samples is regressed from
ranking observations, is classic; literature on the subject
is vast—see, e.g., the surveys by Fligner and Verducci
(1993), Cattelan (2012) and Marden (2014). Proba-
bilistic inference in this setting typically assumes (a)
that a “true” total ordering of samples exists, and (b)
that ranking observations exhibit a stochastic transitiv-
ity property (Agarwal, 2016): a sample is more likely
to be ranked higher than another when this event is
consistent with the underlying total ordering.

The noisy permutation model is a non-parametric
model for this setting: pairwise comparisons consistent
with the underlying total ordering are observed under
i.i.d. Bernoulli noise. Maximum likelihood estimation
(MLE) is NP-hard in this setting. A polytime algorithm
by Braverman and Mossel (2008) recovers the under-
lying ordering in Θ(n log n) comparisons, w.h.p.; this
is tightened by several recent works (Wauthier et al.,
2013; Mao et al., 2017, 2018). The Mallows model
(Mallows, 1957) assumes that the probability of a rank-
ing observation is a decreasing function of its distance
from the underlying total ordering, under appropri-
ate notions of distance (e.g., Kendall-Tau); MLE can
be approached, e.g., via EM (Lu and Boutilier, 2011).

Shah et al. (2016a) learn the full matrix of pairwise
comparison probabilities via a minimax optimal esti-
mator requiring Θ(log2 n) comparisons. Rajkumar and
Agarwal (2016) learn the matrix via matrix completion,
requiring Θ(nr log n) comparisons, where r � n is the
rank. Ammar and Shah (2011) assume that compar-
isons are sampled from an unknown distribution over
total orderings and propose an entropy maximization
algorithm requiring Θ(n2) comparisons.

We focus on parametric models, as they are more natu-
ral in the context of regressing rankings from sample fea-
tures. In both Plackett-Luce (Plackett, 1975) and Thur-
stone (Thurstone, 1927) each sample is parametrized
by a score. In the Thurstone model, observations result
from comparing scores after the addition of Gaussian
noise. Vojnovic and Yun (2016) and Shah et al. (2016b)
estimate Thurstone scores via MLE and provide sam-
ple complexity bounds that are inversely proportional
to the smallest non-zero eigenvalue of the Laplacian
of a graph modeling comparisons. In Plackett-Luce,
the probability that a sample is chosen over a set of
alternatives is proportional to its score. Hunter (2004)
proposes a Minorization-Maximization (MM) approach
to estimate Plackett-Luce scores via MLE, earlier used
by Dykstra (1960) on pairwise comparisons (i.e., on
the Bradley-Terry (BT) setting). Hajek et al. (2014)
provide an upper bound on the error in estimating the
Plackett-Luce scores via MLE and show that the latter
is minimax-optimal. Negahban et al. (2018) propose a
latent factor model, estimating parameters via a convex
relaxation of the corresponding rank penalty and pro-
viding sample complexity guarantees. Assuming score
priors, Guiver and Snelson (2009), Caron and Doucet
(2012) and Azari et al. (2012) estimate Plackett-Luce
scores via Bayesian inference.

Our focus on Plackett-Luce is due to the recent emer-
gence of spectral algorithms for inference in this setting.
Negahban et al. (2012) propose the Rank Centrality
(RC) algorithm for the BT setting and derive a min-
imax error bound. Chen and Suh (2015) propose a
spectral MLE algorithm extending RC with an addi-
tional stage that cyclically performs MLE for each score.
Soufiani et al. (2013) and Jang et al. (2017) extend RC
to rankings of two or more samples by breaking rank-
ings into independent comparisons. Improved bounds,
applying also to broader noise settings, are provided
by Rajkumar and Agarwal (2014). Khetan and Oh
(2016) generalize the work by Soufiani et al. (2013) by
breaking rankings into independent shorter rankings,
and building a hierarchy of tractable and consistent
estimators. Blanchet et al. (2016) model sequential
choices by state transitions in a Markov chain (MC),
where transitions are functions of choice probabilities.

Bridging the above approaches with MLE, Maystre and
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Grossglauser (2015) show that the MLE of Plackett-
Luce scores can be expressed as the stationary distribu-
tion of an MC. Their proposed Iterative Luce Spectral
Ranking (ILSR) algorithm estimates the Plackett-Luce
scores faster than traditional optimization methods,
such as, e.g., Hunter’s (Hunter, 2004) and Newton’s
method, and more accurately than prior spectral rank
aggregation methods. Ragain and Ugander (2016) show
that a spectral approach applies even after relaxing
the assumption that the relative order of any two sam-
ples is independent of the alternatives. Agarwal et al.
(2018) propose another spectral method called accel-
erated spectral ranking by departing from the exact
equivalence between MLE and MC approximation and
demonstrate faster convergence than ILSR.

