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1 Formulation

The misoBO is an extension of the BO setting in our
main paper. In this misoBO scenario, we have access
to several sampling sources and we are interested in
deciding both optimal sampling points and sampling
sources.

1.1 Setting

We want to solve the unconstrained optimization prob-
lem x∗ = arg maxx∈X f(x). Due to limited bud-
get, sampling from the original source is expensive
and incurs a cost c(x) : X → R+. Now suppose
we have access to I possibly biased auxiliary sources
indexed by I = {1, . . . , I}. Each source has a rela-
tively cheap query cost ci(x), i ∈ I. When sampling
from source i ∈ I at point x, we observe a noisy
and biased outcome y(i,x). We assume the observa-
tion y(i,x) is normally distributed with mean f(i,x)
and variance σ2

i (x). Denote by δi(x) : X → R the
bias term and δi(x) = f(i,x) − f(x) from each aux-
iliary source i ∈ I. We set δi ∼ GP(0,Σi(x,x

′))
and f(x) ∼ GP(µ0(x),Σ0(x,x′)). Therefore, f(i,x)
is a GP with mean function µ(i,x) and covari-
ance function Σ((i,x), (i′,x′)). Specifically, µ(i,x) =
µ0(x),Σ((i,x), (i′,x′)) = Σ0(x,x′) + I(i, i′)Σi(x,x

′),
where I(i, i′) = 1 if i = i′. Here we note that a mean
function (or a constant) can be added to model system-
atic discrepancy in the bias δi (Higdon et al., 2008).

Given data Dk = {x1, y1, i1, . . . ,xk, yk, ik}, we
would like to determine the next sampling du-
plet (ik+1,xk+1) by solving the following opti-
mization problem: (ik+1,xk+1) := (i∗,x∗) =
arg max(i,x)∈(I,X )Qk(i,x;Dk). After observing the
optimal sampling duplet, we augment the current
training data Dk with the new observation and ob-
tain Dk+1 = Dk ∪ {(xk+1, yk+1, ik+1)}.

1.2 Dynamic Programming

Denote by k ∈ {1, ..., N}. At each stage k, define
the state space as Sk = (X × R × I) and denote by
dataset Dk := sk ∈ Sk the current state, where sk

is the potential state in the state space Sk. A policy
π = {π1, . . . , πN} is a sequence of rules πk mapping
the state space Sk to the design space X and sources
I. We use ππk to emphasize the kth rule under pol-
icy π. Let πk(Dk) = (xk+1, ik+1). Now denote by
rk : Sk × X × I → R the reward function at stage
k. Define the end-stage reward as rN+1 : SN+1 → R.
The discounted expected cumulative reward of a finite
N -step horizon under policy π given initial datasetD1

can be expressed as Rπ(D1) =

E
[ N∑
k=1

αk−1rk(Dk,xk+1, ik+1) + αNrN+1(DN+1)

]
.

(1)
In the policy space Π, we are interested in the optimal
policy π∗ ∈ Π which maximizes Eq. (1). Specifically,

Rπ
∗
(D1) := max

π∈Π
Rπ(D1). (2)

Based on the Bellman optimality equation, we can for-
mulate (1) as a recursive DP: Rk(Dk) =

max
(ik+1,xk+1)∈(I,X )

E[rk(Dk,xk+1, ik+1) + αRk+1(Dk+1)],

(3)

with RN+1(DN+1) = rN+1(DN+1). There-
fore, the acquisition function is expressed as
Qk(ik+1,xk+1;Dk) =

E
[
rk(Dk,xk+1, ik+1) + αRk+1(Dk+1)

]
. (4)

1.3 Knowledge Gradient

The reward function at each stage k quantifies the
gains of applying rule πk given state Dk. To han-
dle multi-information source BO efficiently, we will
adopt a normalized KG as our expected stage-reward
function (Ryzhov et al., 2012; Poloczek et al., 2017).
Specifically, E[rk(Dk,xk+1, ik+1)] =

E
[ 1

cik+1
(xk+1)

(
max
x′

µk+1(0,x′)−max
x′

µk(0,x′)
)]
.

