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Appendix

A Concentration inequalities and other technical lemmas

Lemma A.1 (Bernsteins Inequality (Sridharan, 2002) ). Let x1, ..., xn be independent bounded random variables
such that E[xi] = 0 and |xi| ≤ ξ with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then for any ε > 0 we have

P

(
1

n

n∑
i=1

xi ≥ ε

)
≤ e−

nε2

2σ2+2ξε/3 .

Lemma A.2 (Multiplicative Chernoff bound (Chernoff et al., 1952) ). Let X be a Binomial random variable
with parameter p, n. For any δ > 0, we have that

P[X < (1− δ)pn] <

(
e−δ

(1− δ)1−δ

)np
.

A slightly weaker bound that suffices for our propose is the following:

P[X < (1− δ)pn] < e−
δ2pn

2 .

B Related settings

Markov Decision Processes have a long history of associated research (Puterman, 1994; Sutton and Barto, 1998),
but many theoretical problems in the basic tabular setting remain an active area of research as of today. We
briefly review the other settings and connect them to our results.

Regret bound and sample complexity in the online setting. The bulk of existing work focuses on online
learning, where the agent interacts with the MDP with the interests of identifying the optimal policy or minimizing
the regret against the optimal policy. The optimal regret is obtained by (Azar et al., 2017) using a model-based
approach which translates into a sample complexity bound of O(H3SA/ε2), which matches the lower bound of
Ω(H3SA/ε2)(Azar et al., 2013). The method is however not “uniform PAC” where the state of the art sample
complexity remains O(H4SA/ε2) (Dann et al., 2017). Model-free approaches that require a space constraint of
O(HSA) were studied by Jin et al. (2018) which implies a sample complexity bound of O(H4SA/ε2).

Sample complexity with a generative model. Another sequence of work assumes access to a generative
model where one can sample from st+1 and rt given any st, at in time O(1) (Kearns and Singh, 1999). Sidford et al.
(2018) is the first that establishes the optimal sample complexity of Θ̃(H3SA/ε2) under this setting (counting
H generative model calls as one episode). Agarwal et al. (2019) establishes a similar results by estimating the
parameters of the MDP model using maximum-likelihood estimation.

C Proof of the main theorem

To analyze the MSE upper bound Eµ[(v̂πTMIS − vπ)2], we create a fictitious surrogate ṽπTMIS, which is an unbiased
version of v̂πTMIS. A few auxiliary lemmas are first presented and Bellman equations are used for deriving variance

decomposition in a recursive way. Second order moment of marginalized state distribution d̃πt can then be bounded
by analyzing its variance.

C.1 Fictitious tabular MIS estimator.

The fictitious estimator9 ṽπ fills in the gap of state-action location (st, at) of the true estimator v̂π where

nst,at = 0. Specifically, it replaces every component in v̂π with a fictitious counterpart, i.e. ṽπ :=
∑H
t=1〈d̃πt , r̃πt 〉,

9We replcace the notation of ṽπTMIS with just ṽπ throughout the proof. ṽπ always denotes fictitious tabular MIS
estimator.
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with d̃πt = P̃πt d̃
π
t−1 and P̃πt (st|st−1) =

∑
at−1

P̃t(st|st−1, at−1)π(at−1|st−1), r̃πt (st) =
∑
at
r̃t(st, at)π(at|st). In

particular, let Et denotes the event {nst,at ≥ nd
µ
t (st, at)(1− θ)}10, then

r̃t(st, at) = r̂t(st, at)1(Et) + rt(st, at)1(Ect )

P̃t+1(·|st, at) = P̂t+1(·|st, at)1(Et) + Pt+1(·|st, at)1(Ect ).

where 0 < θ < 1 is a parameter that we will choose later.

The name ”fictitious” comes from the fact that ṽπ is not implementable using the data11, but it creates a bridge
between v̂π and vπ because of its unbiasedness, see Lemma C.5. Also, for simplicity of the proof, throughout the

rest of the paper we denote: Dt :=
{
s
(i)
1:t, a

(i)
1:t, r

(i)
1:t−1

}n
i=1

. Also, in the base case, we denote D1 :=
{
s
(i)
1 , a

(i)
1

}n
i=1

and that rπt (st) := Eπ[r
(1)
t |s

(1)
t = st] =

∑
at
E[r

(1)
t |s

(1)
t = st, a

(1)
t = at]π(at|st) :=

∑
at
rt(st, at)π(at|st). Then we

have the following preliminary auxiliary lemmas.
Lemma C.1. d̃πt and r̃πt−1 are deterministic given Dt. Moreover, given Dt, P̃πt+1,t is unbiased of Pπt+1,t and r̃πt
is unbiased of rπt .