We depart from all aforementioned methods by regress-
ing ranked choices from sample features. Closer to
our work, RankSVM (Joachims, 2002) learns a target
ranking from features via a linear Support Vector Ma-
chine (SVM), with constraints imposed by all possible
comparisons. Pahikkala et al. (2009) propose a regu-
larized least-squares based algorithm for learning to
rank from comparisons. Several works learn compar-
isons from features via MLE over logistic BT models
(Guo et al., 2018; Tian et al., 2019); deeper models
have also been considered (Burges et al., 2005; Chang
et al., 2016; Dubey et al., 2016; Han, 2018; Yıldız et al.,
2019). Niranjan and Rajkumar (2017) assume that fea-
tures are low-dimensional and use matrix completion
to recover the BT scores. Saha and Rajkumar (2018)
propose a least squares based algorithm called f-BTL
to regress the BT scores; we adjust this to initalize
our algorithm. To the best of our knowledge, we are
the first to use a spectral method akin to ILSR to (a)
regress Plackett-Luce scores from features, and (b) to
establish a significant speedup over prior art.

3 Problem Formulation
Plackett-Luce Model. We consider a dataset of n
samples indexed by i ∈ N ≡ {1, . . . , n}. Every sample
i ∈ N has a corresponding p-dimensional feature vector
xi ∈ Rp. There exists an underlying total ordering
of these n samples. A labeler of this dataset acts as
a (possibly noisy) oracle revealing this total ordering:
when presented with a query A ⊆ N, i.e., a set of alter-
native samples, the noisy labeler chooses the maximal
sample in A w.r.t. the underlying total ordering.

Formally, our “labeled” dataset D = {(c`, A`) | ` ∈M =
{1, ...,M}} consists of M observations (c`, A`), ` ∈M,
where A` ⊆ N is the `-th query submitted to the labeler
and c` ∈ A` is her respective `-th maximal choice (i.e.,
the label). We tackle the problem of regressing such
choices c` from the features xi of the samples i ∈ A`.
To do so, we assume that choices are governed by

the Plackett-Luce model (Plackett, 1975). The model
asserts that every sample i ∈ N is associated with a
non-negative deterministic score πi ∈ R+. Given scores
π = [πi]i∈N ∈ Rn+, then (a) observations (c`, A`), ` ∈M

are independent, and (b) given query A`,

P(c` |A`,π) = πc`/
∑
j∈A` πj = π`/

∑
j∈A` πj . (1)

Abusing notation, we write the score of the cho-
sen sample as π` ≡ πc` . Note that P(c` |A`,π) =
P(c` |A`, sπ), for all s > 0; thus, w.l.o.g., we may addi-
tionally assume (or enforce via rescaling) that Plackett-
Luce scores satisfy 1>π = 1.

Plackett-Luce also applies to ranking data. In the rank-
ing setting, when presented with a query A` ⊆ N, the
labeler ranks the samples inA` into an ordered sequence
α`1 � α`2 � · · · � α`|A`|. Under the Plackett-Luce model,
this ranking is expressed as |A`| − 1 maximal choice
queries: α`1 over A`, α`2 over A` \ {α`1}, etc., so that:

P(α`1�α`2�· · ·�α`|A`| |A`,π)=

|A`|−1∏
t=1

(
πα`t/

|A`|∑
s=t

πα`s
)
. (2)

The product form of (2) implies that rankings of a
query A` can be converted to |A`| − 1 maximal-choice
observations, each governed by (1), that have the same
joint probability: ranking (α`1�α`2 �· · · �α`|A`|) can
be seen as the outcome of α`1 being chosen as the
top within the query set A`, α`2 being the top among
A` \ {α`1}, etc. Keeping this reduction from ranking
to maximal-choice datasets in mind, we focus on the
latter in our exposition below.

Parameter Inference and Regression. Given ob-
servations D, Maximum Likelihood Estimation (MLE)
of the Plackett-Luce scores π ∈ Rn+ amounts to mini-
mizing the negative log-likelihood:

L(D |π) ≡
∑M
`=1

(
log
∑
j∈A` πj − log π`

)
. (3)

To regress scores π from sample features xi, i ∈ N, we
consider two cases:

Affine Case. We assume that there exist β ∈ Rp and
b ∈ R such that π = πAFF(β, b;X) ≡ Xβ + b1. Then,
MLE of parameters (β, b) ∈ Rp+1 amounts to solving:

min
(β,b):πAFF(β,b;X)≥0

L (D |πAFF(β, b;X)) , (4)

where L is given by (3), and X = [x1, ..,xn]
T ∈ Rn×p.

