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Abstract

Lookahead, also known as non-myopic,
Bayesian optimization (BO) aims to find op-
timal sampling policies through solving a dy-
namic programming (DP) formulation that
maximizes a long-term reward over a rolling
horizon. Though promising, lookahead BO
faces the risk of error propagation through
its increased dependence on a possibly mis-
specified model. In this work we focus on
the rollout approximation for solving the in-
tractable DP. We first prove the improving
nature of rollout in tackling lookahead BO
and provide a sufficient condition for the
used heuristic to be rollout improving. We
then provide both a theoretical and practi-
cal guideline to decide on the rolling horizon
stagewise. This guideline is built on quan-
tifying the negative effect of a mis-specified
model. To illustrate our idea, we provide case
studies on both single and multi-information
source BO. Empirical results show the advan-
tageous properties of our method over several
myopic and non-myopic BO algorithms.

1 Introduction

Bayesian optimization is a popular technique to opti-
mize an unknown and expensive-to-evaluate objective
function through sequential sampling strategies. Tra-
ditionally BO has focused on myopic (also referred to
as greedy) algorithms, where sampling points are de-
cided based on a one-step lookahead utility function,
oblivious how this design will effect the future steps of
the optimization and the remaining budget.

Recently, motivated by reinforcement learning, there
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has been attempts to extend greedy BO methods
into multi-step lookahead algorithms that maximize
a reward over a rolling horizon. Though it seems
promising to look further into the future, this ap-
proach might sabotage performance due to accumu-
lated errors and increased dependence on a possibly
mis-specified model. This raises the question: is prac-
tical implementation of non-myopic approaches indeed
useful? Although we cannot give a universal answer,
we can shed light on a specific class of non-myopia:
rollout dynamic programming.

Rollout is a sub-optimal approximation algorithm to
sequentially solve intractable dynamic programming
problems. It utilizes problem-dependent heuristics to
approximate the future reward using simulations over
several future steps (i.e., the rolling horizon). Indeed,
rollout has been successfully applied to the non-myopic
BO scenario (Lam et al. [2016; Lam and Willcox|
2017). Yet, rollout still faces two challenges: theo-
retical justification/guarantees and error propagation
as errors from a mis-specified model will accumulate as
we look further into the future. These challenges trig-
ger researchers to question whether long term planning
in BO is necessary.

In this work, we first provide a theoretical justifica-
tion for the rollout in BO settings. Specifically we
show that under the class of sequentially improving
heuristics, the rollout is guaranteed to outperform its
myopic counterpart. We then provide a guideline to
carefully choose a rolling horizon at each stage of the
discounted DP. Based on these facts, we argue that
even a short horizon is beneficial and also computa-
tionally economical. Therefore, using non-myopia is
promising and deserves further research attention.

We organize the remaining paper as follows. In Sec.
we briefly review BO, DP and rollout. We then prove
the performance guarantee of rollout in Sec. [3|and give
a practical guideline on choosing the rolling horizon in
Sec. [ In Sec. [5] we provide case studies to evidence
our theoretical argument. Detailed literature review
can be found in Sec. [6] Some algorithmic details are
included in the supplementary material.
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2 Background

In this section, we provide the problem description and
a brief review on the technical background needed for
this paper.

2.1 Bayesian Optimization

Let f : X — R be an objective function which is
expensive to evaluate. We consider the optimization
problem:
¥ = argmax f(x), (1)
reX
where x is a d-dimensional vector and X is a compact
(closed and bounded) set in R?. Given limited budget
B, BO aims to search for the optimal x* by itera-
tively updating a surrogate model of f(x), where this
surrogate is used to find the next design to evaluate.
Typically, in BO, the surrogate model is a Gaussian
process (GP), due to its Bayesian interpretation and
uncertainty quantification capability (see [Rasmussen
(2003)) for more information).