(5)
The first part in the expected KG can be expressed as
E
[

maxx′ µ
k+1(0,x′)

]
=

E
[

max
x′
{µk(0,x′) + σk

x′(i,xk+1)Z}
]
, (6)
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where Z is a standard normal random variable and
σk
x′(ik+1,xk+1) =

Σk((0,x′), (ik+1,xk+1))

[σ2
ik+1

(xk+1) + Σk((ik+1,xk+1), (ik+1,xk+1))]1/2
,

such that Σk is the posterior covariance function of f
given current data Dk. Since we are taking expecta-
tion with respect to Gaussian random variables, equa-
tions (5) and (6) are easy to compute and can be ef-
ficiently estimated by the Gauss-Hermite quadrature
with n nodes.

1.4 An ADP Formulation

In our DP formulation, each reward-to-go function
Rk+1 is approximated by Hk+1 using a heuristic (base)
policy. Denote by h(h > 1) the rolling horizon and
Ñ = min{k+ h,N}. We then can obtain the approxi-
mated reward-to-go functions:

Hk(Dk) = E[rk(Dk, π̃k) + αHk+1(Dk+1)],

HÑ (DN+1) = rÑ (DN+1),
(7)

where π̃k is the heuristic policy at every iteration k ∈
[Ñ ] = {1, . . . , Ñ}. We define the heuristic policy as

(i∗,x∗) = arg max
(ik+1,xk+1)∈I×X

E[rk(Dk,xk+1, ik+1)]. (8)

This is equivalent to maximizing the greedy KG in (5).
At the end stage, we define policy π̃Ñ+1 such that

x∗ = arg max
x∈X

µÑ
0 (x), (9)

where µÑ
0 is the updated mean function from dataDÑ .

The last sampling source is chosen to exhaust the re-
maining budget. Approximated acquisition function
can then be solved using gradient-free optimization
technique such as bound optimization by quadratic
approximation (BOBYQA) Powell (2009). We sum-
marize our DP-misoKG algorithm in Algorithm 1.

2 Algorithm

The algorithm for the multi-information source BO is
lised in Algorithm 1.

3 Performance Guarantees

Under the multi-information source setting, the heuris-
tic KG is also sequentially consistent and sequentially
improving.

Corollary 1. The KG algorithm is sequentially con-
sistent and sequentially improving.

Algorithm 1: The Non-myopic Multi-Information
Source Bayesian Optimization Algorithm

Data: Initial data D1, budget B and query cost
c, ci, number of remaining evaluations N ,
number of node n.

Result: Data DN , optimal value fDN
max, Gap G.

Fit GP to data D1 and obtain parameters of bias
terms and initial optimal value fD1

max;
for k = 1 : N do

if B −mini ci < 0 then
Directly return Dk as DN ;
STOP;

else
Choose feasible horizon h;
Select
(ik+1,xk+1) = arg maxi∈I,x∈X Qk(i,x;Dk)

s.t. cik+1
(xk+1) ≤ B;

B ← B − cik+1
(xk+1);

end
Evaluate f(ik+1, ·) at xk+1 and obtain yk+1;
Augment the dataset
Dk+1 = Dk ∪ {(xk+1, yk+1, ik+1)};

Fit GP to data Dk+1;
k ← k + 1;

end
Fit GP to data DN ;

Obtain optimal value fDN
max;

Calculate the Gap G;

Return DN , fDN
max and G.

Proof. Remember that state sk is the dataset Dk. As-
sume KG algorithm starts at a state sk (i.e., cur-
rent dataset Dk). At each iteration of KG, given a
path (Dk,Dk+1, . . . ,Dm) and Dm is not the state
at the end, the next state Dm+1 is obtained by
solving the acquisition function of KG and augment
Dm with (x∗, y, i∗). If Dm+1 is not the terminat-
ing state, the algorithm will start with the path
(Dk,Dk+1, . . . ,Dm,Dm+1). Otherwise, the algo-
rithm will terminate with state Dm+1 and N = m+1.
We assume that, if there is a tie in the acquisition func-
tion, the algorithm will pick up the cheapest source i
or the vector x with the smallest elements. Therefore,
KG is sequentially consistent.

Let (D1,D2, . . . ,Dk, . . . ,DN ) be the path generated
by the rollout starting from D1. Define σ(s) as the
sub σ-algebra generated by state s. Since KG is se-
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quentially consistent, we have

E
[ N∑
`=k

r`(s`, π
πH(s)

` (s`))|σ(s′)
]

= E
[ N∑
`=k

r`(s`, π
πH(s′)
` (s`))|σ(s′)

]
.

(10)

Therefore, the rollout is sequentially improving and we
complete our proof.
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