We note that Problem (4) is not convex, as the objective
is not convex in (β, b) ∈ Rp+1 (c.f. Appendix A).

Logistic Case. In the logistic case, we assume that
there exists β ∈ Rp s.t. π = πLOG(β;X) ≡ [eβ

>xi ]i∈N.
As πLOG(β;X) ≥ 0 by definition, MLE corresponds to:

minβ∈Rp L(D |πLOG(β;X)). (5)
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The objective of (5) is convex in β (c.f. Appendix A),
so an optimal solution can be found via, e.g., Newton’s
method (Nocedal and Wright, 2006).

Plackett-Luce Without Features and a Spectral
Method. We wish to construct highly efficient algo-
rithms for solving regression problems (4) and (5). To
do so, we first briefly review the state of the art for
learning the scores π in the absence of features. In this
case, MLE amounts to:

minπ∈Rn+ L(D | π). (6)

As is the case for (5), reparametrizing the scores as
πi = eθi , i ∈ N makes the negative log-likelihood L
convex in θ = [θi]i∈N, which in turn enables computing
the Plackett-Luce scores via Newton’s method. Nev-
ertheless, Newton’s method can be prohibitively slow
for large n and M (Hunter, 2004). Recently, Maystre
and Grossglauser (2015) proposed a novel spectral algo-
rithm that is significantly faster than Newton’s method.
Their algorithm relies on the following theorem which,
for completeness, we re-prove in Appendix B:

Theorem 3.1 (Maystre and Grossglauser (2015)). An
optimal solution π ∈ Rn+ to (6) satisfies:∑

j 6=i πjλji(π) =
∑
j 6=i πiλij(π), for all i ∈ N, (7)

where, for all i, j ∈ N, with i 6= j,

λji(π) =
∑
`∈Wi∩Lj

(∑
t∈A` πt

)−1 ≥ 0, (8)

for Wi = {` |i ∈ A`, c` = i} the observations where
sample i ∈ N is chosen and Li = {` |i ∈ A`, c` 6= i} the
observations where sample i ∈ N is not chosen.

Eq. (7) are the balance equations of a continuous-time
Markov Chain (MC) with transition rates:

Λ(π) = [λji(π)]i,j∈N, (9)

where λji(π) are given by Eq. (8). Hence, π is the
stationary distribution of the MC defined by transition
rates Λ(π) (Gallager, 2013). Let ssd(Λ) be the sta-
tionary distribution of an MC with transition rates Λ.
When matrix Λ is fixed (i.e., the transition rates are
known), the vector ssd(Λ) is a solution to the linear sys-
tem defined by the balance equations (7) and 1>π = 1,
as it is a distribution.1 If (9) is irreducible, the linear
system has a unique solution π > 0 (Gallager, 2013).

However, the transition matrix Λ = Λ(π) in Theo-
rem 3.1 is itself a function of π, and is therefore a
priori unknown. Maystre and Grossglauser (2015) find

1In practice, ssd(Λ) can be computed by uniformizing Λ,
i.e., increasing self-transition rates until all states have the
same outgoing rate, and finding the leading left eigenvector
via, e.g., the power method (Lei et al., 2016).

π through an iterative algorithm. Starting from the
uniform distribution π0 = 1

n1, they compute:

πl+1 = ssd
(
Λ(πl)

)
, for l = 0, 1, 2, . . . , (10)

where Λ(·) is given by (8), (9). Maystre and Gross-
glauser (2015) refer to Eq. (10) as the Iterative Luce
Spectral Ranking (ILSR) algorithm. They also establish
that (10) converges to an optimal solution of (6) under
mild assumptions. Most importantly, as mentioned
above, ILSR significantly outperforms state-of-the-art
MLE algorithms in computational efficiency.

4 Plackett-Luce ADMM (PLADMM)
Algorithm

Given ILSR’s significant computational benefits, we
wish to develop analogues in the regression setting. In
contrast to the feature-less setting, it is not a priori
evident how to solve Problems (4) and (5) via a spec-
tral approach. Taking the affine case as an example,
and momentarily ignoring issues of non-convexity, the
stationary points of the Lagrangian of the optimiza-
tion problem (4) cannot be expressed via the balance
equations of an MC. Our main contribution is to cir-
cumvent this problem by using the Alternating Direc-
tions Method of Multipliers (ADMM) (Boyd et al.,
2011). Intuitively, ADMM allows us to decouple the
optimization of scores π from model parameters β and
b, encapsulating them in a quadratic penalty: the latter
becomes amenable to a spectral approach after a series
of manipulations that we outline below (see Thm. 4.2).
We focus here on the affine case, extending our method
to the logistic case in Appendix E.