Proof of Lemma C.1. By construction of the estimator, d̃πt and r̃πt−1 only depend on Dt, therefore d̃πt and r̃πt−1
given Dt are constants. For the second argument, we have ∀st, st+1,

E[P̃πt+1,t(st+1|st)|Dt] =
∑
at

E[P̃t+1,t(st+1|st, at)|Dt]π(at|st)

=
∑
at

(
1(Et)E[P̂t+1,t(st+1|st, at)|Dt] + 1(Ect )Pt+1,t(st+1|st, at)

)
π(at|st)

=
∑
at

(
1(Et)Pt+1,t(st+1|st, at) + 1(Ect )Pt+1,t(st+1|st, at)

)
π(at|st)

=
∑
at

Pt+1,t(st+1|st, at)π(at|st) = Pπt+1,t(st+1|st),

where the third equal sign comes from the fact that conditional on Et, P̂ (st+1|st, at) — the empirical mean — is
unbiased. The result about r̃πt can be derived using a similar fashion.

Using Lemma C.1, we can derive the following recursions for expectation and variance:
Lemma C.2. For h = 1, ...,H, we have

E

[
〈d̃πh, V πh 〉+

h−1∑
t=1

〈d̃πt , r̃πt 〉

∣∣∣∣∣Dh−1
]

= 〈d̃πh−1, V πh−1〉+

h−2∑
t=1

〈d̃πt , r̃πt 〉, (14)

Var

[
〈d̃πh+1, V

π
h+1〉+

h∑
t=1

〈d̃πt , r̃πt 〉

]
= E

[
Var

[
〈d̃πh+1, V

π
h+1〉+ 〈d̃πh, r̃πh〉

∣∣∣Dh]]+ Var

[
〈d̃πh, V πh 〉+

h−1∑
t=1

〈d̃πt , r̃πt 〉

]
(15)

Proof. The proof of Lemma C.2 can be found in Lemma B.2 and Lemma 4.1 in Xie et al. (2019) by coupling the
standard Bellman equation:

V πh = rπh + [Pπh+1,h]TV πh+1 (16)

with the total law of expectations and the total law of variances.

Lemma C.3 (Boundedness of Tabular MIS estimators). 0 ≤ v̂π ≤ HRmax, 0 ≤ ṽπ ≤ HRmax.

10More rigorously, Et depends on the specific pair st, at and should be written as Et(st, at). However, for brevity we
just use Et and this notation should be clear in each context.

11It depends on unknown information such as dµt , Pπt,t−1, exact conditional expectation of the reward rπt and so on.
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Proof. we show P̂πt (·|st−1) is a (degenerated) probability distribution for all t, st−1.

∑
st

P̂πt (st|st−1) =
∑
st

∑
at−1

P̂t(st|st−1, at−1)π(at−1|st−1)

=
∑
at−1

∑
st

P̂t(st|st−1, at−1)π(at−1|st−1) This is since |A|, |S| <∞

=
∑
at−1

∑
st

nst,st−1,at−1

nst−1,at−1

π(at−1|st−1)

≤
∑
at−1

π(at−1|st−1) = 1

(17)

The last line is inequality since P̂t(st|st−1, at−1) = 0 when nst−1,at−1 = 0. Following the same logic, it is easy to

show P̃πt (·|st−1) is a non-degenerated probability distribution.

Next note
∑
s1
d̂π1 (s1) =

∑
s1
d̂µ1 (s1) =

∑
s1

ns1
n = 1. Suppose d̂πt−1(·) is a (degenerated) probability distribution,

then from d̂πt = P̂πt d̂
π
t−1 and (17), by induction we know d̂πt (·) is a (degenerated) probability distribution for all t.

Using Assumption 2.1, it is easy to show r̂πt (st) ≤ Rmax for all st, then combining all results above we have

v̂π :=
∑H
t=1〈d̂πt , r̂πt 〉 ≤ HRmax. Similarly, ṽπ ≤ HRmax.

The boundedness of Tabular-MIS estimator cannot be inherited by the State-MIS estimator since v̂πSMIS explicitly
uses importance weights and there is no reason for it to be less than HRmax. As a result, we do not need an
extra projection step for our estimation to be valid (see Xie et al. (2019) Lemma B.1). Thanks to the following
lemma, throughout the rest of the analysis we only need to consider ṽπ.
Lemma C.4. Let v̂π be the Tabular-MIS estimator and ṽπ be the fictitious version of TMIS we described above
with parameter θ. Then the MSE of the TMIS and fictitious TMIS satisfies

E[(v̂π − vπ)2] ≤ E[(ṽπ − vπ)2] + 3H3SAR2
maxe

−
θ2nmint,st,at

d
µ
t (st,at)