More specifically, given the current data Dy, BO aims
to determine the next informative sampling point @41
by solving the auxiliary problem:

Tpy1 = 2" = arg max Qy(x; Dy). (2)

X

where @, is a acquisition/utility function that only in-
volves evaluating the surrogate and not the expensive
objective function f. Typically, evaluation of acquisi-
tion function is relatively cheap. The rationale is to
seek design points that produce maximum increment
of the objective function. After Eq. is solved, the
iterative algorithm proceeds by augmenting the cur-
rent training data Dj with a new observation to ob-
tain Dgy1 = Dy U {(@k+1,yk+1)}- Popular choices of
acquisition functions are entropy search (ES) (Hennig
and Schuler} 2012), predictive entropy search (PES)
(Hernandez-Lobato et al., 2014]) and expectation im-
provement (EI) (Lam et al.,[2016). All aforementioned
functions exploit myopic strategies and ignore the fu-
ture information.

2.2 Dynamic Programming

Lookahead BO can be directly viewed as an instance of
DP. In such settings the non-myopic acquisition func-
tion quantifies rewards over future steps. Due to lim-
ited budge or sampling capacity, we consider a finite
N-stage DP formulation. Denote by k € {1,..., N}. At
each stage k, define the state space as S = (X x R)
and denote by dataset Dy = s; € S the current
state, where s is the state in the state space Sp. A
policy w = {m,..., 7N} is a sequence of rules 7, map-
ping the state space Sy to the design space X. We

use m; to emphasize the k" rule under policy 7. Let
7 (D) = ®k+1. Now denote by 11, : Sy x X — R the
reward function at stage k. Define the end-stage re-
ward as ry4+1 : Sy+1 — R. The discounted expected
cumulative reward of a finite N-step horizon under
policy 7 given initial dataset D; can be expressed as
R™(Dy) =

N
E{Zak17”k(Dk,$k+1)+0¢N7”N+1(DN+1) )
k=1

where a € [0,1] is the discount factor. The discount
factor plays an important role in this setting, as it
controls the effect of error propagation. In the greedy
algorithm, we have o = 0. In the policy space II,
we are interested in the optimal policy 7* € IT which
maximizes Eq. . Specifically,

R™ (D) = max R™ (D). (4)

Based on the Bellman optimality equation, we can
then formulate and as a recursive DP:

Ry(Dy) = max E[ry(Dg, ®ir1) + alpi1(Dir)];
Tr41E€EX
Ryi1(Dny1) = N1 (D).

(5)
2.3 Rollout

The DP formulation in Sec. is subject to a huge
computational burden and curse of dimensionality due
to the uncountable state and action space. Further-
more, the formulation assumes that data in the last
step is available and computes the acquisition function
in a backward manner, which is impractical in the set-
ting of BO. In order to solve the intractable DP, an
approximate dynamic programming (ADP) approach
- rollout (Bertsekas| [1995) has been proposed. The
rollout has recently enjoyed success across a variety of
domains as it builds on several heuristic policies and is
efficient for large-scale and finite-horizon DP problems.
More specifically, in the DP formulation, each reward-
to-go function Ryy; is approximated by H1 using a
heuristic (base) policy. Denote by h(h > 1) the rolling
horizon and N = min{k + h, N}. The rolling horizon
alleviates the high dimensionality by limiting the num-
ber of stages through which the approximate reward
is calculated. Thus, h can be viewed as a non-negative
random variable and a stopping time with respect to
the family (o(s))rez+ of o-fields (Sethi and Sorger]
1991)).

Given a specific heuristic, we can obtain the approxi-
mated reward-to-go functions:

Hy(Dy,) = E[ry(Dg, ) + aHpq1(Drg)],

Hg(Dny1) = rg(Dyt1)s (6)
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where 7, is the heuristic policy at every iteration k €
[N] = {1,...,N}. At the end stage, we define policy
41 such that x* = argmax,c y pf) (), where pf is
the updated mean function from data D .

3 Rollout Performance Guarantees

Without loss of generality and for the sake of neat-
ness, we omit the discount factor and assume o = 1.
Given a state s, an algorithm H(s) is a method to
select a sequence of feasible rules {m;}&_, and policy
Ty (s) Which generates states {sk}Y_,. Now, to estab-
lish theoretical guarantees, we first provide the follow-
ing definitions (Bertsekas et al., [1997; |(Goodson et al.|
2017).

Definition 1. Consider a maximization problem. The
algorithm H is said to be sequentially consistent if for
every state s, # sy, whenever H generates the state
path (Sk, Sk+1 - - -, SN) starting at state s, H also gen-
erates the path (Sg41,-..,SN) starting at state Sgy1.

