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Abstract

We consider the problem of off-policy evalu-
ation for reinforcement learning, where the
goal is to estimate the expected reward of a
target policy 7w using offline data collected
by running a logging policy p. Standard
importance-sampling based approaches for
this problem suffer from a variance that scales
exponentially with time horizon H, which
motivates a splurge of recent interest in al-
ternatives that break the “Curse of Horizon”
(Liu et al., 2018a; Xie et al., 2019). In par-
ticular, it was shown that a marginalized im-
portance sampling (MIS) approach can be
used to achieve an estimation error of order
O(H?/n) in mean square error (MSE) under
an episodic Markov Decision Process model
with finite states and potentially infinite ac-
tions. The MSE bound however is still a factor
of H away from a Cramer-Rao lower bound
of order Q(H?/n). In this paper, we prove
that with a simple modification to the MIS
estimator, we can asymptotically attain the
Cramer-Rao lower bound, provided that the
action space is finite. We also provide a gen-
eral method for constructing MIS estimators
with high-probability error bounds.

1 Introduction

Off-policy evaluation (OPE), which predicts the per-
formance of a policy with data only sampled by a log-
ging/behavior policy (Sutton and Barto, 2018), plays
a key role for using reinforcement learning (RL) algo-
rithms responsibly in many real-world decision-making
problems such as marketing, finance, robotics, and
healthcare. Deploying a policy without having an accu-
rate evaluate of its performance could be costly, illegal,
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and can even break down the machine learning sys-
tem. There is a large body of literature that studied
the off-policy evaluation problem in both theoretical
and application-oriented aspects. From the theoretical
perspective, OPE problem is extensively studied in
contextual bandits (Li et al., 2011; Dudik et al., 2011;
Swaminathan et al., 2017; Wang et al., 2017) and rein-
forcement learning (RL) (Li et al., 2015; Jiang and Li,
2016; Thomas and Brunskill, 2016; Farajtabar et al.,
2018; Xie et al., 2019) and the results of OPE studies
have been applied to real-world applications including
marketing (Theocharous et al., 2015; Thomas et al.,
2017) and education (Mandel et al., 2014).

Problem setup. In the reinforcement learning (RL)
problem the agent interacts with an underlying un-
known dynamics which is modeled as a Markov deci-
sion process (MDP). An MDP is defined by a tuple
M = (S,A,r, P,dy,H), where S and A are the state
and action spaces, P, : S x A xS — [0,1] is the
transition kernel with P;(s’|s, a) representing the prob-
ability of seeing state s’ after taking action a at state s,
re : SxA — R is the mean reward function with (s, a)
being the average immediate goodness of (s,a) at time
t. Also, d; is denoted as the initial state distribution
and H is the time horizon. The subscript ¢ in P; means
the transition dynamics are non-stationary and could
be different at each time t. A (non-stationary) policy
T:8 — Pﬁl assigns each state s; € S a distribution
over actions at each time ¢, i.e. m(+|s¢) is a probability
simplex with dimension |S].

Given a target policy of interest =, then
the distribution of one H-step trajectory
T = (s1,61,71,...,SH,QH,TH,SH+1) 1S specified

by 7 := (dy,7)? as follows: s; ~ dF, for t = 1,..., H,
a; ~ m¢(+|s¢) and random reward r; has mean r¢(s¢, az).

W ”

"Here PX = PAxP4xPgx...xP4, where “x” represents
Cartesian product and the product is performed for H
times.

2For brevity, Vo we use 7 to denote the pair (di, ).
This can be understood as: Vrr, di = di.
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Then value function under policy 7 is defined as:
H
= ]E-n- |:Z rt:| .
t=1
The OPE problem aims at estimating v™ while given
) te[H]
that n episodic data® D = {( () a,(f ST ))} | are ac-
S
tually coming from a different logging policy .

Existing methods. The classical way to tackle the
problem of OPE relies on incorporating importance
sampling weights (IS), which corrects the mismatch in
the distributions under the behavior policy and target
policy. Specifically, define the t-step importance ratio
as py := mi(ag|st)/ue(ae]se), then it uses the cumulative
importance ratio pi.; := Ht’:l py to create IS based
estimators:

H

> L ~506) o6 i i
i :=ng1<5>, s
i—1 t=1

(),.()
step IS = step 1S pl 't o

where pil) = IT},_ ﬂt/(%)\s >/ut/<at?\s ). There
are different versions of IS estimators including
weighted IS estimators and doubly robust estimators
(Murphy et al., 2001; Hirano et al., 2003; Dudik et al.,
2011; Jiang and Li, 2016).