2

Proof of Lemma C.4. Define E := {∃t, st, at s.t. nst,at < ndµt (st, at)(1 − θ)}. Similarly to Lemma B.1 in the
appendix of Xie et al. (2019), we have

E[(v̂π − vπ)2] ≤ E[(v̂π − vπ)2] = E[(v̂π − ṽπ)2] + 2E[(v̂π − ṽπ)(ṽπ − vπ)] + E[(ṽπ − vπ)2]

=P[E]E
[
(v̂π − ṽπ)2 + 2(v̂π − ṽπ)(ṽπ − vπ)

∣∣E]+ P[Ec] · 0 + E[(ṽπ − vπ)2]

≤3P[E]H2R2
max + E[(ṽπ − vπ)2],

where the last inequality uses Lemma C.3. Then combining the multiplicative Chernoff bound (Lemma A.2 in
the Appendix) and a union bound over each t,st and at, we get that

P[E] ≤
∑
t

∑
st

∑
at

P[nst,at < ndµt (st, at)(1− θ)] ≤ HSAe−
θ2nmint,st,at

d
µ
t (st,at)

2 ,

which provides the stated result.

Lemma C.4 tells that MSE of two TMISs differs by a quantity 3H3SAR2
maxe

−
θ2nmint,st,at

d
µ
t (st,at)

2 and this

illustrates that the gap between two MSE’s can be sufficiently small as long as n ≥ polylog(S,A,H,n)
mint,st,at d

µ
t (st,at)

.
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C.2 Variance and Bias of Fictitious tabular MIS estimator.

Lemma C.5 (Xie et al. (2019) Lemma B.2). Tabular-MIS estimator is unbiased: E[ṽπ] = vπ for all θ < 1.
Lemma C.6 (Variance decomposition).

Var[ṽπ] =
Var[V π1 (s

(1)
1 )]

n

+

H∑
h=1

∑
sh

∑
ah

E

[
d̃πh(sh)2

nsh,ah
1(Eh)

]
π(ah|sh)2Var

[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣∣s(1)h = sh, a

(1)
h = ah

]
.

(18)

where V πt (st) denotes the value function under π which satisfies the Bellman equation

V πt (st) = rπt (st) +
∑
st+1

Pπt (st+1|st)V πt+1(st+1).

Remark C.7. Note even though the construction of TMIS and SMIS are different, both fictitious estimators are
unbiased for vπ. Therefore the MSE of MIS estimators are dominated by the variance of the fictitious estimators.
Comparing Lemma C.6 with Lemma 4.1 in Xie et al. (2019) we can see our Tabular-MIS estimator achieves a
lower bound, and it is essentially asymptotic optimal, as explained by Remark 3.2.

Proof of Lemma C.6. The proof relies on applying Lemma C.2 in a recursive way. One key observation is

To begin with the following variance decomposition, which applies (15) recursively.

Var[ṽπ] =EVar[ṽπ|DH ] + Var[E[ṽπ|DH ]]

=E
[
Var[〈d̃πH , r̃πH〉|DH ]

]
+ Var[E[〈d̃πH , r̃πH〉|DH ] +

H−1∑
t=1

〈d̃πt , r̃πt 〉]

=E
[
Var[〈d̃πH , r̃πH〉|DH ]

]
+ Var[〈d̃πH , rπH〉+

H−1∑
t=1

〈d̃πt , r̃πt 〉]

=E
[
Var[〈d̃πH , r̃πH〉|DH ]

]
+ Var[〈d̃πH , V πH〉+

H−1∑
t=1

〈d̃πt , r̃πt 〉]

=E
[
Var[〈d̃πH , r̃πH〉|DH ]

]
+ E

[
Var

[
〈d̃πH , V πH〉+ 〈d̃πH−1, r̃πH−1〉

∣∣∣DH−1]]
+ Var

[
〈d̃πH−1, V πH−1〉+

H−2∑
t=1

〈d̃πt , r̃πt 〉

]
= ...

=E
[
Var[〈d̃πH , r̃πH〉|DH ]

]
+

H−1∑
h=1

E
[
Var

[
〈d̃πh+1, V

π
h+1〉+ 〈d̃πh, r̃πh〉

∣∣∣Dh]]+ Var
[
〈d̃π1 , V π1 〉

]

Now let us analyze E
[
Var

[
〈d̃πh+1, V

π
h+1〉+ 〈d̃πh, r̃πh〉

∣∣∣Dh]]. Note P̃πh+1,h(·, sh) and r̃πh(sh) for each sh are condition-

ally independent given Dh, since Dh partitions the n episodes into S disjoint sets according to the states s
(i)
h

at time h. Similarly, P̃h+1(·|sh, ah) and r̃πh(sh, ah) for each (sh, ah) are also conditionally independent given Dh.
These observations imply:
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E
[
Var

