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Abstract

In the setting of entangled single-sample dis-
tributions, the goal is to estimate some com-
mon parameter shared by a family of distri-
butions, given one single sample from each
distribution. We study mean estimation and
linear regression under general conditions,
and analyze a simple and computationally ef-
ficient method based on iteratively trimming
samples and re-estimating the parameter on
the trimmed sample set. We show that the
method in logarithmic iterations outputs an
estimation whose error only depends on the
noise level of the [an]-th noisiest data point
where « is a constant and n is the sample
size. This means it can tolerate a constant
fraction of high-noise points. These are the
first such results under our general conditions
with computationally efficient estimators. It
also justifies the wide application and empir-
ical success of iterative trimming in practice.
Our theoretical results are complemented by
experiments on synthetic data.

1 INTRODUCTION

This work considers the novel parameter estimation
setting called entangled single-sample distributions.
Different from the typical i.i.d. setting, here we have
n data points that are independent, but each is from
a different distribution. These distributions are en-
tangled in the sense that they share some common
parameter, and our goal is to estimate the common
parameter. For example, in the problem of mean es-
timation for entangled single-sample distributions, we
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have n data points from n different distributions with
a common mean but different variances (the mean and
all the variances are unknown), and our goal is to es-
timate the mean.

This setting is motivated for both theoretical and prac-
tical reasons. From the theoretical perspective, it goes
beyond the typical i.i.d. setting and raises many inter-
esting open questions, even on basic topics like mean
estimation for Gaussians. It can also be viewed as
a generalization of the traditional mixture modeling,
since the number of distinct mixture components can
grow with the number of samples. From the practical
perspective, many modern applications have various
forms of heterogeneity, for which the i.i.d. assumption
can lead to bad modeling of their data. The entan-
gled single-sample setting provides potentially better
modeling. This is particularly the case for applications
where we have no control over the noise levels of the
samples. For example, the images taken by self-driving
cars can have varying degrees of noise due to chang-
ing weather or lighting conditions. Similarly, signals
collected from sensors on the Internet of Things can
come with interferences from a changing environment.

Though theoretically interesting and practically im-
portant, few studies exist in this setting. Chierichetti
et al. (2014) considered the mean estimation for en-
tangled Gaussians and showed the existence of a gap
between estimation error rates of the best possible es-
timator in this setting and the maximum likelihood
estimator when the variances are known. Pensia et al.
(2019) considered means estimation for symmetric,
unimodal distributions including the symmetric mul-
tivariate case (i.e., the distributions are radially sym-
metric) with sharpened bounds, and provided exten-
sive discussion on the performance of their estimators
in different configurations of the variances. These ex-
isting results focus on specific family of distributions or
focus on the case where most samples are “high-noise”
points.

On the contrary, we focus on the case with a constant
fraction of ”high-noise” points, which is more inter-
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esting in practice. We study multivariate mean esti-
mation and linear regression under more general con-
ditions and analyze a simple and efficient estimator
based on iterative trimming. The iterative trimming
idea is simple: the algorithm keeps an iterate and re-
peatedly refines it; each time it trims a fraction of bad
points based on the current iterate and then uses the
trimmed sample set to compute the next iterate. It
is computationally very eflicient and widely used in
practice as a heuristic for handling noisy data. It can
also be viewed as an alternating-update version of the
classic trimmed estimator (e.g., Huber (2011)) which
typically takes exponential time:

6 = arg min
0€0;5C[nl,|S|=Tan]

Loss;(0)
i€S

where © is the feasible set for the parameter 6 to be
estimated, [an] is the size of the trimmed sample set
S, and Loss;(#) is the loss of 6 on the i-th data point
(e.g., {5 error for linear regression).