step IS -

Even though IS-based off-policy evaluation methods
possess a lot of advantages (e.g. unbiasedness), the
variance of the cumulative importance ratios p;.; may
grow exponentially as the horizon goes long. Attempts
to break the barriers of horizon have been tried using
model-based approaches (Liu et al., 2018b; Gottesman
et al., 2019), which builds the whole MDP using either
parametric or nonparametric models for estimating the
value of target policy. (Liu et al., 2018a) considers
breaking the curse of horizon of time-invariant MDPs
by deploying importance sampling on the average vis-
itation distribution of state-action pairs, (Hallak and
Mannor, 2017) considers leveraging the stationary ratio
of state-action pairs to replace the trajectory weights
in an online fashion and (Gelada and Bellemare, 2019)
further applies the same idea in the deep reinforce-
ment learning regime. Recently, (Kallus and Uehara,
2019a,b) propose double reinforcement learning (DRL),
which is based on doubly robust estimator with cross-
fold estimation of g-functions and marginalized density
ratios. It was shown that DRL is asymptotically effi-
cient when both components are estimated at fourth-
root rates, however no finite sample error bounds are
given.

3To distinguish the data from different episodes, we
use superscript to denote which episode they belong to
throughout the rest of the paper.

Our goal. In this paper, our goal is to obtain the
optimality of IS-based methods through marginalized
importance sampling (MIS). As an earlier attempt, Xie
et al. (2019) constructs MIS estimator by aggregating
all trajectories that share the same state transition
patterns to directly estimate the state distribution
shifts after the change of policies from the behavioral
to the target. However, as pointed by Remark 4 in Xie
et al. (2019), the MSE upper bound of MIS estimator is
asymptotically inefficient by a multiplicative factor of
H. Xie et al. (2019) conjectures that the lower bound
is not achievable in their infinite action setting. To
bridge the gap and ultimately achieve the optimality, we
consider the Tabular MDPs, where both the state space
and action space are finite (i.e. S = |S| < 00, A =
|A] < oo) and each state-action pair can be visited
frequently as long as the logging policy i does sufficient
exploration (which corresponds to Assumption 2.2).
Under the Tabular MDP setting, we can show the MSE
upper bound of MIS estimator matches the Cramer-
Rao lower bound provided by Jiang and Li (2016).
To distinguish the difference, throughout the rest of
paper we call the modified MIS estimator Tabular-MIS
(TMIS) and the MIS estimator in Xie et al. (2019)
State-MIS (SMIS).

1.1 Summary of results.

This work considers the problem of off-policy evalua-
tion for a finite horizon, nonstationary, episodic MDP
under tabular MDP setting. We propose and analyze
Tabular-MIS estimator, which closes the gap between
Cramer-Rao lower bound provided by Jiang and Li
(2016) (on the variance of any unbiased estimator for a
simplified setting of an nonstationary episodic MDP)
and the MSE upper bound of State-MIS estimator (Xie
et al., 2019). We also provide a high probability result
by introducing a data-splitting type Tabular-MIS es-
timator, which retains the asymptotic efficiency while
having an exponential tail. To the best of our knowl-
edge, Split-TMIS is the first IS-based estimator in OPE
that achieves asymptotic sample efficiency while having
finite sample guarantees in high probability.

Moreover, the calculation of Tabular-MIS estimator and
Split-TMIS does not explicitly incorporate the impor-
tance weights, which in turn implies our off-policy eval-
uation algorithm can be implemented without needing
to know logging probabilities . Such logging-policy-
free feature makes our Tabular-MIS estimator estimator
more practical in the real-world applications.

Finally, we conduct a numerical simulation in Section 4
to empirically validate our theoretical results. We see
that Tabular-MIS estimator improves over State-MIS
estimator in MSE by a factor of H as expected.
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1.2 Other related work

Markov Decision Processes have a long history of as-
sociated research (Puterman, 1994; Sutton and Barto,
1998), but many theoretical problems in the basic tabu-
lar setting remain an active area of research as of today.
In particular, other than off-policy setting, there are
two types of questions: Regret bound and sample com-
plexity in the online setting and Sample complexity
with a generative model. A detailed discussion can be
found in Section B in appendix.

Our setting is different in two ways compared to those
mentioned above. First, we consider a fixed pair of
logging and target policy x and 7, so our bounds can
depend explicitly on 7 and g instead of S, A. Second,
we do not have either online access to the environment
(to change policies) or a generative model. Our high-
probability bound with a direct union bound argument,
implies a sample complexity of O(H?3S?A/e?) for iden-
tifying the optimal policy, which is suboptimal up to a
factor of S, but notably has the optimal dependence in
H. We remark that achieving the optimal dependence
in the planning horizon H is generally tricky (see, e.g.,
the COLT open problem (Jiang and Agarwal, 2018)
for more details). The current paper is among the few
instances where we know how to obtain the optimal
parameters.