[
〈d̃πh+1, V

π
h+1〉+ 〈d̃πh, r̃πh〉

∣∣∣Dh]]
=E

[∑
sh

Var
[
d̃πh(sh)〈P̃πh+1,h(·, sh), V πh+1〉+ d̃πh(sh) · r̃πh(sh)

∣∣∣Dh]]

=E

[∑
sh

d̃π2h (sh)Var

[∑
ah

〈P̃h+1(·|sh, ah) · π(ah|sh), V πh+1〉+
∑
ah

r̃h(sh, ah) · π(ah|sh)

∣∣∣∣∣Dh
]]

=E

[∑
sh

d̃πh(sh)2
∑
ah

π(ah|sh)2Var
[
〈P̃h+1(·|sh, ah), V πh+1〉+ r̃h(sh, ah)

∣∣∣Dh]]

=E

∑
sh

d̃πh(sh)2
∑
ah

π(ah|sh)21(Et)Var

 1

nsh,ah

∑
i|s(i)h =sh,a

(i)
h =ah

(V πh+1(s
(i)
h+1) + r

(i)
h )

∣∣∣∣∣∣∣Dh



=E

[∑
sh

d̃πh(sh)2
∑
ah

π(ah|sh)2 · 1(Et)

nsh,ah
·Var

[
(V πh+1(s

(i)
h+1) + r

(i)
h )
∣∣∣s(i)h = sh, a

(i)
h = ah

]]

=
∑
sh

∑
ah

π(ah|sh)2 · E

[
d̃πh(sh)2

nsh,ah
· 1(Et)

]
·Var

[
(V πh+1(s

(i)
h+1) + r

(i)
h )
∣∣∣s(i)h = sh, a

(i)
h = ah

]
.

(19)

The second line and the fourth line use the conditional independence for st and (st, at) respectively. The fifth
line uses that when nsh,ah < ndµh(sh, ah)(1− θ), the conditional variance is 0. The sixth line uses the fact that
episodes are iid.

Plug (19) into the above variance decomposition and uses VH+1 = 0, we finally get

Var[ṽπ] =
Var[V π1 (s

(1)
1 )]

n

+

H∑
h=1

∑
sh

∑
ah

E

[
d̃πh(sh)2

nsh,ah
1(Eh)

]
π(ah|sh)2Var

[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣∣s(1)h = sh, a

(1)
h = ah

]
.

C.3 Bounding the variance of d̃πh(sh).

Applying the definition of variance, we directly have

E

[
d̃πh(sh)2

nsh,ah
1(Eh)

]
≤ (1− θ)−1

ndµh(sh, ah)
E
[
d̃πh(sh)2

]
=

(1− θ)−1

ndµh(sh, ah)
(dπh(sh)2 + Var[d̃πh(sh)]), (20)

where we use the fact that d̃πh(sh) is unbiased (which can be proved by induction through applying total law

of expectations and the recursive relationship d̃πt = P̃πt d̃
π
t−1). Therefore the only thing left is to bound the

the variance of d̃πh(sh). To tackle it, we consider bounding the covariance matrix of d̃πh(sh). As we shall see in
Lemma C.8, fortunately, we are able to derive an identical result of Lemma B.4 in Xie et al. (2019) for our

Tabular-MIS estimator, which helps greatly in bounding the the variance of d̃πh(sh).

Lemma C.8 (Covariance of d̃πh with TMIS).

Cov(d̃πh) � (1− θ)−1

n

h−1∑
t=1

Pπh+1,t+1diag

[∑
st,at

dπt (st)
2 + Var(d̃πt (st))

dµt (st)

π(at|st)2

µ(ah|st)
Pt+1,t(·|st, at)

] [
Pπh+1,t+1

]T
+

1

n
Pπh,1diag [dπ1 ] [Pπh,1]T .

where Pπh,t = Pπh,h−1 · Pπh−1,h−2 · ... · Pπt+1,t — the transition matrices under policy π from time t to h (define
Pπh,h := I).
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Proof of Lemma C.8. We start by applying the law of total variance to obtain the following recursive equation

Cov[d̃πh] = E
[
Cov

[
P̃πh,h−1d̃πh−1

∣∣∣Dh−1]]+ Cov
[
E
[
P̃πh,h−1d̃πh−1

∣∣∣Dh−1]] (21)

= E

Cov

∑
sh−1

P̃πh,h−1(·|sh−1)d̃πh−1(sh−1)

∣∣∣∣∣∣Dh−1
+ Cov

[
E
[
P̃πh,h−1d̃πh−1

∣∣∣Dh−1]] (22)

= E

∑
sh−1

Cov
[
P̃πh,h−1(·|sh−1)

∣∣∣Dh−1] d̃πh−1(sh−1)2


︸ ︷︷ ︸

(∗)

+Pπh,h−1Cov[d̃πh−1][Pπh,h−1]T . (23)

The decomposition of the covariance in the third line uses that Cov(X + Y ) = Cov(X) + Cov(Y ) when X and Y

are statistically independent and the columns of P̃h,h−1 are independent when conditioning on Dh−1.

