Supplementary material for “A Theoretical Case Study of Structured
Variational Inference for Community Detection”

This supplementary document contains detailed proofs and derivation of theoretical results presented in
the main paper “A Theoretical Case Study of Structured Variational Inference for Community Detection”,
and additional experimental results. In particular, Section [A] contains the detailed derivation of updates
of the Variational Inference with Pairwise Structure (VIPS) algorithm. Section [B| contains detailed
proofs of the theoretical results presented in the main paper. Section [C] contains details on how to
generalize VIPS to K = 2 with unbalanced community sizes and K = 3 with equal sized communities,
and experimental results on robustness to parameter mis-specification. Section [D] contains additional
experimental results and figures.

A Detailed Derivation of the Updates of VIPS

In the main paper Eq. , the Evidence Lower BOund (ELBO) for pairwise structured variational inference is
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where g, = log(Bap/(1 — ab)) and f(a) = —log(1+e®). Denote the first four terms in ELBO as Ty, Ts, T5, Ty,
where T7, T correspond to the likelihood of the blocks A% and AYY in the adjacency matrix, T3 corresponds to
the likelihood of (z;,y;),% # j and T4 corresponds to (z;,y;). Plugging in the marginal density of the independent
nodes in 17, T5, T35 and joint density of the dependent nodes in T, we have
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The KL regularization term @ is
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To take the derivative of £(Q;, B) with respect to 1¢?, cd # 0, we first have the derivative of the KL term
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Denote the right hand side of Eq. - as GCd log WW For the reconstruction terms, denoting

T(a,p) = alog(% ) + log(1 — p) for simplicity, the derivative can be computed as
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Setting the derivatives to 0 we get the update for 6 as (L0), (9), (11)).

B Proofs of Main Results

(A7)
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To prove Theroem [I], we first need a few lemmas. First we have the following lemma for the parameters p, ¢ and

A
Lemma A.1. If p<q =< pp,pn — 0 and p — ¢ = Q(p,), then
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Proof. The proof follows from Proposition 2 in (Sarkar et al., |2019). O

In the proof, we utilize the spectral property of the population matrix P and generalize it to the finite sample
case by bounding the term related to the residual R = A — P. We use Berry-Esseen Theorem to bound the
residual terms conditioning on wu.

Lemma A.2 (Berry-Esseen bound). Define
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where u and A are independent.
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where C is a general constant, ®(-) is the CDF of standard Gaussian, p, and o, depend on u.

Proof. Since r; is the sum of independent, mean zero random variables, the sum of the conditional variances is
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and the sum of the conditional absolute third central moments is
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The desired bound follows from the Berry-Esseen Theorem. O

The next lemma shows despite the fact that A introduces some dependency among r; due to its symmetry, we
can still treat r; as almost iid.

Lemma A.3 (McDiarmid’s Inequality). Let r; be the noise defined in Lemma and let h(r;) be a bounded

function with ||h]|lcc < M. Then
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for some general constant cg, provided |A| = ©p(n).

Lemma A.4. Let r; be defined as in Lemma and assume A and u are independent, we have sup;c 4 |ri| =

Op(v/nprlogn) if the index set |A| = Op(n).

Proof. Since r; is the sum of independent bounded random variables, for all i, ; = Op(y/np,). By Hoeflding
inequility, we know for all ¢ > 0
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Next we have a lemma ensuring the signal in the first iteration is not too small.
Lemma A.5 (Littlewood-Offord). Let s1 = (p—A) Y ;cq, (ul® (i) = 1/2) + (¢ = A) Xjeq, (WO (i) — 1/2), 52 =
(@=2) Yieq, @O@) = 1/2) + (p = X) Xieq, (V) = 1/2). Then
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for ¢ >0 and B as constant. The same bound holds for |sa|,|s1 — sa2].
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Proof. Noting that 2u(®) (i) — 1 € {~1,1} each with probability 1/2, and Lemma this is a direct consequence
of the Littlewood-Offord bound in (Erdos, [1945)). O

Finally, we have the following upper and lower bound for some general update ¢;.

Lemma A.6. Assume ¢; has the update form ¢; = (a+ e*5+7)) /(b4 e*+73)) fori € (m], b>a >0 and b—a,
(b—a)/b are of constant order. r; is defined as in Lemma[A.2 Let set A C [m], with A > 0, we have
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Combining the above,
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Proof of Theorem [1 Throughout the proof, we assume A has self-loops for convenience, which does not affect
the asymptotic results.