Finally, the tabular RL setting is a basic abstraction
that is relatively far away from real applications, which
might have unobserved states, continuous state, non-
zero Bellman error in the value function approximation.
We leave generalization of the techniques in this paper
to these more practical settings as future work.

2 Method

2.1 Problem description

In addition to the non-stationary, finite horizon tabular
MDP M = (S, A,r,T,dy, H) (where S := |S| < oo and

= |A|] < o), non-stationary logging policy u and
target policy 7 in Section 1, we denote d} (s, a;) and
dT (st, at) the induced joint state-action distribution at
time ¢ and the state distribution counterparts d}'(s;)
and df (s;), satisfying d7 (s¢,a;) = dT(s¢) - W(at|st).4
The initial distributions are identical df = d;.
Moreover, we use PJ; € RS, Vj < i to represent the
state transition probablhty from step j to step ¢ under
policy m, where Py (s'|s) = 3=, Pri1,(s'|s, a)mi(als).
The marginal state distribution vector df (-) satisfies
dif = Pl ydf_y.

For p, df (se,ar) = df (se) - u(ae|se)-

te[H]
Historical data D = {(5§ ),ag ),rg ))}'e[ | was ob-

1e|n
tained by logging policy u and we can only use D to
estimate the value of target policy m, i.e. v™. Suppose
we only assume knowledge about 7w and do not observe
r1(8¢, ar) for any actions other than the noisy immedi-
ate reward rgi) after observing sg ), at . The goal is to
find an estimator to minimize the mean-square error

(MSE):
MSE(m, p, M) = E,,[(7™ — v™)?].

Assumption 2.1 (Bounded rewards). V¢ =1,..., H

andi=1,...,n, 0 < rt(i) < Rpax-

The bounded reward assumption can be relaxed to:
IRmax, 0 < +oo such that 0 < E[r¢|se, a, se41] <
Runax, Var[re|ss, ag, si11) < 0 (as in Xie et al. (2019)),
for achieving Cramer-Rao lower bound. However,
the boundedness will become essential for applying
concentrate inequalities in deriving high probability
bounds.

Assumption 2.2 (Sufficient exploration). Logging pol-
icy p obeys that d, := miny s, d}'(s;) > 0.

In fact this assumption can be relaxed to: require
d}(s¢) > 0 whenever dJ (s;) > 0, and the corresponding
dy, := ming ¢, {d}(s¢) : d}'(s¢) > 0}. However, for the
illustration purpose we stick to the above assumption.
This assumption is always required for the consistency
of off-policy evaluation estimator.

Assumption 2.3 (Bounded weights). 7, =
maxy s, d“Est; < 400 and T, 1= Mmaxys, q, :EZ:E:; <

+00.

Assumption 2.3 is also necessary for discrete state and
actions, as otherwise the second moments of the im-
portance weight would be unbounded and the MSE of
estimators will become intractable . The bound on 7 is
natural since 7, < maxy g, di‘(lm) = mint,stldt“(st) = ﬁ
and it is finite by the Assumption 2.2; similarly, 7, < oo
is also automatically satisfied if ming g, q, p(at|se) > 0.
Finally, as we will see in the results, explicit depen-
dence on 7,7, and d,, only appear in the low-order

terms of the error bound.

2.2 Tabular-MIS estimator

To overcome the barrier caused by cumulative impor-
tance weights in IS type estimators, marginalized im-
portance sampling directly estimates the marginalized
state visitation distribution d; and defines the MIS
estimator:

T (st .
6;1]5_ ZZ ? Aﬂ' )) (1)
t

zltlt

and c/l\i‘() is directly estimated using the empirical

mean, i.e. Jf(st) =135 l(sgi) = ;) := =t whenever
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ns, > 0 and d7 (s;)/d!'(s;) = 0 when n,, = 0. Then
the MIS estimator (1) becomes:

Bhrrs = D > dy (s0)F7 (st) (2)

t=1 s¢

Construction of State-MIS estimator. Based on
the estimated marginal state transition d = P/"d}_,,

State-MIS estimator in Xie et al. (2019) directly esti-
mates the state transition P/ (s¢|s;—1) and state reward
rT(s¢) as:

1 < w(a%st 1)

s N(at 1|5t 1)
(5D, gD @ . 4
((s:21y8:75ay7) = (se—1,8,ar));  (4)

. L~ la’lse) @) 4.0
T (se) = @, At 1(s;” =s1).  (5)
My =7 plag’|se)

P (st]se—1) = ®3)

State-MIS estimator directly constructs state transi-
tions PF(s;|s;—1) without explicitly modeling actions.
Therefore, it is still valid when action space A is un-
bounded. However, importance weights must be explic-
itly utilized for compensating the discrepancy between
pu and 7 and the knowledge of p(als) at each state-
action pair (s, a) is required.