For mean estimation, only assuming the distributions
have a common mean and bounded covariances, we
show that the iterative trimming method in logarith-
mic iterations outputs a solution whose error only de-
pends on the noise level of the [an]-th noisiest point
for « > 4/5. More precisely, the error only depends on
the [an]-th largest value among all the norms of the
n covariance matrices. This means the method can
tolerate a 1/5 fraction of “high-noise” points. We also
provide a similar result for linear regression, under a
regularity condition that the explanatory variables are
sufficiently spread out in different directions (satisfied
by typical distributions like Gaussians). As far as we
know, these are the first such results of iterative trim-
ming under our general conditions in the entangled
single-sample distributions setting. These results also
theoretically justify the wide application and empir-
ical success of the simple iterative trimming method
in practice. Experiments on synthetic data provide
positive support for our analysis.

2 RELATED WORK

Entangled distributions. This setting is first stud-
ied by Chierichetti et al. (2014), which considered
mean estimation for entangled Gaussians and pre-
sented a algorithm combining the k-median and the
k-shortest gap algorithms. It also showed the exis-
tence of a gap between the error rates of the best pos-
sible estimator in this setting and the maximum likeli-
hood estimator when the variances are known. Pensia
et al. (2019) considered a more general class of distri-
butions (unimodal and symmetric) and provided anal-
ysis on both individual estimator (r-modal interval,

k-shortest gap, k-median estimators) and hybrid esti-
mator, which combines Median estimator with Short-
est Gap or Modal Interval estimator. They also dis-
cussed slight relaxation of the symmetry assumption
and provided extensions to linear regression. Our work
considers mean estimation and linear regression under
more general conditions and analyzes a simpler estima-
tor. However, our results are not directly comparable
to the existing ones above, since those focus on the
case where most of the points have high noise or have
extra constraints on distributions are assumed. For
the constrained distributions, our results are weaker
than the existing ones. See the detailed discussion in
the remarks after our theorems.

This setting is also closely related to robust estimation,
which have been extensively studied in the literature
of both classic statistics and machine learning theory.

Robust mean estimation. There are several classes
of data distribution models for robust mean estima-
tors. The most commonly addressed is adversarial
contamination model, whose origin can be traced back
to the malicious noise model by Valiant (1985) and the
contamination model by Huber (2011). Under contam-
ination, mean estimation has been investigated in Di-
akonikolas et al. (2017, 2019a); Cheng et al. (2019).
Another related model is the mixture of distributions.
There has been steady progress in algorithms for lean-
ing mixtures, in particular, leaning Gaussian mixtures.
Starting from Dasgupta (1999), a rich collection of re-
sults are provided in many studies, such as Sanjeev
and Kannan (2001); Achlioptas and McSherry (2005);
Kannan et al. (2005); Belkin and Sinha (2010a,b);
Kalai et al. (2010); Moitra and Valiant (2010); Di-
akonikolas et al. (2018a).

Robust regression. Robust Least Squares Regres-
sion (RLSR) addresses the problem of learning regres-
sion coefficients in the presence of corruptions in the
response vector. A class of robust regression estimator
solving RLSR is Least Trimmed Square (LTS) estima-
tor, which is first introduced by Rousseeuw (1984) and
has high breakdown point. The algorithm solutions of
LTS are investigated in Hossjer (1995); Rousseeuw and
Van Driessen (2006); Shen et al. (2013) for the linear
regression setting. Recently, for robust linear regres-
sion in the adversarial setting (i.e., a small fraction
of responses are replaced by adversarial values), there
is a line of work providing algorithms with theoretical
guarantees following the idea of LTS, e.g., Bhatia et al.
(2015); Vainsencher et al. (2017); Yang et al. (2018) for
example. For robust linear regression in the adversary
setting where both explanatory and response variables
can be replaced by adversarial values, a line of work
provided algorithms and guarantees, e.g., Diakoniko-
las et al. (2018b); Prasad et al. (2018); Klivans et al.
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(2018); Shen and Sanghavi (2019), while some others
like Chen et al. (2013); Balakrishnan et al. (2017); Liu
et al. (2018) considered the high-dimensional scenario.

3 MEAN ESTIMATION

Suppose we have n independent samples z; ~ F; € R,
d € N*, where the mean vector and the covariance ma-
trix of each distribution F; exist. Assume Fj’s have a
common mean pu* and denote their covariance matri-
ces as >;. When d = 1, each x; degenerate to an
univariate random variable x;, and we also write p*
as p* and write 3; as 0. Our goal is to estimate the
common mean p*.