Analysis of the first iteration in the first meta iteration:

For random 1n1t1ahzed u(®), the initial signal |(u(?), vy)| = Op(y/n). Using the graph split A9 we write the
update of 619 a
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where P is the population matrix of A. Denote R(®) = 6A(®) — P and r(® = [(R®)>* (R(®)=¥](4() — 11) Since
P has singular value decomposition as P = ”Qﬂlnlg + ”Q;qvgva , the signal part is blockwise constant and we
can write
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By (12), since we initialize with ¢°!, #'* = 0, the marginal probabilities are updated as
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Next we show the signal |(u,vs)| increases from Op(y/n) to Qp(n/p,). (We omit the superscript on logits s,z
and y now for simplicity.) Since

() va) = (87, va1) + (€1 v2) = D 6t = D7 ot 4 (61, 03s)
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we use Lemma to bound ZiECl ¢§1) and Zie@ (bgl). Since s; and s, depends on u(?), we consider two cases
conditioning on u(%).

Case 1: s1 > s5. By Lemma [A.6] let A = L(s; — s9) with A = Cy,Cy, (a,b) = (1,3), conditioning on u(®,
1
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where the Op(y/n) term can be made uniform in u(®). So we have
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Here to approximate the CDF &, we have used
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Case 2: s1 < so. The same analysis applies with s; and sy interchanged.

Combining Case 1 and Case 2, for any given u(%),
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We note that [si], |ss|, |s1 — s2| are of order Qp(y/np,) by Lemma Also 02, py =< np,, e~ Hsi—s2l =
exp(—Q(pnv/n)). We can conclude that |< 1 ,v21>| = Qp(ny/pn)-

For (5%1),v22> we have
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Therefore we have |<u1 ,v2)| = Qp(ny/pn). By (B.7), ( ull),1> =0.
Due to the symmetry in s; and sy, WLOG in the following analysis, we assume <u§ ), 2) > 0 (equivalently

S1 > 82).
Analysis of the second iteration in the first meta iteration:

Similar to (B.4]), we can write

1
07 =41([6(AD)7*, 6(AD)] — AT)(uf” - S1,)

1 1 1
= at([P7*, P) = AD)(uf? = S10) + 46RO (0 = J1) + 4t (RO (el = 1)

signal noise = 4tr§1)

Noting the signal part is blockwise constant, we have

- 4t(z1101 + Iglcé + ’I”(l)),



where
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By (B.7)), (ugl), 1,) —m =0 and we have
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It follows then from the first iteration that z1, —zo = Q p(npf/ 2). The update for uél) is
1 + 6910 1 + 6901
o0 - & - o

1)

Since the signal part of 0 and ! are blockwise constant on C;, Cy and C}, C} respectively, (ug ,Ua) can be
calculated as
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In the case of (ugl),vg) > 0, we know , s17 > s9 and x1 > 0 > x5. We first show that <¢§1),v21) is positive by
finding a lower bound for the summations over Cio,Co1, Cos (since the sum over C1; is always positive).

For the summation over C1o, note that |z2| dominates both s; and rgo), rz(l) by Lemma we have
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To lower bound the first term, we use Lemma by first conditioning on u(?,
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For the summation over Cyq, 1 dominates s, and ’I“EO), 7“51) by Lemma
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Combining (B.12) - (B.14), setting A = 1(s1 — s2), we have
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by the same argument as (B.8). As before, we can see that
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For the other two sums, we have
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and
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Equations (B.15)) - (B.17) imply
— Op(vn).
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Therefore <ug ),ng) > n/8 — Op(y/n). Since by (B.11), gbgl) =1, - {él), the inner product (ugl), 1) —m=0.
Analysis of the third iteration in the first meta iteration:
Similar to the previous two iterations, we can write
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r® = [(RD), (R®)](uz — ;1) + [(RP)?, (R (w3 — S 1,).
It follows from the second iteration that y1, —y2 = Qp(np,).

The update for uél) is
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The <u3 ,U2) can be calculated as
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Using the order of the = terms and y terms and Lemma we can lower bound <u:(31), vg) by
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Next we bound <u§1), 1,) —m.
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It follows then

—n/8 — Op(vn) < (W, 1,) —m < n/4+ Op(v/n). (B.22)

Analysis of the second meta iteration:

We first show that from the previous iteration, the signal (ug, vs) will always dominate |{us, 1,) —m| which gives
desired sign and magnitude of the logits. Then we show the algorithm converges to the true labels after the
second meta iteration.

Using the same decomposition as (B.5]),
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where we have used Lemma [A 1]

After the first meta iteration, the logits satisfy
3
s, =) = Qp(npn), @i~y = Qp(npi),
1 1
Here we have added the superscripts for the first meta iteration for clarity.