Construction of Tabular-MIS estimator. Alter-
natively, we can go beyond importance weights and

construct empirical estimates for Pyi1(s¢+1]st, atr) and
T1(s¢, ar) as:

S (s, a5 =

Mst,at
n (i) (4) ('L) —
1 =
ﬂ(shat) — i= 1rt [(S;L ’ ) (Stvat)]7
St,0t

(St+1, 8¢, at)]

ﬁt+1(3t+1‘3t7at) =

(6)
where we set Pyi1(St41]8t,a:) = 0 and 7(s¢, a¢) = 0 if
Ng,.a, = 0, with ng, ., the empirical visitation frequency
to state-action (s, a¢) at time t. The corresponding esti-

mation of ﬁt“(st|st_1) and 77 (s¢) are defined as:

ZPt St|St—1, ae—1)m(ar—1|s¢—1),

at—1

E e St,at

In conclusion, by using the same estimator for (ff ,
UTys and 0gyg share the same form of (2). However,
Tabular-MIS estimator constructs a different estimation
of component df though (6)-(7) by leveraging the fact
that each state-action pair is visited frequently under
Tabular setting.

t St|8t 1

71' AT( AT( (7)
at|8t) di = P/di_4.

The motivation of MIS-type estimators comes from
the fact that we have a nonstationary MDP model
and its underlying state marginal transition follows
df = Pl'd{_;. The MIS estimators are then obtained

by using corresponding plug-in estimators for each dif-
ferent components (i.e. df for dF, PT for PF). On the
other hand, IS-type estimators de81gn the value func-
tion in a more straightforward way without needing to
estimate the transition environment (Mahmood et al.,
2014). Therefore in this sense MIS-type estimators are
essentially model-based estimators with the model of
interactive environment M = (S, A,r,T,dy, H).

3 Main Results

We now show that our Tabular-MIS estimator achieves
the asymptotic Cramer-Rao lower bound for DAG-
MDP (Jiang and Li, 2016) and therefore is asymp-
totically sample efficient. To formalize our state-

ment, we pre-specify the following boundary conditions:

ro(s0) = 0, oo(s0,a0) = 0,3‘,{}83; =1, :EZEI:S; 1

m(at|st)
@t pi(atst)

)

Vi1 =0, and, as a reminder, 7, := maxy,,
dy (s¢)

and 7, := max s, AL

Theorem 3.1. Suppose the n episodic historical data
t=1,...,H

D= {(sg ),af),rﬁ”)} is obtained by running a
i=1,...,n

logging policy p and m is the new target policy which

we want to test. If the number of episodes n satisfies

4HT7,Ts
ming s, ,a, di (8¢, ar)’ ming, s, max{d7 (s:),d} (s¢)}

16logn

n>max[

then under Assumption 2.1-2.8 our Tabular-MIS es-
timator Ulyug has the following Mean-Square-Error
upper bound:

P an|s
E[(UTnis — v" %
h 0 sp,ap hiSh
“Var [(Vhﬂ+1(5214).1 (1))‘ () — Sh 7(1;1 ) = ah] (8)

16logn 21 H®
1 e < R A o(le
( + nming s, df(st)> + (n2 ~dm ),

where the value function is defined as: V) (sp) =
Eq {Z,{ih 7}51)‘521) = Sh} , Vhe{l,2,...,H}.

The proof of this theorem, and all the other techni-
cal results we present in this section, are deferred to
the appendix. We summarize the novel ingredients in
the proof in Section 3.1. Before that, we make a few

remarks about this interesting result.
Remark 3.2 (Asymptotic efficiency and local mini-
maxity). The error bound implies that

limy, o0 - E[(0Fys — v7)?]

ZH: (s, al")? Var [V, (s0,) 4 ()
- 7(1) (1))2 ar| Vi41(Sein Ty

S, agw]] .