(∗) =E

∑
sh−1

∑
ah−1

π(ah−1|sh−1)2Cov
[
P̃h(·|sh−1, ah−1)

∣∣∣Datah−1

]
d̃πh−1(sh−1)2

 (24)

=E

∑
sh−1

∑
ah−1

π(ah−1|sh−1)21(Eh−1)Cov
[
P̂h(·|sh−1, ah−1)

∣∣∣Datah−1

]
d̃πh−1(sh−1)2

 (25)

=E

∑
sh−1

∑
ah−1

π(ah−1|sh−1)2
1(Eh−1)

nsh−1,ah−1

Cov
[
e
s
(1)
h

∣∣∣s(1)h−1 = sh−1, a
(1)
h−1 = ah−1

]
d̃πh−1(sh−1)2

 (26)

=
∑

sh−1,ah−1

π(ah−1|sh−1)2E

[
d̃πh−1(sh−1)2

nsh−1,ah−1

1(Eh−1)

] [
diag[Ph(·|sh−1, ah−1)] (27)

− Ph(·|sh−1, ah−1) · Ph(·|sh−1, ah−1)T
]

(28)

≺
∑
sh−1

∑
ah−1

{dπh−1(sh−1)2 + Var[d̃πh−1(sh−1)]

ndµh−1(sh−1)(1− θ)
π(ah−1|sh−1)2

µ(ah−1|sh−1)
diag[Ph,h−1(·|sh−1, ah−1)]

}
(29)

The second line uses the fact that conditional on Ech−1, the variance of P̃(·|sh−1, ah−1) is zero given Datah. The
third line uses the basic property of empirical average, and the fourth line comes from the fact

Cov
[
e
s
(1)
h

∣∣∣s(1)h−1 = sh−1, a
(1)
h−1 = ah−1

]
=E

[
e
s
(1)
h

· eT
s
(1)
h

∣∣∣s(1)h−1 = sh−1, a
(1)
h−1 = ah−1

]
− E

[
e
s
(1)
h

∣∣∣s(1)h−1 = sh−1, a
(1)
h−1 = ah−1

]
· E
[
e
s
(1)
h

∣∣∣s(1)h−1 = sh−1, a
(1)
h−1 = ah−1

]T
=diag(Ph,h−1(·|sh−1, ah−1))− Ph,h−1(·|sh−1, ah−1)[Ph,h−1(·|sh−1, ah−1)]T

The last line (29) uses the fact that Pπh,h−1(·|sh−1)[Pπh,h−1(·|sh−1)]T is positive semidefinite, nsh−1,ah−1
≥

ndµh−1(sh−1, ah−1)(1 − θ) and the definition of variance for d̃πh−1(sh−1). Combining (23) and (29) and by
recursively apply them, we get the stated results.

Benefitting from the identical semidefinite ordering bound on Cov(d̃πh) for TMIS and SMIS, we can borrow the
following results from Xie et al. (2019) for our Tabular-MIS estimator.

Lemma C.9 (Corollary 2 of Xie et al. (2019)). For h = 1, we have Var[d̃π1 (s1)] = 1
n (dπh(s1)− dπh(s1)2), and for

h = 2, 3, ...,H, we have:

Var[d̃πh(sh)] ≤ (1− θ)−1

n

h∑
t=2

∑
st

Pπh,t(sh|st)2%(st) +
1

n

∑
s1

Pπh,1(sh|s1)2d1(s1)
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where %(st) :=
∑
st−1

(
dπt−1(st−1)

2+Var(d̃πt−1(st−1))

dµt−1(st−1)

∑
at−1

π(at−1|st−1)
2

µ(at−1|st−1)
Pt,t−1(st|st−1, at−1)

)
.

Lemma C.10 (Error propagation: Theorem B.1 of Xie et al. (2019)). Let τa := maxt,st,at
π(at|st)
µ(at|st) and τs :=

maxt,st
dπt (st)
dµt (st)

. If n ≥ 2(1−θ)−1tτaτs
max{dπt (st),d

µ
t (st)}

for all t = 2, ...,H, then for all h = 1, 2, ...,H and sh, we have that:

Var[d̃πh(sh)] ≤ 2(1− θ)−1hτaτs
n

dπh(sh).

Before giving the proof of Theorem 3.1, we first prove Lemma 3.4.