In the context of DP, let s € S and let s’ be a state
on a path generated by policy 7 using algorithm #(s).
Denote this policy as mys). Consequently, sequential
consistency can equivalently be defined as

Definition 2. Consider a maximization problem. The
algorithm H is said to be sequentially consistent if Vs
and subsequent s', we have

(W;:}TH(S) 7”2?{5) LA ’W;H(S)) (7)
™ s ™ s ™ s
:(ﬂ_kw(ﬂ7 krl( /)7"'77TNH( ’)).

Definitions 1 implies that a heuristic algorithm is
sequentially consistent if it produces the same subse-
quent states when started at any intermediate state of
a path that it generates. Equivalently, by Definition
2, the algorithm will generate the same subsequent
rules (mg,...,7TN).

Now, consider a probability space (2, F, P). Define
o(s) as the sub o-algebra generated by the state s,
then we have that

Definition 3. Consider a mazimization problem. The
algorithm H is said to be sequentially improving if for
every state s # sy, whenever H generates the path
(Sk, Sk+1,---,8N) starting at state si, the following
property will hold

B[ re(se,mp 7 (s0))]o(s))]

= N 8)

< B[S relse,mp " (se))o()].

l=k

N
k

It directly follows that if H is sequentially consistent,
then the equality will hold in . Therefore, a sequen-
tially consistent algorithm is also sequentially improv-
ing. However, the converse is not true. Next, We will
present our theorem about rollout improving.

Theorem 1. The algorithm H that uses a sequen-
tially improving heuristic is rollout improving. For-
mally, given the rollout policy 7, we have the following
property

N N
B[ re(se,my " (s0)] SB[ re(se, w7 (s0))].
=k =k (9)

Proof. We will prove this theorem by mathematical
induction. When ¢ = N this statement is trivial. Now
assume this statement holds for { =k +1,..., N — 1.
Then, when ¢ = k, define o(si) as the sub o-algebra
generated by state sg. Since each subsequent state
Sk+1 is an augmented si, we have o(sx) C o(sk41) C
F. By the law of total expectation, we have

N

E[Y ro(se,my " (s0))|o(sk)]
=k N (10)

= E[E[ZW(S&W?(S’“) (se))lo(sk+1)]

l=k

o(sk)}

By assumption, since the heuristic is sequentially im-
proving, we have

N
E {E[ Z re(se,m, " (50))]0 (s141)]
=k

a(sw}

N
E[E[Zrmw;’”“k*”(se>>|a<sk+l>]

l=k

o)

E[rk(skaﬂzms’“)(Sk))Jr

N

B[ D7 relsem, " (s0)lo(sie)]

l=k+1

o)
< mng[rk(sk,w)Jr

TH (s
re(se,my Y (30))|o(s41)]

] =

E[

(5]

l=k+1

= ]E[rk(sk, 7 (sk))+

N
E[ Y relse,m, 0 (s0)) o (s011)]

o(sw}.
(11)

The last equality follows the definition of rollout al-
gorithm. The rest of the proof is completed by the
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induction hypothesis. O

Theorem (1] shows that the rollout approach is guar-
anteed to perform better than its myopic counterpart
under the same base heuristic. Intuitively, when roll-
out generates a path, it exploits the base heuristic to
generate a collection of other paths and picks up the
best one. In the next section, we will provide a guide-
line on choosing a sequence of feasible rolling horizons.

4 Deciding on the Rolling Horizon

One interesting question remains: how to decide the
rolling horizon h? In most of the literature, h is chosen
to be a fixed value within 2 and 5 (Lam and Willcox|
2017} [Ulmer et all [2018) in order to alleviate com-
putational burden. Though those choices give very
promising results, those decisions are very subjective.
Fortunately, based on the rollout theory (Bertsekas
et al.l {1997 Bertsekas| 2005), we can provide a practi-
cal guideline to select a stagewise feasible h. The big
picture is as follows: we quantitatively obtain the ben-
efits of rollout given a modeling error and discount fac-
tor, we then compare this long-term discounted benefit
with the reward from the greedy algorithm counterpart
and decide a feasible rolling horizon accordingly. We
provide a detailed argument below.