This exactly matches the CR-lower bound in Jiang and



Ming Yin, Yu-Xiang Wang

Li (2016, Proposition 8) for DAG-MDP°. In contrast,
the State-MIS estimator in (Xie et al., 2019) achieves
an asymptotic MSE of

e[l

=0

d™(si")?
(1)) Var

m(a]si)) om0y
[ pla (1)‘8(1))(%+1(5t+1)+r )
ay t

9)

We note that while in classical literature CR-lower
bound is often used to lower bound the variance of
unbiased estimators, the modern theory of estimation
establishes that it is also the correct asymptotic min-
imax lower bound for the MSE of all estimators in
every local neighborhood of the parameter space (see,
e.g., Van der Vaart, 2000, Chapter 8). In other words,
our results imply that Tabular-MIS estimator is asymp-
totically, locally, uniformly minimax optimal, namely,
optimal for every problem instance separately.

While asymptotically efficient estimators for this prob-
lem in related settings have been proposed in indepen-
dent recent work (Kallus and Uehara, 2019a,b), our
estimator is the first that comes with finite sample
guarantees with an explicit expression on the low-order
terms. Moreover, our estimator demonstrates that dou-
bly robust estimation techniques is not essential for
achieving asymptotic efficiency.

Remark 3.3 (Simplified finite sample error bound).
The theory implies that there is universal constants
C1,Cy such that for all n > C1H —“, i.e., when we
have a just visited every state- action pair for Q(H)
times, E[(0F s — v™)?] = CoH?1o7s R, /1.

In deriving the above remark, we used the somewhat
surprising observation that

+Tt1)‘ )H < H2R2

H

Z EW |:Va1‘ [‘/;11 (81(51+)1 max*
t=1

Note that we are summing H quantities that are po-
tentially on the order of H2R2,,,, yet no additional
factors of H shows up. This observation is folklore
and has been used in deriving tight results for tabular
RL in (e.g., Azar et al., 2017). It can be proven using
the following decomposition of the variance of the em-
pirical mean estimator and the fact it is bounded by
H2R1'21'134X

Lemma 3.4. For any policy m and any MDP.

0,0

+ By [Var [Blr ) + Vi)l af1[s0]] ).

H H
Var, |:Z ril):| = Z (IE7r [Var [rﬁl) + Vﬁl(sgl)
t=1

5Jiang and Li (2016) focused on the special case with
deterministic reward only at ¢t = H. It is straightforward
to show that the above expression is the CR-lower bound
in the general tabular setting.

sgn]] |

The proof, which applies the law-of-total-variance re-
cursively, is deferred to the appendix.

Remark 3.5 (When 7 = p). One surprising observa-
tion is that Tabular-MIS estimator improves the effi-
ciency even for the on-policy evaluation problem when
m = w. In other word, the natural Monte Carlo estima-
tor of the reward in the on-policy evaluation problem is
in fact asymptotically inefficient.

3.1 Building blocks of the analysis

At a high level, the techniques we used, including the
idea of fictitious estimator and peeling the variance
(expectation) of fictitious estimator ©™ from behind by
applying total law of variances (expectations) repeat-
edly, are consistent with Xie et al. (2019).

In addition to the above techniques, we leverage the
fact of frequent state-action visitations in our design
of TMIS estimator and based on that we are able
to achieve an asymptotic lower Mean Square Error
(MSE) bound. The main components are the follow-
ings.

Fictitious Tabular-MIS estimator. Fictitious
Tabular-MIS estimator o7, is a modified version
of V7 g With ﬁ[fH(~|st, at), 77 (s, a) replaced by the
underlying true P7, (-[s¢, a¢), 77 (¢, a;) when the visita-
tion frequency of state-action pair (s, a;) is insufficient
(e.g. ng, a0, < O(ndy (st,at))). Specifically, fictitious
Tabular—MIS estimator v7, ¢ remains every part of
Uy s unchanged except the following:

7 (st,at) = {:t(st’at)

if ng,.a, > ndi (se,a¢)(1—0)

+(st,a:)  otherwise;
(10)
and
5 P, if noy 0, > nd 1-6
Piy1,6(-|st,at) = pht 1 ey b= ndy (st, at)( )
Piy1,: otherwise,

(11)
where 6 is the parameter constrained by 0 < 6 < 1,
which we will choose later in the proof.

This slight modification makes v g no longer imple-
mentable using the logging data D, but it does provide
an unbiased estimator of v™ (Lemma C.5 in appendix)
and, most importantly, it is easier to do theoretical
analysis on 07 g than on 07, ;1. Moreover, Multiplica-
tive Chernoff bound (Lemma A.2 in appendix) helps to
find the connection between vy g and iy g

Peeling arguments using the total law of vari-
ance (expectation). The core idea in analyzing the
variance of v™ is to peel the variance from behind
(start from time H to 1) and the peeling tool we used
here is through marriaging the standard Bellman equa-
tions with the total law of variance. Lemma C.2 (in
appendix) shows this spirit and it is used repeatedly
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throughout the whole analysis. Beyond that, the peel-
ing argument can be used to prove the dependence in H
is only H? for our Tabular-MIS estimator. This result
explicates that H? is enough for TMIS to evaluate a
particular policy and this is different from SMIS, which
in general requires the dependence of H? for off-policy
evaluation.