Notations For an integer m, [m] denotes the set
{1,---,m}. |S| is the cardinality of a set S. For
two sets Sp,S2, S1\S2 is the set of elements in S
but not in Ss. Apin and Apax are the minimum and
maximum eigenvalues. Denote the order statistics of
{Amax(Zi)} i, as {)\(i)}?:l' c or C denote constants
whose values can vary from line to line.

3.1 TIterative Trimmed Mean Algorithm

First, recall the general version of the least trimmed
loss estimator. Let f, (-) be the loss function, given
currently learned parameter p. In contrast to mini-
mizing the total loss of all samples, the least trimmed
loss estimator of p* is given by

AT = argmin 37 f (@), (1)

p,S:|S|=lan] 5%

where S C [n] and a € (0, 1] is the fraction of samples
we want to fit. Finding ﬂ(TL) requires minimizing the
trimmed loss over both the set of all subsets S with
size [an] and the set of all available values of the pa-
rameter pu. However, solving the minimization above
is hard in general. Therefore, we attempt to minimize
the trimmed loss in an iterative way by alternating be-
tween minimizing over S and p. That is, it follows a
natural iterative strategy: in the ¢-th iteration, first
select a subset S; of samples with the least loss on
the current parameter p,, and then update to p,, ; by
minimizing the total loss over Sj.

By taking f, (z) in (1) as |z — u||§7 in each iteration,
[an] samples are selected due to their least distance

to the current p in I3 norm. Besides, note that for a
given sample set S,

) 2 1
argmin y _ [la; — p3 = 5] >z
Ko es ies

that is, the parameter pu minimizing the total loss over
sample set S is the empirical mean over S. This leads

Algorithm 1 Iterative Trimmed MEAN (ITM)

Input: Samples {x;};_, , number of rounds T, frac-
tion of samples «

L g ¢ 5 i

2: fort=0,---,T—1do

3:  Choose samples with smallest current loss:

Se+ argmin Y @ — 3
S:[S|=[an] jcg

1
4 e = 15 Ziest T
5: end for
Output: pp

to our method described in Algorithm 1, which we
referred to as Iterative Trimmed Mean.

Each update in our algorithm is similar to the
trimmed-mean (or truncated-mean) estimator, which
is, in univariate case, defined by removing a fraction of
the sample consisting of the largest and smallest points
and averaging over the rest; see Tukey and McLaughlin
(1963); Huber (2011); Bickel et al. (1965). A natural
generalization to multivariate case is to remove a frac-
tion of the sample consisting of points which have the
largest distances to u*. The difference between our al-
gorithm and the generalized trimmed-mean estimator
is that ours select points based on the estimated pu,
while trimmed-mean is based on the ground-truth p*.

3.2 Theoretical Guarantees

Firstly, we introduce a lemma giving an upper bound
of the sum of /5 distances between points x; and mean
vector p* over a sample set S.

Lemma 1. Define \g = max;es {Amax(Z:)}. Then
we have
Dl — ptll, < 21|V Asd (2)
€S
with probability at least 1 — ST

Proof. For each i € S, denote the transformed ran-
_1

dom vector X, ? (x; — u*) as &;. Then &; has mean 0

and identical covariance matrix. Since ||z; — p*||, =

\/M < Vs ||Zi]|5, we can write
> llzi = wtlly < VAs Y @il -

€S €S

Let & = ||&i]l,, thus {{;},cg are independent and for
any ¢ € S, it holds that

B¢ < (/B2 =Vd, Var(¢) <EE =d.
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By Chebyshev’s inequality, we have

(Zgzzmshﬁ) =

€S

which completes the proof. l

We are now ready to prove our key lemma, which
shows the progress of each iteration of the algorithm.
The key idea is that the selected subset S; of samples
have a large overlap with the subset S* of the [an]
“good” points with smallest covariance. Furthermore,
S:\S* is not that “bad” since by the selection criterion,
they have less loss on p, than the points in S*\S;. This
thus allows to show the progress.