An ADMM Approach. We rewrite Problem (4) as:

Minimize L(D |π) (11a)
subject to: π = Xβ + b1, π ≥ 0. (11b)

To simplify our notation, we introduce β̃ = (β, b) ∈
Rp+1 and X̃ = [X|1] ∈ Rn×(p+1), so that π = X̃β̃.
ADMM solves (11) by minimizing the following aug-
mented Lagrangian:

Lρ(β̃,π,y) = L(D |π) + yT (X̃β̃ − π)

+
ρ

2
‖X̃β̃ − π‖22,

(12)

where y ∈ Rn is a dual variable corresponding to the
equality constraints in Eq. (11) and ρ > 0 is a penalty
parameter. ADMM alternates between optimizing β̃
and π, thereby decoupling these two variables. Using
a rescaling u = 1

ρy ∈ Rn for convenience, applying
ADMM on problem (11) yields the following iterative
algorithm (see Appendix C for a detailed derivation):

β̃k+1=arg min
β̃∈Rp+1

‖X̃β̃ − πk + uk ‖22, (13a)
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πk+1=arg min
π∈Rn+

(
L(D|π)+ ρ

2‖X̃β̃
k+1−π+uk ‖22

)
, (13b)

uk+1=uk + X̃β̃k+1 − πk+1. (13c)

This has the following immediate computational ad-
vantages. First, step (13a) is a quadratic minimization
and admits a closed form solution. Crucially, step (13b)
is amenable to a spectral approach, though the corre-
sponding MC is not as apparent as in ILSR; we outline
its construction below.

An MC for Step (13b). We first establish the follow-
ing auxiliary lemma, proved in Appendix D.1.
Lemma 4.1. Given β̃k+1 ∈ Rp+1, uk ∈ Rn, let π ∈
Rn+ be such that:

∇πLρ(β̃k+1,π,uk) = 0. (14)

For σ = [σi]i∈N ≡ ρ(π−X̃β̃k+1−uk), and [λij(π)]i,j∈N
given by (8), (14) is equivalent to:∑

j 6=i πjλji(π)−
∑
j 6=i πiλij(π) = πiσi, (15)

for all i ∈ N.

Although Eq. (15) looks similar to Eq. (7), it is not
evident that it corresponds to the balance equations of
an MC as, in general, σ 6= 0. Nevertheless, we prove
that this is indeed the case:
Theorem 4.2. Eq. (15) are the balance equations of
a continuous-time MC with transition rates:

µji(π) =


λji(π) +

2πiσiσj∑
t∈N−

πtσt−
∑
t∈N+

πtσt

if j ∈ N+ and i ∈ N−

λji(π) otherwise,

(16)

where σ = [σi]i∈N ≡ ρ(π−X̃β̃k+1−uk), [λij(π)]i,j∈N
are given by (8), and (N+,N−) is a partition of N such
that σi ≥ 0 for all i ∈ N+ and σi < 0 for all i ∈ N−.

The proof is in App. D.2. By Lemma 4.1 and Theorem
4.2, we conclude that a stationary π ∈ Rn+ satisfying
(14) is also the stationary distribution of the continuous-
time MC with transition rates:

M(π) = [µji(π)]i,j∈N, (17)

where µji(π) are given by Eq. (16). Motivated by
these observations, and mirroring ILSR (Eq. (10)), we
compute a solution to (13b) via:

πl+1 = ssd
(
M(πl)

)
, for l = 0, 1, 2, . . . , (18)

where M(·) is given by Eq. (17). We refer to this
procedure as ILSRX (“ILSR with features”).

Overall Algorithm. Putting everything together, our
Plackett-Luce ADMM (PLADMM) solving Eq. (11)

Algorithm 1 PLADMM
1: procedure ADMM(X̃, D = {(c`, A`) | ` ∈M}, ρ)
2: Initialize β̃ via Eq. (20); π ← X̃β̃; u← 0
3: repeat
4: π ← ILSRX(ρ,π, X̃, β̃,u)

5: u← u+ X̃β̃ − π
6: β̃ ← (X̃T X̃)

−1
X̃T (π − u)

7: until convergence
8: return β̃, π
9: end procedure
1: procedure ILSRX(ρ,π, X̃, β̃,u)
2: repeat
3: σ ← ρ(π − X̃β̃ − u)
4: Calculate M(π) = [µji(π)]i,j∈N via Eq. (16)
5: π ← ssd (M(π))
6: until convergence
7: return π
8: end procedure

is summarized in Algorithm 1. We iteratively up-
date β̃, π, and u via Eq. (13) until convergence, with
β̃ updated via Eq. (13a) and π updated via ILSRX
(Eq. (18)). At iteration k, we initialize ILSRX with
πk−1. We note that, as Problem (11) is non-convex,
selecting a good initialization point is important in
practice. We discuss initialization, additional computa-
tional issues, and theoretical guarantees below.