3.2 A high-probability bound with
data-splitting TMIS.

Tabular-MIS estimator provides the asymptotic opti-
mal variance bound of order O(H?SA/n) and based on
that it is natural to ask the related learning question:
whether TMIS can further achieve a high probability
bound with the same sample complexity? We figure
out that the standard concentration inequalities (e.g.
Hoeffding’s inequality, Bernstein inequality) cannot
be directly applied because of the highly correlated
structures of the Tabular-MIS estimator. To address
this problem we design the following data split ver-
sion of TMIS and as we will see, the original TMIS is
essentially a special case of data-splitting TMIS.

Data splitting Tabular-MIS estimator. Assume
the total number of episodes n can be factorized as
n=M - N, where M, N > 1 are two integers,® and we
can partition the data D into N folds with each fold
DO (¢ =1,...,N) has M different episodes, or in other
words, we split the n episodes evenly. Then by the i.i.d.
nature of n episodes, we have D) D@ DW) are
independent collections.

For each D), we can create a Tabular-MIS estima-
tor 5%\1/[)18 (for notation simplicity we use ﬁ?z’) to de-
note @;g\%s in the future discussions) using its own
M episodes. Then 6?1),6?2),...,56\,) are independent
of each other and we can use the empirical mean to
define the data splitting Tabular-MIS estimatorand the
corresponding fictitious version:

N N

T 1 T ~TC 1 ~TT

Usplit = 77 Z V(s Usplit = 77 Z V(i) (12)
i=1 i=1

where each 5@) is the fictitious estimator of %)'

The data splitting TMIS estimator explicitly charac-
terizes the independence of n different episodes by
grouping them into N chunks. Chunks are indepen-
dent of each other and taking the average over all
%) 1 = 1,..., N will guarantee the validity of using
concentration inequalities.

More importantly, the data splitting TMIS estimator
holds the same information-theoretical variance lower

%In general this might not be true, e.g. if n is prime
number. However, we can resolve it by choosing M =

|n/N].

bound as the non-data splitting TMIS estimator, which
is not surprising since the non-data splitting TMIS es-
timator is just the special case of the data splitting
Tabular-MIS estimator with N = 1. This idea is sum-
marized into the following theorem:

Theorem 3.6. Using n i.i.d. episodic data from a
near-uniform’ logging policy 1 and suppose M, the
number of episodes for each D\, satisfies:

M > max [O(SA - Polylog(S, H, A,n)), O(Ht,7s)],
then the data splitting Tabular-MIS estimator obeys:

H?SA

(T — v7)?] < O(—

)- (13)

Remark 3.7. The condition in Theorem 3.6 is achieve-
able. For example, choose M = \/n, then the condition
holds when n is sufficiently large.

High probability bound. By coupling the data
splitting techniques with the boundedness of Tabular-
MIS estimator (i.e. 0™ < HRmax, 0" < HRpax, see
Lemma C.3 in appendix), we can apply concentration

inequalities to show the difference between 97, and

v™ is bounded by order O(/H?SA/n), which is sum-
marized into the following theorem.

Theorem 3.8. Suppose n i.i.d. episodic historical
data comes from a mnear-uniform logging policy
i and suppose M, the number of episodes in

each DY, satisfies: O(v/n - SA) > M and M >
max [O(SA - Polylog(S, H, A,n,1/0)), O(HT,Ts)].
Then we have with probability 1 — ¢, the data splitting

Tabular-MIS estimator obeys:

H2SA
n

).

[0 — 07| < O(

The proof Theorem 3.8 relies on bounding the difference
between v 1, and v ;, using Multiplicative Chernoff
bound and bounding the difference between v ;; and
v™ using Bernstein inequality. During the process of
bounding [07,;;; — Vl,;;| we observe that a stronger

uniform bound can be derived. In fact, this bound is 0.
We formalize it into the following lemma.