Lemma 2. Given ITM with fraction o > %

1
HHtH_H*HQ < §||Nt_ﬂ*||2+2\/m (3)

with probability at least 1 — 2

4n
Proof. Define S* = {z S Amax(2i) < /\(MM)}' With-
out loss of generality, assume an is an integer. Then
by the algorithm,

Zwl u*+$2(:ci—u*).

IES 1€y

=, we have

Hiv1 =

Therefore, the /5 distance between the learned param-
eter p,,; and the ground truth parameter p* can be
bound by:

1
B — w7, = an Z (@ —p7)
1€S 2
1
<Y jeewlht Y -l
1€S:NS* 1€S5:\S*
A .
< . _
s = lpe—nll,

1 *
+% Z lzi — [y + Z lz: — 1l

1€S*NSy 1€S*\St
205\ 5| 1
< 2P\ L % - Lk
< PO S ol
N—— i€S*

K

where the second inequality is guaranteed by line 3
in Algorithm 1. Note that |S*| = an = |S|, thus
[S*\S¢| = |S:\S*|. Due to the choice of |S¢|, we have
the distance ||&; — ||, of each sample in S;\S* is less
than that of samples in S*\S;.

1 ZzeS* lz:i — p*|l, by
dA([an7) With probability at least 1 — i. Mean-

Whlle by |S*| = |S:| = an, it guarantees |St\S*\ <

By Lemma 1, we can bound

(1 — a)n. Thus, when a > £, & < @ < 1. Com-
bining the inequalities completes the proof. W

Based the error bound per-round in Lemma 2, it is
easy to show that ||, — p*||, can be upper bounded
by ©(\/dA(ran)) after sufficient iterations. This leads
to our final guarantee.

Theorem 1. Given ITM with o« > % within T =

C) (log2 “"0_%) iterations, it holds that

e — 1"y < ey/dA(fan) (4)

with probability at least 1 — —.

Proof. By Lemma 2, we derive

1
Iz = 1llz < 5 Iy = 7], + 24/ dA(an)
T-1 1
Wl +2 D oy /A fan)
i=0

1
< o7 ko = #7ll2 +4y/dA(ran)
< ¢y/dA(fan)

least 1 — % when T =

1
or 1o —

A

with probability at

llpso—pe" |l
) (log2 m) ]

The theorem shows that the error bound only depends
on the order statistics A(fqan1), irrelevant of the larger
covariances for @ > 4/5. Therefore, using the iterative
trimming method, the magnitudes of a 1/5 fraction of
highest noises will not affect the quality of the final
solution. However, it is still an open question whether

the bound can be made c¢y/dX([an1)/n, i-€., the optimal
rate given an oracle that knows the covariances.

The method is also computationally very simple and
efficient. Since a single iteration of ITM takes time
O(nd), O( dX([an])) error can be computed in O(nd)
time, which is nearly linear in the input size.

Remark 1. With a further assumption that x; are in-
dependently sampled from the Gaussians N (u*,Y;),
the same bound in the theorem holds with prob-
ability converging to 1 with exponential rate of
n. This is because (2) can be guaranteed with
a higher probability. The sketch of the proof fol-
lows: (Yeq lli — wll,)* < [SIAs Xyes llZ:3, by
Cauchy-Schwarz inequality. Here &; ~ N (0, 1)
due to the Gaussian distribution of x;. By the
Lemma 3 in Fan and Lv (2008), Y, ¢ @il <

cd|S| with probability at least 1 — e~ Hence,
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P ((Zies 2 — p]|,)” < cd|S|2AS) > 1 — e=cdls|,
where ¢ can be any constant greater than 1 and
d =lc—1-1log(c)]/2.

Remark 2. For the univariate case with d = 1, it
is sufficient to regard ¥; as one dimensional matrix

o?. Then we obtain that when o > % and T =

S) <log2 %) iterations: ||ur — p*|ly < co(fan)
with probability at least 1 — %.

Remark 3. It is worth mentioning that there is a trade
off between the accuracy and running time in I'TM. In
particular, the constant o can be any constant greater
than %, since it suffices to guarantee x in the proof of
Lemma 2 is less than 1. On the other hand, a smaller
a will slow down the speed for ||, — p*||, to shrink,
although the computational complexity is still in the
same order of O(nd).