In the first iteration of the second meta iteration, <u§2), vg) is computed as (B.19) with s; and s2 replaced with
2

3§2) and s; ° and the noise replaced accordingly. It is easy to see that
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The logits are updated as (2£¢ — A)((u?), 1,) —m)+ p;"(u?), 2), SO
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The same analysis and results hold for qu) and

addition to the condition (B.28)), we further have

(y (2), y§2)). We now show after the second meta iteration, in

202 — s = Qp(npy), 207 — 2P = Qp(np,) (B.29)

To simplify notation, let
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where 7’s are the noise associated with each signal and we have Lemma [A.4] bounding their order uniformly.

We first provide an upper bound on <u§1), vg). In (B.19),
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For convenience denote a = B ;rq A and b= B4, then we have
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i€Cr1

2) (2 n  3n
+b (2 Z 041(35 )7335 )vyg ))+§ - 8) _OP(nPn)

i€Ci1

3 b
=2(a+8) Y ai(si? 0l ") - S+~ op(np)
i€C1

by (B.30)) and ( - Since o ( sgz),x?),y(l)) > 1+ o0p(1), we can conclude

3m  an

Similarly, we can check that

2yt? — 2P = a2(u, 1,) — (WP, 1) — m) + b(2(us?, va) — (WP va))

(a —b)n

=(a+0) Y 2ai(si”, 2, 1") — aulsi? o i) = == +op(npn)
i€Cqy
b—a)n
2 (7) —op(npn) = Qnpy)

- 4

as a;(s 5 ) ng),yg)) > az(sg ),x(ll), ). Thus condition ) holds.

(B.30)

(B.31)



Now we need to analyze the third iteration in this meta iteration. Since ai(s(l ) x§2)7 ygl)) <2

(2) + y(z) (<u52), 1n> - m) = OP(nPn)’

then by (B-23)

2 2 2 2 2 2
s — (P + 8 2P — (P + )

= Qp(npn), = Qp(npy). (B.32)

Now using the update for u:(,,z), and defining the noise in the same way as in the first meta iteration,

2 5 2 4 2 3
268t Wi +riV) | pat(@® (V) | gat(sf ()

(W ) = Y

2 3 2 4 2 5
(o 1 et 4 et ) 8t )

oAt (s +ri) _ gt (V)

>
14e 4t(y( )+y£2)+r(5)) 4t(sg2)+r§3)) + e4t(mg2)+r§4))

4t(m(2>+r,§4)) _ 4t(s(2)+r,§3))

1+€4t(y§2)+y;2)+,"(0)) + 4t(8(2)+7‘(3)) + 4t(a:(2>+r(4))

S0P +rD) 4 el ) | ptt(a®4r )

> e — AP D) | w0

1€C22
=Y 268t +r(™)
TLEe 14 et ) o pat@? ) 4 st +rl)
4t(s(2)+r53))
+ Z (2) 4, (2) , (5) (2) 4 ,.(3) (2) 4 (4)
€0 14e At(yy™ Fyy Ay ) edt(sy” +r; )+e4t(12 +7;77)
12
4t(2$? -
+ Z (2) ,,(2)  (5) (2), .(3) (2) 4 .(4)
— 1_'_e4t(y1 +ys +r; )+ At(sy ' +r; )+ At(xy +r;7)
i€Ca1

—nexp(—Qp(npy))
> % —nexp(—Qp(npn)),

using the conditions (B.28) (B.29) (B.32) and Lemma Since [ju — 2*||; = m — |(u, va)|, Hugf) —2¥h =

nexp(—Qp(np,)) after the second meta iteration.

Finally we show the later iterations conserve strong consistency. Since

<u§2)71> —m= Z

i€Ch1

2

i€C12

St 4+

1 +€4t(s(12)+r53)) +€4t(w§2)+r§4)) + eSt(y§2)+r§5))

(2), . (2)  (5)
e4t(y1 +yy A )_]_

14 et 404 pptr(s 4 4 et )

AP+ +rP)
+

1€Ca1

1 +e4t(y§2)+yé2)+r§5)) +e4t(s(22)+7“§3)) +€4t(a:§2)+r§4))

2 5
e8t(y; )+r£‘)>) -1

+ 2
o 1 et 4 g pat@l? ) sty )

—nexp(~Qp(npn))
by (B:28) (B-29) (B.32) and Lemma[A.4] we have

st =a((us® 1) = m) + b(us?, ve) = F—n + np, exp(~Qp (npn),



s =a((us?, 1) = m) = b, v2) = —F—n 4 np, exp(=Qp (npn)).
Next we note the noise in this iteration now arises from the whole graph A, and can be bounded by
7 zZZ z 2 1
r( = (R RV, (uf? - S1,)

1
_ [RZZ7RZy}i7.(U£()’2) _ Z*) + [RZZ,RZy]i (Z* i 5177,)7

)

where the second term is Op(+/np, log n) uniformly for all ¢, applying Lemma To bound the first term, note
that

max [[R¥, RV);. (ug” = 2%)| < |[[R*, BV)(uf? — =)
< Op(vipn)llus? = 2*[l1 = op(1).