Lemma 3.9. Suppose n i.i.d. episodic historical data

comes from a near-uniform logging policy p and suppose

M, the number of episodes in each D@, satisfies: M >

max [O(SA - Polylog(S, H, A, N,1/6)), O(Hty7s)]. Then
we have with probability 1 — 6,

-~ ~T _
sSup |Usp1it - vsplit' =0
wel]

Since n = N - M, therefore let N =1, M =n, then if
M > max [O(SA - Polylog(S, H, A,1/6)), O(Ha7s)],

"Near-uniform here means: ming s, o, di (s¢,a:) >

Q(1/(54)).
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sup [0Tyis — Vpws| = 0

mel]
holds with probability 1 — §, where [| consists of all the
H -step nonstationary policies.
Remark 3.10. The uniform difference bound between
Vlas ond Uys s obtained by observing the construc-
tion of fictitious estimator (10) and (11) are indepen-
dent of the specific target policy w. This result tells the
SUP ey [0Tas — Vinrs| can be arbitrarily small with
high probability and therefore does not depend on H
factor. This fact will help us to derive the correct de-
pendence in H for uniform convergence problem, see
Section 5

Algorithm 1 Tabular MIS Off-Policy Evaluation

Input: Logging data D = {{s(z) a,E”, (i)}le}?:l
from the behavior policy p. A target policy =«
which we want to evaluate its cumulative reward.

1: Calculate the on-policy estimation of initial distri-
bution di(-) by di(s) := 237", l(sgl) = s), and
set dY(+) :=d1(+), dT(s) :=dq ().

2: fort=23,...,H do
3: Choose all transition data at time step t,
(Dyn

{St 7at 7Tt i=1"
4:  Calculate the on-policy estimation of d'(-) by

di(s) == L0 1si” = 9).
5:  Set the off-policy estimation of Py(s¢|s¢—1,a1—1):
Pt(st‘st 1, Qt— 1)

_Z?:ll[(st 7a§l)1a (1)1)

(Styst 1, t— 1)]

nSt—l,at—l

when ng, | 4, , > 0. Otherwise set it to be zero.

6: Estimate the reward function

Z? 17"t(1) 1(s Ei) = Staagi) = at)
S (s = 50,0l = ay)

when ng, o, > 0. Otherwise set it to be zero.
7 Set &\?() according to df = Pr A?_l, with Pf de-
fined according to (7). Also, set 77 () according
to (7).
8: end for
9: Substitute the all estimated values above into (1)
to obtain ©7, the estimated value of 7.

;"\t(St, at) =

3.3 Some interpretations.

Logging policy free algorithm. We point out the
implementation of Tabular-MIS estimator does not
require the knowledge of logging policy pu, as shown

in Algorithm 1,2.% This is critical in the sense that in
the real-world sequential decision making problems, it
is very likely the complete information about logging
policy is not provided. This may happen due to mis-
records or the lack of maintainance. By only using the
historical data, tabular MIS off-policy evaluation is able
to achieve the asymptotic efficiency. In contrast, the
state MIS estimator always requires the full information
about the logging policy.

Connection to approximate MDP estimation.
Our TMIS is essentially an approximate MDP esti-
mator (with the non-stationary dynamic transitions P,
estimated by mazimum likelihood estimator (MLE))
except that we marginalize out the action in both
77 (s) and df (s) and provide an importance sampling
interpretation. To the best of our knowledge, existing
analysis of the fully model-based approach does not
provide tight bounds. We give two examples. The
seminal simulation lemma in Kearns and Singh (2002)
together with a naive concentration-type analysis gives
only an O(/H*S3A/n) bound in our setting. In a very
recent compilation of improvements over this bound
(J1ang, 2018), this bound can be improved to either
O(/H%S?A/n) or O(/HS5SA/n). Our result is the
first that achieves the optimal O(y/H2SA/n) rate re-
gardless of whether it is the model-based or model-free
approach.

4 Experiments

In this section, we present some empirical studies to
demonstrate that our main theoretical results about
Tabular-MIS estimator in Theorem 3.1 are empirically
verified.

Relative RMSE
"

Relative RMSE

00 107 0 107 102 i
Episode n Horizon H

(a) Different Episode n (b) Different Horizon H

Figure 1: Relative RMSE (vVMSE/v™) on Non-
stationary Non-mixing MDP

Time-varying, non-mixing Tabular MDP. We
test our approach in simulated MDP environment
where both the states and the actions are binary.
Concretely, there are two states sy and s; and two
actions a; and ay. State sg always has probability

8 Algorithm 2 is deferred to appendix due to space con-
straint.
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1 going back to itself, regardless of the actions, i.e.
Pi(s0|80,a1) = 1 and Pi(sglsg,a2) = 1. For state
s1, at each time step there is one action (we call
it a) that has probability 2/H going to sg and the
other action (we call it a’) has probability 1 going
back to sy, i.e. Pi(so|s1,a) = 2/H =1 — Py(s1]s1,a)
and Pi(s1|s1,a’) = 1. Moreover, which action will
make state s; go to state so with probability 2/H
is decided by a random parameter p; € [0,1]. If
pr < 0.5, a = ay and if p, > 0.5, a = az. One
can receive reward 1 at each time step if t > H/2
and is in state sg, and will receive reward 0 other-
wise. Lastly, for state sg, we set u(:|sg) = 7(-|s0);
for state s1, we set p(ails1) = u(az|s1) = 1/2 and
m(ai|s1) = 1/4 =1 — w(az|s1).