At each stage k, define a profit function g, : ZT — RT
related to the rolling horizon A such that

k+h

ge(h) = Y b(i—k), (12)

i=k+1

where ¢(-) is a non-negative function. The rolling
profit function can be viewed as the total benefits in-
curred when choosing a rolling horizon h at stage k.
Although long horizons provide more future informa-
tion, it is not guaranteed to be helpful. In practice we
are running the risk of model mis-specification due to
modeling the objective function using a GP and then
using this surrogate to simulate scenarios over future
steps. Therefore, a larger rolling horizon implies an
increased dependence on a possibly erroneous model
which might in turn cause adverse effects compared to
myopic algorithms where errors accumulate only from
a one-step lookahead. However, if we can arbitrarily
quantify the error from mis-specified model, then we
can utilize the rollout improving nature and accord-
ingly decide on the feasible rolling horizon.

In order to quantify the aforementioned error, we de-
fine an error function £(x) bounded by a constant é.
The £(-) is a metric to quantify the negative effect
from model mis-specification. In the next section, we
will provide an error bound on GP prediction and use
this error bound as an error.

4.1 Error Bound on the GP

The recent work of Wang et al.| (2019) sheds light on
the model mis-specification issue.

Corollary 1. (Wang et al.,|2019) Assume a GP with
zero mean and stationary convariance function. Then,
under some regularity conditions, the interpolation er-
ror is (non-asymptotically)

sup ly(@) — f(@)] < Ko>Px, [log(5=) +u,

x PX
with probability 1 — §, where § is a function of
u, Px,02, y(x) is the true output at input x and
Px = /1-K(z*,z)K(z,z) 'K (z,z*) is a power
Sfunction with mis-specified covariance function at ob-
servation &, K and u are some constants and o2 is
the variance parameter.

Given this result, at each stage k, we can define
E(x) = |y(x) — f(x)| < sup, |y(z) — f(x)| = &. One
regularity condition in Corollary [1]is that the mis-
specified kernel is no smoother than the true kernel.
The matérn kernel is one of the perfect candidates
to this requirement. Corollary [1| also requires Px
is small. Fortunately, this quantity can be controlled
(Wendland, [2004) using fill distance design (Santner
et al.l |2003)). To satisfy this condition, we can sim-
ply choose initial data to minimize fill distance. This
procedure is known as the minimax distance design
(Johnson et al.l[{1990). In the next section we use this
error function to find feasible h stagewise. We note
that the proposed framework can be substituted with
a different error function, however we focus on GPs as
they are the most commonly used surrogate in BO.

4.2 Deciding Rolling Horizon

In this section, we provide our main theorem on de-
ciding h stagewise. Define a function

Ay (h, sk) = max { :IEIlaXIE[7"k+1(8k+17 W:rl(sk) (Sk+1))],
k41

maxIE[gk(l) + aH(SkHﬂ }a

Lr41

(13)

where H(sgt1) = gr+1(2) — grt1(1) — E(xpy2) +
aH(sgy2) is a modified rollout reward function to
quantify both profit and error effects. Note that we
do not consider (k1) since it is shared by both al-
gorithms when the rolling horizon is 1. Ay denotes the
optimal reward from stage k to IV, given the current
state s and an unknown rolling horizon h. Eq.
returns the maximum element between two values: the
first one is the reward when we consider a greedy al-
gorithm (i.e., h = 1) and the second one is the reward
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when we consider the rollout algorithm given a certain
error function. Based on Eq. , we can obtain the
following theorem.

Theorem 2. The set of feasible rolling horizons at
stage k is defined as

h* = {2 S h § N|Ak(h,8k)
(14)
= max E[gy (1) + aH (s11)] }

Tr41

Theorem |2 implies that any h within this set the
rollout is more beneficial than a greedy algorithm. In
other words, the benefits gained from looking further
ahead outweigh that of the error effects. However,
calculating h* is hard to implement in practice. In the
next theorem, we will provide an equivalent but more
practical equation.