Therefore 7“2(7) is uniformly Op(y/np, logn) for all i. By a similar calculation to (B.31)), we can check that condition

(B.29) holds for y§2) and 553), since when s1,21,y1 = Q(np,) condition (B.29) and 1 — op(1) < a;(s1,21,y1) <
2 + op(1) guarantees each other and condition (B.29)) is true in the previous iteration. We can check that

condition (B.32) also holds. The rest of the argument can be applied to show ||ug3) — 2*|l1 = nexp(=Qp(npy)).
At this point, all the arguments can be repeated for later iterations.

O

Proof of Corollary[i We first consider p > 0.5. By (B.6)), s1 = Qp(np,), s2 = Qp(np,). Since 7"50) =
Op(v/npylogn) uniformly for all ¢ by Lemma we have

14+ At(sitr(”)

= =1- -0
3 4 edt(si+r{”) exp(—$2p(npn))

¢!

for i € C7. Similarly for i € C5, and §£1) = exp(—Qp(npn)). Define uj = 1jcp,) + 1ep,). Since the partition
into P; and P; is random, ) ~ iid Bernoulli(1/2), and |lu; — u'||2 = v/nexp(—Qp(npn)).

In the second iteration, we can write
0% = 4t([AvZ, AWY] — \J)(ug — %1)
= 4t([AY*%, AYY] — AJ)(ug — u') + 4t([AYZ, AW] — \J) (v — %1)
— Op(ny/pexp(~Qp(npa))) + 4L([A, 4] — \J)(u' — 11).
The signal part of the second term is 4¢(z 1o + @2 lcé) with 7 and xo having the form of , with «(©

replaced by w’. Since z1, 3 = Qp(y/nps), the rest of the analysis proceeds like that of Theorem |lf restarting from
the first iteration.

If £ < 0.5, s1 =—Qp(npn), s2 = —Qp(npy). We have (bl(-l) = 1 +exp(—Qp(npn)), fi(l) =2 — exp(—Qp(npy,)).
This time let v’ = %1[i6p1] + %1[1'6]32], then #°! can be written as

4t 3
0 = Op(ny/Besp(~2p(npu))) + (A%, A7)~ AJ)(3u' — 1),
Noting that 3u; — 1 ~ iid Bernoulli(1/2), the same argument applies. O

Proof of Proposition[1l (i) We show each point is a stationary point by checking the vector update form of
(10), @, . Similar to Theorem (1, we have

01 = 4t(s11¢c, + salc, + 7"(0))

%



where 7“ = Op(v/npylogn). Plugging u® =1, in (@), s = so = 0.5(2% — A\)n. Similarly
0% =4t(x11¢, + x21c, + 7“2(1))
0 =dt(yilc, +y2lc, +11")
where 21 = x5 = 0.5(Z51 — \)n, y1 = y2 = (252 — M)n. Plugging in with 224 — X\ = Qp(py) by Lemma

we have
¢Z(.1) =1—exp(—Qp(np,)), 551) =1—exp(—Qp(npn))

for all i € [m]. Hence for sufficiently large n, 19 =1, is the stationary point. For v(®) = 0,,, similarly we have

o) = exp(=Qp(npn), €Y = exp(=Qp(npn))
so u(®) = 0, is also a stationary point for large n.
(ii) The statement for (?) = 0,, and u(®) = 1,, follows from Corollary |1|by 1 =0 and p = 1.
O

Proof of Proposition [Z Let t \ be constants defined in terms of p P, q. First we observe using p, § only replaces
t, A with ¢, A everywhere in the updates of Algorithm |I} We can check the analysis in Theorem remains
unchanged as long as

D ZTLS 5 ) A= 9, i) = 9()

O

Proof of Theorem [2 Starting with p© and ¢(© satisfying the conditions in Corollary [2| after two meta
iterations of u updates, we have Hugf) — 2*||1 = nexp(—Q(np,)). Updating pV), ¢V with (T4), we first analyze
the population version of the numerator of p

(L — ) P(Ly — )+ T Put2(1, — 10 — ) diag(P)1,,
=1, — 2)TPA, — 2"+ ()T Pz* —2(u—2)TP(1, — %)+ 2(z*)T P(u — 2%)
+ (u— 2T P(u— 2%) + O(npy,).