Proof of Lemma 3.4. Let value function V πh (sh) = Eπ[
∑H
t=h r

(1)
t |s

(1)
h = sh] and Q-function Qπh(sh, ah) =

Eπ[
∑H
t=h r

(1)
t |s

(1)
h = sh, a

(1)
h = ah], then by total law of variance we obtain (let’s suppress the policy π for

simplicity):

Var

[
h∑
t=1

r
(1)
t + Vh+1(s

(1)
h+1)

]

=E

[
Var

[ h∑
t=1

r
(1)
t + Vh+1(s

(1)
h+1)

∣∣∣∣Dh]
]

+ Var

[
E
[ h∑
t=1

r
(1)
t + Vh+1(s

(1)
h+1)

∣∣∣∣Dh]
]

=E
[
Var

[
r
(1)
h + Vh+1(s

(1)
h+1)

∣∣∣∣s(1)h , a
(1)
h

]]
+ Var

[
h−1∑
t=1

r
(1)
t + E

[
Vh+1(s

(1)
h+1) + r

(1)
h

∣∣∣∣s(1)h , a
(1)
h

]]

=E
[
Var

[
r
(1)
h + Vh+1(s

(1)
h+1)

∣∣∣∣s(1)h , a
(1)
h

]]
+ Var

[
h−1∑
t=1

r
(1)
t +Qh(s

(1)
h , a

(1)
h )

]

=E
[
Var

[
r
(1)
h + Vh+1(s

(1)
h+1)

∣∣∣∣s(1)h , a
(1)
h

]]
+ E

[
Var

[ h−1∑
t=1

r
(1)
t +Qh(s

(1)
h , a

(1)
h )

∣∣∣∣∣s(1)h , r
(1)
1:h−1

]]

+Var

[
E
[ h−1∑
t=1

r
(1)
t +Qh(s

(1)
h , a

(1)
h )

∣∣∣∣∣s(1)h , r
(1)
1:h−1

]]

=E
[
Var

[
r
(1)
h + Vh+1(s

(1)
h+1)

∣∣∣∣s(1)h , a
(1)
h

]]
+ E

[
Var

[
Qh(s

(1)
h , a

(1)
h )

∣∣∣∣s(1)h , r
(1)
1:h−1

]]
+Var

[
h−1∑
t=1

r
(1)
t + E

[
Qh(s

(1)
h , a

(1)
h )

∣∣∣∣∣s(1)h
]]

=E
[
Var

[
r
(1)
h + Vh+1(s

(1)
h+1)

∣∣∣∣s(1)h , a
(1)
h

]]
+ E

[
Var

[
Qh(s

(1)
h , a

(1)
h )

∣∣∣∣s(1)h ]]+ Var

[
h−1∑
t=1

r
(1)
t + Vh(s

(1)
h )

]
,

(30)

where we use Markovian property that (Vh+1(s
(1)
h+1)|Dh) equals (Vh+1(s

(1)
h+1)|s(1)h , a

(1)
h ) in distribution and

E
[
Vh+1(s

(1)
h+1) + r

(1)
h

∣∣∣∣s(1)h , a
(1)
h

]
= Qh(s

(1)
h , a

(1)
h ). Then by applying (30) recursively and letting h = H, we

get the stated result.

Remark C.11. A straight forward implication of Lemma 3.4 is the following:

H∑
t=1

Eπ
[
Var
[
V πt+1(s

(1)
t+1) + r

(1)
t

∣∣∣s(1)t , a
(1)
t

]]
≤ H2R2

max.

Combing Lemma C.6 and C.10, we are now ready to prove the main Theorem 3.1.
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Proof of Theorem 3.1. Plug the result of Lemma C.10 into Lemma C.6 and uses the unbiasedness of ṽπTMIS

(Lemma C.5) we obtain ∀ 0 < θ < 1:

E[(ṽπTMIS − vπ)2]

≤Var[V π1 (s
(1)
1 )]

n
+

H∑
h=1

∑
sh,ah

(1− θ)−1

ndµh(sh, ah)
dπh(sh)2π(ah|sh)2Var

[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣∣s(1)h = sh, a

(1)
h = ah

]
.