Theorem 3. The Rolling Horizon Theorem
Given a constant € on the error function E(x) and
the profit function defined in Eq. . The feasible
rolling horizon at stage k is defined as

N—Ek

J
; 11—«
* . . =2 (s >
h —{]EZ.}_QQ ¢(z)>ek71_a }

Proof. Based on Theorem [2|and Eq. , it is equiv-
alent to consider

rmnaxIE[gk(l) + Ozﬁ(sk+1)] >
o (15)
¥ (sk+1))]-

H(sp
maxE|rg1(sk 171'
Tar1 [ +( +1s 41

By definition, maxg, E[rk+1(5k+1,7r;;+1 (sk+1)) >
ge(1). Since H(spy1) > — Sl F28(;) >
L_N—k-1 ~

, we have H(Sg+1) = gr+1(2) —gr+1(1) —

l—o
N—k—1

E(xpy2) + aH(8k+2) > ¢(2) — & — S —a
Therefore Eq. can be simplified as d)(

)
1 10‘ ——@k. The remaining part can be obtained b

induction.

_ék}

|vQ

0=

In practice, we can pick up the minimal j from the
set h*. We can also set an upper bound on the rolling
horizon. Denote by it h. In the Theorem (3] if we
could not find feasible h till j = h, we stop searching
and use h = 1 at the current stage.

5 Case Study

In this section we provide two case studies to evidence
our theoretical arguments. We use the well-known
knowledge gradient (KG, see Appendix) (Poloczek

et all [2017) as the base heuristic in our rollout algo-
rithm. We then show that KG is both sequentially con-
sistent and improving, and thus it is rollout improving
as shown in Theorem [1I] We then illustrate that, un-
der Theorem [3| and through carefully choosing the
rolling horizon, non-myopic BO has strong advantages
over greedy BO. Our algorithm is tested for both single
source and multi-information source BO (misoBO). In
the misoBO setting, we sample from auxiliary infor-
mation sources to make inference. Here we note that
the details for misoBO are deferred to the appendix
due to space limitation and similar conclusions to that
of single source BO.

5.1 Setting

We use the same setting in Specifically, when
sampling from original function at input @, we observe
a noisy outcome y(x). We assume the observation y(x)
is normally distributed with mean f(x) and variance
o%(zx). For the purpose of robustness, we assume that
the covariance belongs to some non-smooth parametric
family (Matern, etc..). Parameters are estimated using
maximum likelihood estimation (MLE).

5.2 Algorithm

We utilize the non-greedy acquisition function defined
in Sec. 22 This acquisition function considers far
horizon planning and is given by the DP formulation.
Specifically, we have Q(x; Dy) = E[ry(Dy, @ri1) +
OéRk+1(Dk+1)]. This is solved by the rollout with KG
as the base heuristic. We denote our algorithm as DP-
singleBO. The general procedure for DP-singleBO is
listed in Algorithm [Il We also extend this algorithm
to the multi-information sources scenario and denote
it as DP-misoBO (see Appendix).

5.3 Guarantees

In order to apply Theorem (1] we need to show that
the heuristic greedy KG is sequentially consistent and
thus sequentially improving.

Corollary 2. The KG algorithm is sequentially con-
sistent and sequentially improving.

Proof. Remember that state s is the dataset Dy. As-
sume KG algorithm starts at a state sg (i.e., cur-
rent dataset Dy). At each iteration of KG, given a
path (D, Dy41,...,D,,) and D, is not the state at
the end, the next state D,,,; is obtained by solv-
ing the acquisition function of KG (see appendix)
and augmenting D,, with (x*,y). If D,,41 is not
the terminating state, the algorithm will then start
with the path (D, Dyy1,..., Dy, Dyyyr).  Other-
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Algorithm 1: The Non-myopic Single Information

Source BO Algorithm

Data: Initial data Dy, budget B and query cost c,
number of remaining evaluations N, bound h,
number of node n.

Result: Data Dy, optimal value fP~ = Gap G.

Fit GP to data Dy and obtain initial optimal value
D1 .

max)

for k=1:N do
if B < c then
Directly return Dy as Dy;
STOP;
else
Calculate h in Sec.
Given h, select @1 = argmax,c » Qi (x; Dy)
s.t. e(xps1) < B;
B < B —c(®r41);
end
Evaluate f(-) at @41 and obtain yg41;
Augment the dataset
Djy1 = Dy U{(hy1, Yrt1) |
Fit GP to data Dy1;
k< Ek+1;
end
Fit GP to data Dy;
Obtain optimal value fLx
Calculate the Gap G}
Return Dy, fP~N and G.

max

wise, the algorithm will terminate with state D,,41
and N = m + 1. We assume that, if there is a tie in
the acquisition function, the algorithm will pick up the
vector & with the smallest elements. Therefore, KG is
sequentially consistent.