In the case of u:(f), the above becomes

2 2

n n
P+ Op(n*2 py exp(—Q(npn))) + O(npn) = —-p+ Op(npn).

Next we can rewrite the noise as

(1, —u) (A - P)1, —u) +u" (A - P)u
=(1, — )T (A= P)1, — %) + ()T (A - P)z* —2(u— )T (A - P)(1,, — 2%)
+2(zT (A= P)(u—2*)+ (u—2)T(A - P)(u—2").

Similarly in the case of ug ) the above is Op(y/n2p,). Therefore the numerator of p() is —p + Op(y/n?py). To
lower bound the denominator, note that

' (J — Du+ (1 —u)(J - D)1 —u)

2 2
= (Zuz> + (n—Zul) —ulu—(1—uw)l' (@1 —u)
>n?/2 — 2n,

then we have p™") = p + Op(y/pn/n). The same analysis shows ¢") = ¢ 4+ Op(\/pn/n).

Replacing p and ¢ with p*) and ¢ in the final analysis after the second meta iteration of Theorem [1| does not
change the order of the convergence, and the rest of the arguments can be repeated. O



C Generalizations

We present the update equations for balanced K > 2 models. We will use the notation a,b € {0,..., K — 1}
to be consistent with the two class case. Let S, = 2¢(diag(A*Y) — A\I)1,,.

2A[AT — N(J = D](¢a — o) + 2[A™ — A(J — I) — diag(A)](&, — &) — Says a#0,b=0

0% = { 24[A%* = A(J — D)](y — 60) + 2[4 — A(J — I) — diag(A)|(& — &) — Sayy a=0,b#0  (C.1)
6a0+9b0+szy a;éO,b;éO

The update equations for unbalanced two class blockmodels simply adds an additional term of log 7w /(1—m)

to the updates of 19 (Eq. (9)), 601 (Eq. (10)) and 2log 7/(1—7) to 611 (Eq. (LI))). We assume that the proportions
are known.

In Figure we show the heatmap for mis-specified parameters for VIPS on unbalanced SBM (7 = .3) and
balanced SBM with K = 3. For each starting point of p, § the average NMI is shown. We see that in both cases
the VIPS algorithm converges to the correct labels for a wide range of initial parameter settings.

(a) Unbalanced with = = 0.3 (b) Balanced with K =3
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Figure A.1: NMI with different estimation of p, ¢ with p > §, averaged over 20 random initializations for each
P, G. The left figure has m = 0.3, K = 2 and the right figure has balanced clusters with K = 3. The true
(po, o) = (0.2,0.1) and n = 2000.

For K = 3, we also show Figure [A-2] where each row represents the estimated membership of one random trial
and both MFVI and VIPS are run with the true pg, gop. We show VIPS can recover true membership with higher
probability than MFVI.

Random Trials

Figure A.2: Compare VIPS and MFVI when K=3, equal sized communities, for known pg, gy in 100 random

(a) MFVI
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Random Trials

trials. pg = 0.5, g9 = 0.01. Rows permuted for visual clarity.

(b) VIPS
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D Additional Experimental Results

In Figure we compare different update rules in VIPS with (i) parameters p, ¢ fixed at the true values
(True?, (11) -(p, q) e.stin}ated using (Z?# Alj/(n(n = 1)), > i Aij/(2n(n —1))) but ﬁxe(-i (Estimate), and (iii)
(p, q) initialized as in (ii) and updated in the algorithm (Update) using Eq. . In all settings, VIPS successfully
converges to the ground truth, which is consistent with our theoretical results and shows robustness of the
parameter setting.

1000 1000
True True

1000
True
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Estimate Estimate
Update 0 Update 0o
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Figure A.3: Values of |ju — 2z*||; as the number of meta iterations increases. Each line is the mean curve of
50 random trials and the shaded area is the standard deviation. Here n = 2000 and pg = 0.1,q9p = 0.02. u is
initialized by Bernoulli distribution with mean p = 0.1,0.5,0.9 from the left to right.

In Figure [A4] we compare VIPS and MFVI with and without parameter updates. For VIPS, we do parameter
updates from 3rd meta iteration onward, and for fairness, we start parameter updates 9 iterations onward for
MFVI. In both schemes, the VIPS performs better than MFVI.
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Figure A.4: Two schemes for estimating model parameters for VIPS and MFVI. Both use the initial p and § as
described in Figure 4 in the main paper. The first scheme starts updating p and ¢ after 3 meta iterations for
VIPS and 9 iterations for MFVI. The other scheme has p, § held fixed.
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