Initialization. We initialize β̃ so that X̃β̃ is a good
approximation of Plackett-Luce scores. We use a tech-
nique akin to Saha and Rajkumar (2018), applied to
our affine setting. Given a distribution over queries
A ⊆ N, let Pij = EA[c = i|{i, j} ⊆ A] be the probabil-
ity that i is chosen given a query A that contains both
i and j. By (1), for i, j ∈ N, PijPji = πi

πj
=
x>i β+b

x>j β+b
, or:

δij(β̃) ≡ (Pijxj − Pjixi)>β + (Pij − Pji)b = 0. (19)

Motivated by (19), we estimate Pij empirically from
D, and obtain our initialization β̃0 = (β0, b0) ∈ Rp+1

by solving (19) in the least-square sense; that is,

β̃0 = arg min
β̃∈Rp+1:X̃β̃≥0∧1>X̃β̃=1

∑
i,j δ

2
ij(β̃). (20)

Note that this is a convex quadratic program. Finally,
we also set the initial dual variable as u0 = 0.

Computational Complexity. Each iteration of
PLADMM involves the three steps in Eq. (13). One it-
eration of ILSRX is O(

∑
`∈D |A`|+n2) for constructing

the transition matrixM(π) via Eq.(17) and for finding
the stationary distribution π via, e.g., a power method
(Lei et al., 2016), respectively. Updates of u and β̃
are both O

(
n(p+ 1)

)
as matrix-vector multiplications,

since the matrix (X̃T X̃)
−1
X̃T can be precomputed.

Theoretical Guarantees. In general, condition (14) is
not sufficient for optimality w.r.t. step (13b). To show
this, we require the following technical assumption:
Assumption 4.1. For {πk}k∈N, given by (13b), there
exists an ε > 0 such that πki > ε for all i ∈ N and k ∈ N.



Fast and Accurate Ranking Regression

Spec. Dataset
ROP FAC Pairwise Sushi Triplet Sushi

n 100 1000 100 100

p 143 50 18 18

M 29705 728 450 1200

|A`| 2 2 2 3

nfold 10 10 3 10

Type Choice Choice Choice Ranking

Table 1: No. of samples (n), no. of parameters (p), no. of observa-
tions (M), query size (|A`|), no. of cross validation folds (nfold), and
type of observations for real data

Under this assumption, we show that stationarity im-
plies optimality w.r.t. (13b) for large enough ρ:
Theorem 4.3. Under Assumption 4.1, for ρ ≥
2
ε2 maxi

∑
`|i∈A`

1
|A`|2 , a π > 0 satisfying condition

(14) is a minimizer of (13b).

The proof is in Appendix D.3. Moreover, although
problem (11) is non-convex, we establish the following
convergence guarantee for the ADMM steps (13). We
provide the proof in Appendix D.4.
Theorem 4.4. Suppose that there exists κ > 0 such
that X̃T X̃ � κ I and the sequence {(πk,uk, β̃k+1)}k∈N
generated by (13) is bounded. Then, under Assump-
tion 4.1, for ρ > 2maxi |Wi|

ε2 where Wi is defined in
Theorem 3.1, the sequence {(πk,uk, β̃k+1)}k∈N gen-
erated by (13) converges to a point that satisfies the
Karush-Kuhn-Tucker (KKT) conditions of (11).

5 Experiments
Experiment Setup. We evaluate PLADMM and
PLADMM-log (the spectral algorithm for the logis-
tic case, described in Appendix E) on synthetic and
real-life datasets, summarized in Table 1. Additional
details on our datasets are in Appendix F.1. We per-
form 10-fold cross validation (CV) for each dataset,
except Pairwise Sushi, for which we use 3 folds. For
synthetic datasets, we also repeat experiments over 5
random generations. We partition each dataset into
training and test sets in two ways. In observation CV,
we partition the dataset w.r.t. observations M, using
90% of the M observations for training and the re-
maining 10% for testing. In sample CV, we partition
samples N, using 90% of the n samples for training
and the remaining 10% for testing. When partitioning
w.r.t. samples, observations containing samples from
both training and test partitions are discarded. As the
Pairwise Sushi dataset contains few observations (c.f.
Table 1), we perform 3-fold cross validation in this case.

We implement2 seven inference algorithms described
in detail in Appendix F.2. Four are feature meth-
ods, i.e., algorithms that regress Plackett-Luce scores
from features: PLADMM described in Algorithm 1,

2
Our code is publicly available at

https://github.com/neu-spiral/FastAndAccurateRankingRegression

PLADMM-log described in Appendix E, sequential
least-squares quadratic programming (SLSQP), that
solves (4), and Newton on β, that solves the convex
problem (5) via Newton’s method. The remaining three
are featureless methods, i.e., algorithms that learn the
Plackett-Luce scores from the choice observations alone:
Iterative Luce Spectral Ranking (ILSR) described by
Eq.(10), the Minorization-Maximization (MM) algo-
rithm (Hunter, 2004), and Newton on θ that solves
Eq. (6) via the reparametrization πi = eθi , i ∈ N using
Newton’s method on θ = [θi]i∈N.