Let (Dy,Ds,...,Dy,...,Dy) be the path generated
by the rollout starting from D;. Define o(s) as the
sub o-algebra generated by state s. Since KG is se-
quentially consistent, we have

N
B[ re(se,my ™ (s0))|o(s)]
b=k N (16)

= E[Zm(sz, m, 1 (s0))|or(s)].

{=k

Therefore, KG is sequentially improving and we com-
plete our proof. O

5.4 Results

5.4.1 Performance Comparison

In this section, we apply algorithms DP-singleBO and
DP-misoBO to a variety of classical functions with

a range of dimensions, support sets and information
sources. We provide three information sources in this
experiment: original objective function (with noise)
y(x), biased source one y(1,x) and biased source two
y(2,x). Following the setting from [Poloczek et al.
(2017), we define y(1,x) = y(x) + 2sin(10z1 + 5x2)
in the two dimensional space and y(1,z) = y(x) +
2sin(10z1 + 522 + 3z3) in the three dimensional space.
We define y(2,x) = y(x) + d(x), where §(x) is simu-
lated from GP with radial basis function (RBF) kernel
with length-scale [ = 1, signal variance UJ% = 1 and
noise variance o2 = 0.5. The RBF kernel is defined as
Krpr(z,x') = O'J% exp{—ﬁ |z — sc’Hg} + o2l(z, x').
See Table [l for more information. For the Goldstein-
price and Bohachevsky functions, we provide two bi-
ased sources and run DP-misoBO algorithm. For the
Branin-Hoo, Six-Hump and Griewant, we run DP-
singleBO algorithm. These objective functions have
two notable challenges: (1) six-hump and Goldsterin-
price have several local maxima; (2) Griewant func-
tion is in a high dimension with large design space.
We benchmark our algorithms with several state-of-
the-art techniques. A detailed code is available in the
supplementary materials.

Table 1: Functions used in the experiment. More in-
formation about each function can be found at the
open source library http://www.sfu.ca/~ssurjano/
optimization.html.

Name Function Domain
Branin-Hoo [-5, 10]x [0, 15]
Six-hump Camel [-3, 3] x [-2, 2]
Goldstein-price -2, 2]2
Bohachevsky [-100, 100]?
Griewant-3 [-600, 600]°

Experimental Details To mitigate the negative ef-
fect of model mis-specification, we fit GPs with the
matérn p+ % kernel and all hyperparameters are opti-
mized by MLE. We set discount factor « to be 0.9. The
optimal rolling horizon h is calculated at each stage.
We also set n = 10 in the GaussHermite quadrature.
The initial 9 sampling points are chosen by the fill dis-
tance design. For a fixed dimension d, we set an upper
limit for sampling budget B and only allow around
10d evaluations of each algorithm. For example, we
can set B = 10d?, cost ¢ = 5d and ¢; = d,Vi. For each
algorithm, we conduct 30 experiments with different
initial points. In Table [2] we provide the testing re-
sults in terms of the mean and median of Gap, defined

in Eq. .

Benchmark Models There is a limited literature
on the non-greedy BO. We will benchmark our model
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Table 2: Mean and median Gap G over 30 experiments with different initial points. The best result for each
function is bolded. “NA” indicates not applicable. The discount factor is set to be 0.9.

Function Name GLASSES M-EI

misoKG MPI LCB

DP-singleBO/DP-misoBO

Branin-Hoo Mean 0.761 0.837
Median 0.814 0.856

Six-Hump Camel Mean 0.735 0.843
Median 0.793 0.843

Goldstein-Price Mean NA 0.831
Median NA 0.837

Bohachevsky Mean NA 0.806
Median NA 0.821

Griewant-3 Mean 0.725 0.814
Median 0.742 0.817

0.819 0.606  0.612 0.864
0.827 0.614  0.637 0.889
0.801 0.625  0.638 0.870
0.810 0.593  0.638 0.866
0.811 NA NA 0.867
0.846 NA NA 0.857
0.786 NA NA 0.872
0.820 NA NA 0.870
0.820 0.704  0.704 0.861
0.827 0.678  0.731 0.856