+
(1− θ)−1

n

H∑
h=1

∑
sh,ah

2(1− θ)−1hτaτs
n

dπh(sh)

dµh(sh)

π(ah|sh)2

µ(ah|sh)
Var

[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣∣s(1)h = sh

] (31)

Choose θ =
√

4 log(n)/(nmint,st,at d
µ
t (st, at)). Then by assumption n > 16 logn

mint,st,at d
µ
t (st,at)

we have θ < 1/2, which

allows us to write (1 − θ)−1 ≤ (1 + 2θ) in the leading term and (1 − θ)−1 ≤ 2 in the subsequent terms. The
condition of Lemma C.10 is satisfied by The second assumption on n. Then, combining (31) with Lemma C.4 we
get:

E[(v̂πTMIS − vπ)2] ≤ 1

n

H∑
h=0

∑
sh,ah

dπh(sh)2

dµh(sh)

π(ah|sh)2

µ(ah|sh)
Var

[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣∣s(1)h = sh, a

(1)
h = ah

]

·

(
1 +

√
16 log n

nmint,st d
µ
t (st)

)
+

3

n2
H3SAR2

max

+
8τaτs
n2

H∑
h=1

∑
sh,ah

h · dπh(sh)

dµh(sh)

π(ah|sh)2

µ(ah|sh)
·Var

[
(V πh+1(s

(1)
h+1) + r

(1)
h )
∣∣∣s(1)h = sh, a

(1)
h = ah

]
,

(32)

now use Lemma 3.4, we can bound the last term in (32) by

8τ2aτsH

n2 · dm

H∑
t=1

Eπ
[
Var
[
V πt+1(s

(1)
t+1) + r

(1)
t

∣∣∣s(1)t , a
(1)
t

]]
≤ 8τ2aτsH

3R2
max

n2 · dm
,

Combine this term with 3
n2H

3SAR2
max we obtain the higher order term O(

τ2
aτsH

3R2
max

n2·dm ), where we use that
pigeonhole principle implies that S < τs, A < τa.

This completes the proof.

D Proofs of data splitting Tabular-MIS estimator.

We define the fictitious data splitting Tabular-MIS estimator as:

ṽπsplit =
1

N

N∑
i=1

ṽπ(i),

where each ṽπ(i) is the fictitious Tabular-MIS estimator of v̂π(i). Moreover, we set all ṽπ(1), ṽ
π
(2), ..., ṽ

π
(N) jointly share

the same fictitious parameter θM .

Proof of Theorem 3.6. Let E′ := {∃ ṽπ(i) : s.t.ṽπ(i) 6= v̂π(i)}, then an argument similar to Lemma C.4 can be derived:

E[(v̂πsplit − vπ)2] ≤ 3P[E′]H2R2
max + E[(ṽπsplit − vπ)2],

and

P[E′] ≤ N
∑
t

∑
st

∑
at

P[nst,at < M · dµt (st, at)(1− θM )] ≤ NHSAe−
θ2MM mint,st,at

d
µ
t (st,at)

2 ,

therefore P[E′] will be sufficiently small if M ≥ O(Polylog(H,S,A, n)/mint,st,at d
µ
t (st, at)). By near-uniformity

we M ≥ O(Polylog(H,S,A, n)SA) ≥ O(Polylog(H,S,A, n)/mint,st,at d
µ
t (st, at)).
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Moreover, by i.i.d and unbiasedness of ṽπ(i), we have

E[(ṽπsplit − vπ)2] =
1

N
E[(ṽπ(1) − v

π)2] ≤ 1

N
·O(

H2SA

M
) = O(

H2SA

n
),

by the second assumption on M and Theorem 3.1.

We now proof Lemma 3.9, since it will be used to as the intermediate step for proving Theorem 3.8.

Proof of Lemma 3.9. Note that

P
[{
∃π ∈

∏
s.t. ṽπsplit 6= v̂πsplit

}]
≤ N · P

[{
∃π ∈

∏
, s.t. ṽπ(1) 6= v̂π(1)

}]
≤ N · P

[
{∃t, st, at s.t. n(1)st,at < ndµt (st, at)(1− θM )}

]
≤ NHSAe−

θ2MM mint,st,at
d
µ
t (st,at)

2 ,

therefore by near-uniformity M > max [O(SA · Polylog(S,H,A,N, 1/δ)), O(Hτaτs)] is sufficient to guarantee the
stated result.

Now we can prove Theorem 3.8.

Proof of Theorem 3.8. First of all, we have

P
(
|v̂πsplit − vπ| > ε

)
≤ P

(
|v̂πsplit − ṽπsplit| > 0

)
+ P

(
|ṽπsplit − vπ| > ε

)
, (33)

Now by Bernstein inequality we have

P
(
|ṽπsplit − vπ| > ε

)
= P

(
| 1

N

N∑
i=1

(ṽπ(i) − v
π)| ≥ ε

)
≤ exp

(
− Nε2

2Var(ṽπ(1)) + 2HRmaxε/3

)
:= δ/2. (34)

Solving (34) and apply Theorem 3.1, we obtain

ε ≤

√
2Var(ṽπ(1)) log(2/δ)

N
+

2HRmax log(2/δ)

3N
≤ Õ(

√
H2SA log(2/δ)

M ·N
) +

2HRmax log(2/δ)

3N
. (35)

As N goes large, the square root term in (35) will dominate and it seems we only need to consider
the square root term in N and treat the second term as the higher order term. However, since M >
max [O(SA · Polylog(S,H,A,N, 1/δ)), O(Hτaτs)], N cannot be arbitrary large given n. An example is: when
N = n, then M = n/N = 1 does not satisfy the condition. Therefore to make the square root term dominates we
need √

H2SA log(2/δ)

M ·N
≥ O(

HRmax log(2/δ)

N
).