Remark 4. We now discuss existing results in detail.

In the univariate case, Chierichetti et al. (2014)
achieved minggkglogn@(n1/2(1+1/(’“_1))ak) error in
time O(nlog?n). Among all estimators studied
in Pensia et al. (2019), the superior performance is
obtained by the hybrid estimators, which includes ver-
sion (1): combining kj-median with ko-shorth and
version (2): combining kj-median with modal in-
terval estimator. These two versions achieve sim-
ilar guarantees while version 1 has lower run time
O(nlogn). Version 1 of the hybrid estimator out-

N . 1y/ml
puts fix, k, such that |fig, g, —pul < %

T2k,
with probability 1 — 2exp(—c’ky) — 2exp(—clog? n),
where k; = y/nlogn and ks > Clogn. Since here
ry, is defined as inf {r: 231" P(|lz; — p*| <r) > £}
the error bound giving above varies with specific
{F;}!_,, while the worst-case error guarantee is

O(V1no(c1ogn)). When take ky = [O‘Q"], the error can

be O(b%o([an])). However, this result for symmetric

and unimodal distributions Fj’s.

In the multivariate case, Chierichetti et al. (2014)
studied the special case where x; ~ N(w,0214)
and provided an algorithm with the error bound
mins<k<iogn ) (n(1+1/(k’1))/dok) in time @(nQ) Pen-
sia et al. (2019) mainly considered the special case
where the overall mixture distribution is radically sym-
metric, and sharpens the bound above, resulting in the
worst-case error bound C’)(\/&\/ﬁl/da(&l logn))- Pensia
et al. (2019) also provided computationally efficient
estimator with running time O(n?d).

These existing results depend on o (¢ 10g ) (or alike) at
the expense of an additional factor of roughly \/ﬁl/ d,
which is most relevant when C'logn of the points have

small noises, i.e., when the samples are dominated by

high noises. Our results depend on o4y (0r \/A(fanT)
for multivariate) for o > 4/5, which is more relevant

when 1/5 fraction of the points have high noises. We
believe our bounds are more applicable for many prac-
tical scenarios. Finally, for the multivariante case, our
result holds under more general assumptions and the
method is significantly simpler and more efficient.

4 LINEAR REGRESSION

Given observations {(z;,y;)}._, from the linear model

yi=x B +e, V1<i<n, (5)

our goal is to estimate 3*. Here {¢;},—, are inde-
pendently distributed with expectation 0 and vari-
ances {07}, and {x;}]_, are independent with {e;}}_,
and satisfy some regularity conditions described be-

low. Denote the stack matrix (z7,---,21)T as X,

the noise vector (eq,--- ,en)T as € and the response
T

vector (Y1, ,yn)  asy.

Assumption 1. Assume ||x;||2 =1 for all i. Define

“(k) = min Apin (X5 X5s),
O7(k) = oin Amin (X5 Xs)
where Xg is the submatriz of X consisting of rows in-
dezed by S C [n]. Assume that for k = Q(n), v~ (k) >
k/cy for a constant ¢; > 0.

Remark 5. ||x;]|2 = 1 is assumed without loss of gen-
erality, as we can always normalize (x;,y;), without
affecting the assumption on ¢;’'s. The assumption on
¥~ (k) states that every large enough subset of X is
well conditioned, and has been used in previous work,
e.g., Bhatia et al. (2015); Shen and Sanghavi (2019).
It is worth mentioning that the uniformity over S as-
sumed is not for convenience but for necessity since the
covariances of samples are unknown. Still, the assump-
tion holds under several common settings in practice.
For example, by Theorem 17 in Bhatia et al. (2015),
this regularity is guaranteed for c¢; close to 1 w.h.p.
when the rows of X are i.i.d. spherical Gaussian vec-
tors and n is sufficiently large.

Remark 6. In our setting, the noise terms are indepen-
dent but not necessarily identically distributed. It is
also referred to as heteroscedasticity in linear regres-
sion by Rao (1970) and Horn et al. (1975).