Figure 1(a) shows the asymptotic convergence rates of
relative RMSE with respect to the number of episodes,
given fixed horizon H = 100. Both SMIS and TMIS
has a O(1/y/n) convergence rate. The saving of vV H
of TMIS over SMIS in this log-log plot is reflected in
the intercept. Figure 1(b) has fixed n = 1024 with
varying horizon H. Note since v™ ~ O(H), therefore
for TMIS our theoretical result implies vVMSE/v™ =
O(V/H?/H) = O(1), which is consistent with the hor-
izontal line when H is large. Moreover, for SMIS
VMSE/v™ = O(VH3/H) = O(VH), so after taking
the log(-) we should have asymptotic linear trend with
coefficient 1/2. The red line in Figure 1(b) empirically
verifies this result. More empirical study discussions
are deferred to Appendix E.

5 Discussion

From off-policy evaluation to offline learning. A
real offline reinforcement learning system is equipped
with both offline learning algorithms and off-policy
evaluation algorithms. The decision maker should first
run the offline learning algorithm to find a near optimal
policy and then use off-policy evaluation methods to
check if the obtained policy is good enough. Under
our tabular MDP setting, we point out it is possible
to find a e-optimal policy in near optimal time and
sample complexity O(H3SA/e?)using the Q-value iter-
ation (QVI) based algorithm designed by Sidford et al.
(2018). Their QVI algorithm assumes a generative
model which can provide independent sample of the
next state s’ given any current state-action (s,a). At
a first glance, this assumption seems too strong for
offline learning since we cannot force the agent to stay
in any arbitrary location. In fact, the Assumption 2.2
on u actually reveals that the underlying logging policy
can be considered as the surrogate of the generative
model. As n goes large, the visitation frequency of any
(s¢,a) will be large enough with high probability, as
guaranteed by Multiplicative Chernoff bound.

From off-policy evaluation to uniform off-policy
evaluation. The high probability result achieves
O(\/H2SA/n) complexity. Following this discovery
line, then it is natural to ask whether uniform conver-
gence over a class of policies (e.g. all deterministic
policies) can be achieved with optimal sample complex-
ity. This problem is interesting since it will guarantee
the strong performance of off-policy evaluation meth-
ods over all policies in certain policy class [[. By a
direct application of union bound, we can obtain the

following result:

Theorem 5.1. Let [ contains all the deterministic
H-step policies. Then under the same condition as
Theorem 3.8, the data splitting Tabular-MIS estimator
satisfies:

H3S5%2A
n

),

sup [0, — 0" < O(
wel]

with probability 1 — 4.

The uniform convergence bound implies that the em-

.. .2 e _
pirical best policy 7 = argmax, vZ,;, is within € =

O(4/ %) of the optimal policy. This matches the
sample complexity lower bound for learning the opti-

mal policy (Azar et al., 2013) in all parameters except
a factor of §.

Open problem: 1. H? vs H? in the infinite A
setting. Finally, we note that the conjecture posed
by Xie et al. (2019) remains unsolved. In the infinite
A case, we can never observe any (s,a) pairs more
than once, hence not able to estimate the transition
dynamics or the expected reward. The minimax lower
bound in (Wang et al., 2017) (for the contextual bandit
setting) already establishes that the Cramer-Rao lower
bound is not achievable in this setting even if H =1
and S = 1. It remains open whether H? is required.
2. Better dependence for stationary transition
case. We conjecture the dependence of H? can be
further reduced in the stationary transition case. Our
current analysis cannot further reduce the dependence
for stationary transition setting.

6 Conclusion

In this paper, we propose a new marginalized impor-
tance sampling estimator for the off-policy evaluation
(OPE) problem under the episodic tabular setting. We
show that the estimator is has a finite sample error
bound that matches the exact Cramer-Rao lower bound
up to low-order factors. We also provide an exten-
sion with high probability error bound. To the best
of our knowledge, these results are the first of their
kinds. Future work includes resolving the open prob-
lems mentioned before and generalizing the results to
more practical settings.
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