Performance Metrics. We run each algorithm until
convergence (see App. F.2 for criteria). We measure
the elapsed time, including time spent in initialization,
in seconds (Time) and the number of iterations (Iter).
We measure the prediction performance by Top-1 ac-
curacy (Top-1 Acc.) and Kendall-Tau correlation (KT)
on the test set; formulas are provided in App. F.3.
For synthetic datasets, we also measure the quality
of convergence by the norm of the difference between
estimated and true Plackett-Luce scores (4π); lower
values indicate better estimation. We report averages
and standard deviations over folds.

Execution Environment. For Tables 2 - 4, we mea-
sure timing on an Intel Xeon CPU E5-2680v2 2.8GHz
with 128GB RAM. Particularly for experiments on
larger synthetic datasets (c.f. Figures 1 - 2), we use an
Intel Xeon CPU E5-2680v4 2.4GHz with 500GB RAM.

Sample CV. We begin with the experiments on sam-
ple CV, in which we partition samples N into training
and test sets. Table 2 shows the evaluations of all al-
gorithms trained on a synthetic dataset with n = 1000
samples, p = 100 features, M = 1000 observations,
and query size |A`| = 2. PLADMM and PLADMM-log
converge 4−27 times faster than other feature methods,
i.e., Newton on β and SLSQP. Recall that in sample CV
partitioning, training observations contain only train-
ing samples: test samples do not participate in any
of the training observations. Thus, featureless meth-
ods ILSR, MM, and Newton on θ are no better than
random predictors, with 0.5 Top-1 Acc. and 0.0 KT.
By regressing the Plackett-Luce scores from features,
PLADMM and PLADMM-log significantly outperform
the predictions of ILSR, MM, and Newton on θ, by
16%− 33% Top-1 Acc. and 16%− 30% KT.

Real datasets. We observe an equally significant speed
gain on real datasets; Table 3 shows the evaluations
on four real datasets partitioned w.r.t. sample CV.
PLADMM and PLADMM-log are 3− 18 times faster
than Newton on β and SLSQP. This speed gain is fun-
damentally due to the smaller per iteration complexity
of PLADMM and PLADMM-log (c.f. Section 4). For
instance, compared to Newton on β, PLADMM-log re-

https://github.com/neu-spiral/FastAndAccurateRankingRegression
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Partitioning Method Training Metrics Performance Metrics on the Test Set
Time (s) ↓ Iter. ↓ 4π ↓ Top-1 Acc. ↑ KT ↑

Sample CV

PLADMM 0.237± 0.006 4± 0 0.717± 0.207 0.831± 0.119 0.609± 0.247

PLADMM-log 1.428± 2.595 49± 79 0.845± 0.204 0.668± 0.159 0.335± 0.318

ILSR (no X) 0.045± 0.002 2± 0 0.718± 0.207 0.5± 0.0 −1.0± 0.0

MM (no X) 9.728± 0.487 500± 0 1.2± 0.1 0.5± 0.0 0.0± 0.0

Newton on θ (no X) 4.537± 0.729 14± 3 1.236± 0.132 0.5± 0.0 −0.08± 0.272

Newton on β 6.406± 2.104 14± 5 0.808± 0.462 0.844± 0.148 0.688± 0.296

SLSQP 43.908± 24.469 229± 132 0.718± 0.206 0.796± 0.106 0.592± 0.211

Observation CV

PLADMM 0.48± 0.24 4± 0 0.717± 0.207 0.837± 0.037 0.569± 0.072

PLADMM-log 1.58± 2.027 29± 14 0.883± 0.208 0.699± 0.066 0.398± 0.132

ILSR (no X) 0.098± 0.056 2± 0 0.718± 0.208 0.708± 0.045 0.389± 0.088

MM (no X) 11.302± 0.515 500± 0 0.864± 0.19 0.685± 0.037 0.354± 0.074

Newton on θ (no X) 8.218± 1.782 14± 3 1.244± 0.121 0.506± 0.029 0.01± 0.05

Newton on β 7.696± 2.35 14± 4 0.804± 0.463 0.871± 0.087 0.742± 0.173

SLSQP 47.824± 28.585 219± 138 0.718± 0.206 0.819± 0.035 0.637± 0.07

Table 2: Evaluations on a synthetic dataset with n = 1000, p = 100, and M = 1000, partitioned w.r.t. sample CV and observation CV. We
report the convergence time (Time), number of iterations until convergence (Iter), norm error in estimating true Plackett-Luce scores (4π),
top-1 accuracy on the test set (Top-1 Acc.), and Kendall-Tau correlation on the test set (KT). ILSR, MM, and Newton on θ do not use the
features X. Newton on β and SLSQP regress π from X.