4.1 Iterative Trimmed Squares Minimization

We now apply iterative trimming to linear regres-
sion. The first step is to use the square loss, i.e.
let fa(wi,y;) = (vi — a:iTﬂ)2, then the form of the
trimmed loss estimator turns to

3" S (wi-27B8)°. ()

= argmin
B,5:|S|=[an] ;cg
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Algorithm 2 Iterative Trimmed Squares Minimiza-
tion (ITSM)
Input: Samples {(x;,y;)};_, , number of rounds T,
fraction of samples «
~ (LS)
2: fort=0,---,T—1do
3:  Choose samples with smallest current loss:

S+ argmin (yl — w;-rﬁt)Q

S:|S|=[an]

€S
- (LS)
4 By = Bg,
5: end for
Output: 31

Such B(TL) is first introduced by Rousseeuw (1984) as
least trimmed squares estimator and its statistical ef-
ficiency has been studied in previous literature. How-
ever, the principal shortcoming is also its high com-
putational complexity; see, e.g., Mount et al. (2014).
Hence, we again use iterative trimming. Let

(L

85" —argmin 3 (i 2/ B)’

€S

which is the least square estimator obtained by the
sample set S. When S = [n], we omit the subscript

~ (LS
S and write it as ﬁ( ). The resulting algorithm is
called Iterative Trimmed Squares Minimization and
described in Algorithm 2.

4.2 Theoretical Guarantees

The key idea for the analysis is similar to that for
mean estimation: the selected set S has sufficiently
large overlap with the set S* of [an] “good” points
with smallest noises, while the points in S\S* are not
that “bad” by the selection criterion. Therefore, the
algorithm makes progress in each iteration.

Lemma 3. Under Assumption 1, given ITSM o >

with probability at least 1 — 1;;‘1121, we have

401
1+4cq’
1
1Bi1 =87l < 518 = B7ll2 + 2¢10(anty. (1)

Proof. First we introduce some notations. Define

k) = max (X3 X
Uk = gmax, Amax (X5 Xs)

where Xg is the submatrix of X consisting of rows
indexed by S. Note that (k) < k, since for any S
of size k, by [|@ill, = 1, Amax (X& Xs) is bounded by

Tr (X5 Xs) = Tr (XsXZ) = a2 = .
i€S

Denote W; as the diagonal matrix where W, ;; = 1 if
the i-th sample is in set S, otherwise W ;; = 0. Let
S* be a subset of {i : 0; < 0([an])} With size [an] and
denote W* as the diagonal matrix w.r.t. S*.

Under Assumption 1, th Xs, = XTW, X is nonsingu-

lar, so we have B,,; = (XTVVtX)_1 XTW,y, where
we have used W2 = W;. Then

Bi =B+ (XTWiX) " XTWie
= B8+ (XTW,X) " XTW, (I — W*)e + We).
Therefore, the error can be bounded by:

Hﬁt+1 - /B*HQ
= xTwix) T XT W = we+ wawre) |

XL = WHell, + | X W], |

T T2

<
~ ¢~ (Jan])

where we use the spectral norm inequality and triangle
inequality and the fact that Tr(W;) = [an]. In the
following, we bound the two terms 77 and 7.

First, 77 can be bounded as:

Ti= || XTW(I - W)ell,
<[ XTWi(I - WX (B, - B,
+ [ XTW (T = W) (y — X8|,
<YH(ISAS* D 18, — Bl
+ | XTWI = W) (y - XB,)],

since Tr((I — W*)Wy) = |S:\S*|.