This translates to
M ≤ Õ(

√
nSA), (36)

where Õ absorbs all the Polylog terms.

Therefore under the condition (36), we can really absorb the second term in (35) (as higher order term) and
combine it with Lemma 3.9 to get that with probability 1− δ,

|v̂πsplit − vπ| ≤ 0 + Õ(

√
H2SA

M ·N
) = Õ(

√
H2SA

n
).
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Proof of Theorem 5.1. The non-uniform result of Theorem 3.8 gives:

|v̂πsplit − vπ| ≤ Õ(

√
H2SA

n
)

Note that all nonstationary deterministic polices class have cardinality |
∏
| = AHS , which implies log |

∏
| =

HS logA, therefore combine Lemma 3.9 with a direct union bound and Multiplicative Chernoff bound we obtain

sup
π∈

∏ |v̂πsplit − vπ| ≤ Õ(

√
H3S2A

n
)

E More details about Empirical Results.

Restate Time-varying, non-mixing Tabular MDP in Section 4.

There are two states s0 and s1 and two actions a1 and a2. State s0 always has probability 1 going back to itself,
regardless of the actions, i.e. Pt(s0|s0, a1) = 1 and Pt(s0|s0, a2) = 1. For state s1, at each time step there is one
action (we call it a) that has probability 2/H going to s0 and the other action (we call it a′) has probability 1
going back to s1,

Pt(s|s1, a) =

{
2
H if s = s0;

1− 2
H if s = s1.

Pt(s|s1, a′) =

{
0 if s = s0;

1 if s = s1.

and which action will make state s1 go to state s0 with probability 2/H is decided by a random parameter pt
uniform sampled in [0, 1]. If pt < 0.5, a = a1 and if pt ≥ 0.5, a = a2. These p1, ..., pH are generated by a sequence
of pseudo-random numbers. Moreover, one can receive reward 1 at each time step if t > H/2 and is in state s0,
and will receive reward 0 otherwise. Lastly, for logging policy, we define it to be uniform:

µ(·|s0) =

{
1
2 if · = a1;
1
2 if · = a2.

and µ(·|s1) =

{
1
2 if · = a1;
1
2 if · = a2.

For target policy π, we define it as:

π(·|s0) =

{
1
2 if · = a1;
1
2 if · = a2.

and π(·|s1) =

{
1
4 if · = a1;
3
4 if · = a2.

We run this non-stationary MDP model in the Python environment and pseudo-random numbers pt’s are generated
by keeping numpy.random.seed(100).

We run each methods under K = 100 macro-replications with data D(k) =
{

(s
(i)
t , a

(i)
t , r

(i)
t )
}i∈[n],t∈[H]

(k)
, and use

each D(k) (k = 1, ...,K) to construct a estimator v̂π[k], then the (empirical) RMSE is computed as:

RMSE =

√∑K
k=1(v̂π[k] − v

π
true)

2

K
,

where vπtrue is obtained by calculating Pπt+1,t(s
′|s) =

∑
a Pt+1,t(s

′|s, a)πt(a|s), the marginal state distribution

dπt = Pπt,t−1d
π
t−1, rπt (st) =

∑
at
rt(st, at)πt(at|st) and vπtrue =

∑H
t=1

∑
st
dπt (st)r

π
t (st). Then Relative-RMSE equals

to RMSE/vπtrue.

Other generic IS-based estimators. There are other Importance Sampling based estimators including
weighted importance sampling (WIS) and importance sampling with stationary state distribution (SSD-IS, Liu
et al. (2018a)). The empirical comparisons including these methods are well-demonstrated in Xie et al. (2019)
and it was empirically shown that they are worse than SMIS. Because of that, we only focus on comparing SMIS
and TMIS in our simulation study.
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Algorithm 2 Data Splitting Tabular MIS OPE

Input: Logging data D = {{s(i)t , a
(i)
t , r

(i)
t }Ht=1}ni=1 from the behavior policy µ. A target policy π which we want

to evaluate its cumulative reward. Splitting data size M .

1: Randomly splitting the data D evenly into N folds, with each fold |D(i)| = M .
2: for i = 1, 2, . . . , N do
3: Use Algorithm 1 to estimate v̂π(i) with data D(i).
4: end for
5: Use the mean of v̂π(1), v̂

π
(2), ..., v̂

π
(N) as the final estimation of vπ.
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