(a) Time and Top-1 Acc. vs. p (b) Time and Top-1 Acc. vs. n
Figure 1: Convergence time (Time) and top-1 test accuracy (Top-1 Acc.) vs. n and p for PLADMM, PLADMM-log, ILSR, and Newton on
β. Evaluations are on synthetic datasets containing M = 250 observations partitioned w.r.t. observation CV. Number of samples changes in
n ∈ {50, 100, 1000, 10000, 100000} when number of features is p = 100, and number of features changes in p ∈ {10, 100, 1000, 10000} when
number of samples is n = 1000.

Dataset Method Training Metrics Performance Metrics on the Test Set
Time (s) ↓ Iter. ↓ Top-1 Acc. ↑ KT ↑

FAC

PLADMM 0.301± 0.048 4± 0 0.654± 0.237 0.307± 0.473

PLADMM-log 0.298± 0.466 10± 15 0.685± 0.237 0.369± 0.474

ILSR (no X) 0.059± 0.016 2± 0 0.5± 0.0 −1.0± 0.0

MM (no X) 5.905± 0.282 500± 0 0.5± 0.0 0.0± 0.0

Newton on θ (no X) 7.604± 0.805 18± 2 0.5± 0.0 −0.4± 0.49

Newton on β 0.859± 0.077 6± 1 0.67± 0.17 0.34± 0.339

SLSQP 14.332± 5.684 178± 67 0.675± 0.147 0.349± 0.293

ROP

PLADMM 1.708± 0.166 4± 0 0.783± 0.03 0.565± 0.06

PLADMM-log 0.325± 0.028 1± 0 0.724± 0.105 0.448± 0.209

ILSR (no X) 0.649± 0.053 2± 0 0.5± 0.0 −1.0± 0.0

MM (no X) 0.001± 0.001 1± 0 0.5± 0.0 −1.0± 0.0

Newton on θ (no X) 68.924± 5.521 8± 0 0.497± 0.012 −0.988± 0.036

Newton on β 47.563± 8.342 2± 1 0.552± 0.048 0.103± 0.096

SLSQP 4.823± 4.914 2± 1 0.769± 0.052 0.538± 0.104

Pairwise Sushi

PLADMM 0.046± 0.01 4± 0 0.451± 0.082 −0.09± 0.177

PLADMM-log 0.141± 0.025 27± 13 0.532± 0.076 0.064± 0.152

ILSR (no X) 0.014± 0.006 2± 0 0.5± 0.0 −1.0± 0.0

MM (no X) 1.513± 0.587 352± 183 0.5± 0.0 −1.0± 0.0

Newton on θ (no X) 1.282± 0.924 18± 9 0.5± 0.0 −0.666± 0.472

Newton on β 0.21± 0.115 4± 2 0.665± 0.035 0.33± 0.069

SLSQP 4.619± 6.321 168± 235 0.624± 0.065 0.248± 0.13

Triplet Sushi

PLADMM 0.091± 0.02 4± 0 0.358± 0.805 −0.333± 0.924

PLADMM-log 0.556± 0.276 40± 25 0.393± 0.826 0.096± 1.069

ILSR (no X) 0.033± 0.012 2± 0 0.334± 0.0 −0.047± 1.089

MM (no X) 1.824± 0.701 267± 151 0.334± 0.0 0.0± 0.0

Newton on θ (no X) 2.728± 1.475 13± 3 0.334± 0.0 −0.047± 1.089

Newton on β 1.966± 3.158 10± 19 0.322± 0.802 −0.261± 0.956

SLSQP 1.656± 1.793 20± 30 0.608± 0.826 0.358± 0.928

Table 3: Evaluations on real datasets partitioned w.r.t. sample CV (c.f. Sec. 5). We report the convergence time (Time), number of
iterations until convergence (Iter), top-1 accuracy on the test set (Top-1 Acc.), and Kendall-Tau correlation on the test set (KT). ILSR, MM,
and Newton on θ do not use the features X. Newton on β and SLSQP regress π from X.
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quires about 2 times more iterations, but still converges
3 times faster than Newton on β on FAC. Moreover,
while significantly decreasing the convergence time,
PLADMM or PLADMM-log consistently attain similar
prediction performance to Newton on β and SLSQP,
except for Sushi, for which they perform slightly worse
(by 13% − 20% Top-1 Acc.), though the convergence
time dividends are striking in comparison (78%− 95%).