By the fact that |S;\S*| = |S*\\S;|, there exists a bi-
jection between S;\S* and S*\S;. Denote the image
of i € S{\S* as k;. Since the loss (y; — ] 3,)? of sam-
ple in S;\S™* is less than that of sample in S*\S;, we
have |y1 fa:iT,Bt} < |yki fazflﬂt| for any i € S;\S*.
Hence we can write

| XTW(I - W*)(y — XB,)],

= Z (yi — w;fﬁt)wz

iGSt\S* 2

< (Y, — . B,

>~ n; (yk‘l wk‘ilgt)a:l
1€S:\S* 2

< Z n;€g, ;|| + Z nimi:nkiT(/Bt - /6*)
i€S\S* 9 1€St\S* 2

where n; is either 1 or —1.
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By the assumption that |lx;||, =1,

E Ni€k; Tg

1€ESL\S*

< Z |6k7i

1€S:\S*

= > lal

9 1€S5*\ St

Meanwhile,

Z mﬂnﬂlkiT(ﬂt - 5*)

1€St\S*

< Smax ° Hﬁt - /3*||2 :

2

where Smax := Smax (Zz‘esf\s* nixiwkiT> denotes the

maximum singular value and is bounded as follows.
Claim 1. spax < 91 (|S:\S*]).

Proof. The proof is implicit in the proof for Theorem 7
in Shen and Sanghavi (2019). With matrix notations,
D ics\s* nix;x,’ can be then written as XTW, (I —
W*)NPX, where N is diagonal with diagonal entries
in {1,—1} and P is some permutation matrix. Then

u' XTW, (I - W*)NPXuw.

Smax — m
lull2=1,[[v]=1

Let © = Xu and v = Xv, spax is bounded by
Sl <max{ Y @2, Y @)
1€ESL\S* 1€ESL\S* i€S\S*

for some sequences {r;} and {¢t;}. So smax is bounded
by the larger of the maximum singular values of

XTW,(I — W)X and XTPTNTW,(I — W*)NPX,
which is bounded by ¥ (|S:\S*[). B

With this claim, we can derive

Ti< Y lal+ 207 (1SAS* ) IB" = Bull, -

i€S*\ St

Next, 72 can be bounded as:

E €%,

1€S¢NS*

75:

< Z €] -

2 1€SNS*

Combining the inequalities above, we have

. 1
18" = Blly = =

(Tan]y 1+ 72)

1 ot e
<Wﬂmm<ggzuaw0&wwua mm)
_ 207 (5\S") Sies: i

o~ (an]) o= (fan])
—_———

K

18" = Bl +

By assumption, there+ exist a constant c; such that
7w_ﬁzn]) < ¢; and 7¢w£|5"a\%)‘) < e - 7@251 |, With-
out loss of generality, assume an is an integer. Since
[S:\S*| < (1—a)n, when o > 1iilq’ k<2022 <L
And ), . |€i] is bounded by 2[S*|o(1an1) With prob-
ability at least 1 — Gk using Markov’s inequality. ll

1

Theorem 2. Under Assumption 1, given ITSM with

1 _ 188"l
o> i and T = © (logy 12=2012) it hotds that

1B = B%[ly < cc10(jan)) (8)

with probability at least 1 — T3

4cin

Proof. 1t follows from Lemma 3 by an argument simi-
lar to that for Theorem 1. W

Remark 7. When «x;’s are i.i.d. spherical Gaussians,
Assumption 1 can be satisfied with ¢y close to 1. Then
we require @ > 4/5 and the error bound holds with
probability > 1 — 5T/(4n), similar to that for mean
estimation. Also, (8) is obtained without extra as-
sumption on noise ¢; except for assuming its second
order moment exists. If ¢; ~ N(0,0?), the previous
bound holds with a higher probability 1 — e,

Remark 8. We now discuss existing results. Pensia
et al. (2019) also adapted its mean estimation method-
ology to linear regression. When «;’s are from a mul-
tivariate Gaussian with covariance matrix %, w.h.p.

C/na(cd log n)
Amin (%)
depends on o(¢410g n) With an additional factor n, while

ours depends on 04 16g ) for a constant o (our bound
1

it obtained error bound . Again, the result

will also have a factor for such Gaussians).

However, their run time is O(n?), exponential in the
dimension d, while ours is polynomial.

There also exist studies for robust linear regression in
the adversary setting, where a small fraction of points
are being corrupted by an adversary (e.g., Bhatia et al.
(2015); Liu et al. (2018); Shen and Sanghavi (2019);
Diakonikolas et al. (2019b)). It is unclear if their re-
sults directly apply to our setting, since they have ad-
ditional assumptions on the data.

5 Experiments

5.1 Mean Estimation

To validate Theorem 1, we repeat the procedure that
first generating samples {wi}?zl under designed dis-
tribution {F;}]_,, then run Algorithm 1 with fraction
a = % and iteration T' = 20 and finally output error
| — p*|. We report the average error over R rep-

etitions; we set R = 200 for the univariate case and
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Figure 1: Univariate mean estimation. Left: setting
1; Right: setting 2. z-axis: sample size; y-axis: error
after T' = 20 iterations.

R = 20 for the multivariate case. For comparison,
we also report the error of the empirical mean over
the first an samples with smallest variance (or norm
of covariance matrix), which is the estimator given an
oracle knowing all the covariances, and thus referred to
as Oracle Mean (OM). It is easy to be seen that the lat-
ter average is only relevant to {o; }?:nl (or {A\¢) }?:"1)
and regardless of the rest (1 — a)n samples.

Univariate Case We first present experiments when
d = 1 under two designed settings of the entangled
distributions {F;}"_,.

Setting 1 For i < an, F; = N(0,1) and F; = N(0,i?)
for i > an.

Setting 2 For i < an, F; = N(0, (logi)?) and F; =
N(0,i?) for i > an.

Figure 1 shows the performances of ITM and OM. In
both settings, ITM obtains roughly the same average
error as OM, showing that the error bound of ITM is
regardless of all o; > 0(14n)). Besides, ITM actually
converges to the truth p*, in the same rate as OM. It
suggests I'TM can achieve a vanishing error, at least in
some special cases. This is left as a future direction.

Multivariate Case For the multivariate case, we set
d = 10 and provide two simulation settings of {F}},_,.

Setting 3 (radically symmetric) F; = N(0, I1) for
i < an, and F; = N (0,100 - I1p) for i > an.

Setting 4 (radically asymmetric) Let ¥y be a
stochastic positive definite matrix generated as follows.
(1) Set the diagonal entries to 1. (2) Off-diagonal en-
tries are set to zero or nonzero with equal probability.
For each nonzero off-diagonal entry, it is sampled from
the uniform distribution on interval (—0.5,0.5). Then
we make it symmetric by forcing the lower triangular
matrix equal to the upper triangular, and then add a
diagonal matrix cl;g to make sure it is positive defi-
nite, where c is chosen to make the smallest eigenvalue
of the matrix equal to 0.2. Finally, let F; = AV(0, %)

—=— M
—— oM

Average error
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I
Average error
008 010 012 014 0.6
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Figure 2: Multivariate mean estimation. Left: setting
3; Right: setting 4. z-axis: sample size; y-axis: error
after T' = 20 iterations.

for i < an and F; = N(0,100 - Xy) for i > an.

Figure 2 shows the results. Again, in both settings,
ITM also obtain the same average error with OM. The
results for setting 4 suggest that the radical symmetry
assumption may not be needed.

5.2 Linear Regression

We now consider the linear regression problem with
d = 100. We generate data according to the model (5),
where each row of matrix X is independently sampled
from A (0, I;) and we choose 3* to be a random vector
with [ norm 1. The noise vector is generated s.t.
for i < an, ¢ ~ N(0,1) and ¢; ~ N(0,100) for i >
an. We repeatedly generate data and run I'TSM for
R = 20 times, then report the average errors of both
ITSM and the least square estimator over the first an
samples with smallest noise variances, which we refer
to as Oracle Least Square (OLS). We also set a = 7
and T = 20 for simplicity though the smallest possible
value of a in Lemma 3 is dependent on X.

©
g
—=— [TSM
—— 0oLs
w

Average error

T T T T
500 1000 1500 2000 2500 3000

Figure 3: Linear Regression. z-axis: sample size; y-
axis: error after T' = 20 iterations.

Figure 3 shows the results. Similar to mean estima-
tion, the iterative trimming method has error closely
tracking those of the oracle method. This again veri-
fies the effectiveness of iterative trimming and provide
positive support for our analysis.
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