Aligned with the prediction performance on synthetic
datasets, featureless methods ILSR, MM, and New-
ton on θ can only attain 0.5 Top-1 Acc. and 0.0 KT.
By regressing the Plackett-Luce scores from features,
PLADMM and PLADMM-log significantly outperform
the predictions of ILSR, MM, and Newton on θ, by
3%− 31% Top-1 Acc. and 5%− 78% KT.

Observation CV. A sample can appear in both train-
ing and test observations in observation CV. Hence, fea-
tureless methods ILSR, MM, and Newton on θ should
fare better than in sample CV. Nonetheless, in Table
2, as n = 1000 is larger than p = 100, there are more
scores to learn than parameters. As a result, feature
methods are advantageous for good predictions com-
pared to featureless methods. Particularly, PLADMM
and PLADMM-log outperform the predictions of ILSR,
MM, and Newton on θ in observation CV on Table 2,
by 13% Top-1 Acc. and 9% KT. The relative perfor-
mance of feature vs. featureless methods is governed
by the relationship among n, p, and M . We therefore
explore the effect of n and p below; the effect of M is
discussed in Appendix F.4. We do not include Newton
on θ and MM in this analysis, as they are too slow.

Impact of p. To assess the impact of number of param-
eters, we fix n = 1000, M = 250, |A`| = 2 and gener-
ate synthetic datasets with p ∈ {10, 100, 1000, 10000}.
Fig. 1a shows the Time and Top-1 Acc. of PLADMM,
PLADMM-log, ILSR, and Newton on β. As M =
250 observations are not enough to learn n = 1000
scores, PLADMM leads to significantly better Top-1
Acc. compared to ILSR. When p = 10, PLADMM and
PLADMM-log outperform ILSR by 18% − 28% Top-
1 Acc. Moreover, PLADMM and PLADMM-log are
consistently faster than Newton on β, for all p > 100.
Particularly, for p = 10000, PLADMM and PLADMM-
log converge 42-579 times faster than Newton on β.
Interestingly, the convergence time of PLADMM-log
can even decrease with increasing p. This is because
the number of iterations until convergence decreases.
While significantly decreasing the convergence time,
PLADMM consistently attains better Top-1 Acc. than
Newton on β, up to 8% for p = 100.

Impact of n. To assess the impact of number of samples,
we fix p = 100, M = 250, |A`| = 2 and generate syn-
thetic datasets with n ∈ {50, 100, 1000, 10000, 100000};

Fig. 1b shows evaluations on the resulting datasets.
For n > p = 100, i.e., when there are more scores to
learn than parameters, PLADMM leads to significantly
better Top-1 Acc. compared to ILSR. Particularly, for
n = 100000, PLADMM outperforms ILSR by 25%
Top-1 Acc. This confirms that, especially when the
number of observations M is not sufficient to learn n
scores, exploiting the features associated with the sam-
ples is crucial in attaining good prediction performance.
As expected, convergence time of Newton on β is not
significantly affected by n. Despite this, PLADMM
and PLADMM-log are faster than Newton on β for
all n < 1000. Particularly, for n = 50, PLADMM
and PLADMM-log converge 2-75 times faster than
Newton on β. While decreasing the convergence time,
PLADMM consistently attains better Top-1 Acc. than
Newton on β, up to 19% for n = 100000.

Real datasets. We include the evaluations on real
datasets partitioned w.r.t. observation CV in the Ap-
pendix (c.f.Table 4). Performance agrees with observa-
tions above regarding the dependence on n an p. For
datasets where n > M > p, e.g., FAC, PLADMM and
PLADMM-log significantly outperform the predictions
of ILSR, by 10% Top-1 Acc. and 25% KT. For datasets
where M is much larger than n (c.f. Table 1), feature
methods lead to similar prediction performance to each
other and slightly lower performance than ILSR, MM,
and Newton on θ. Overall, PLADMM and PLADMM-
log consistently converge faster than Newton on β and
SLSQP, by 3− 27 times across all real datasets.

6 Conclusions

We solve the maximum likelihood estimation problem
for the Plackett-Luce scores via ADMM. We show that
the scores are equivalent to the stationary distribution
of a Markov Chain and propose spectral algorithms,
PLADMM and PLADMM-log. We model the Plackett-
Luce scores as affine and logistic functions of features.
Extending these to more complex models, particularly
to deep neural networks, is an interesting open problem.
Our approach has the potential of training a neural
network over a linear penalty w.r.t. scores, where the
latter are regressed efficiently via a spectral method
over the quadratic pairwise ranking data. This can lead
to significant improvements over training time, making
an epoch linear rather than quadratic in sample size.
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