Count

1 2 3 4 5

6
Rolling Horizon

Figure 1: Distribution of Rolling Horizon

with the state-of-the-art GLASSES algorithm with
fixed horizon, a DP-based algorithm using M-EI with
fixed rolling horizon (Lam et al.,[2015)), Markov chain
Monte Carlo (MCMC) based maximum probability
of improvement (MPI) (Snoek et all) [2012), MCMC
based lower confidence bound (LCB) (Snoek et al.,
and the misoKG (Poloczek et al., |2017). Note
that GLASSES, MPI and LCB cannot be applied to
the miso setting. We refer to section [6] for more details
on the benchmarked models.

Performance The performance is measured in
terms of Gap G, which is a common metric in many BO
literature (Huang et al., 2006; |Gonzélez et al.l 2016;
Lam et al., [2016). Specifically,
D, _ fDn
G = M7 (17)

D, *

maxr — Jmazx

where fP1 and fPN are optimal values given the ini-
tial and augmented data at stage N respectively and

> ax 18 the global maximum of the testing function.
Table [2| shows the comparative results across different

functions and algorithms.

Based on Table 2] we can obtain some important
insights. First, the results indicate that our model

clearly outperforms the state-of-the-art methods in-
cluding non-myopic algorithms. The average and me-
dian Gaps of our algorithm are above 0.85, indicating
that the estimations are improved 85% compared to
the initial iteration. The key reason is that GLASSES
and M-EI only consider fixed rolling horizon h, which
is risky: the error propagation might eliminate the
benefits of looking ahead. Indeed, choosing h stage-
wise allows us to carefully avoid the negative effect of
model mis-specification. As shown in Table[3] when we
choose fixed rolling horizon at each stage, the resulting
Gap will be affected. When h = 4,5, the non-greedy
algorithm will even sabotage the performance. Here
we note that we believe a dynamic rolling horizon can
also improve the performance of GLASSES and M-EI.
However, this requires further analysis and theoretical
inquiries.

Second, the non-myopic algorithms are capable of
beating the greedy algorithms. Interestingly, the fea-
sible rolling horizon h* is usually not large (Figure [1).
This result is encouraging as it implies that the compu-
tational burden does not need to increase significantly
since even a short horizon is beneficial. Therefore, it is
over-pessimistic to discard non-myopia if one is afraid
of error accumulation and computational complexity.

Lastly, the results indicate that the benefits of our
method become increasingly significant for the high
dimensional scenarios. This is intuitively understand-
able, due to ability of the non-greedy algorithm to ef-
ficiently explore the horizon.

5.4.2 Discount Factor

We study the effect of different discount factors.
Specifically, we choose a from set {0.6,0.7,0.8,0.9}.
The discount factor plays a role in ceiling the value of
rolling horizon as shown in Theorem [3] An extreme
case is when a = 0, the horizon is always 1 and re-
ward is collected immediately (i.e., greedily). Based
on Table [2[ and [4] it seems that when a € {0.8,0.9},
the performance is promising. This result is intuitive
as a moderate discount factor encourages an algorithm
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to consider collecting reward further and is capable of
generating improving results.

Table 3: Mean Gap G with respect to different fixed
rolling horizon over 30 experiments with different ini-
tial points.

Function Name h=2 h=3 h=4 h=5
Branin-Hoo 0.830 0.805 0.777 0.700
Six-Hump Camel  0.855 0.860 0.671 0.665
Goldstein-Price 0.829 0.824 0.732 0.667
Bohachevsky 0.865 0.788 0.721 0.648
Griewant-3 0.802 0.755 0.621 0.683

Table 4: Mean Gap G with respect to different dis-
count factor over 30 experiments with different initial
points.

Function Name a=0.6 a=0.7 a=0.8 a=0.9
Branin-Hoo 0.812 0.801 0.867 0.864

Six-Hump Camel 0.780 0.810 0.871 0.870

Goldstein-Price 0.826 0.804 0.844 0.867
Bohachevsky 0.803 0.818 0.853 0.872
Griewant-3 0.764 0.830 0.845 0.861

6 Literature Review

6.1 Nonmyopia

Few literature has focused on the non-myopic BO.
Ginsbourger and Le Riche| (2010]) propose an expec-
tation improvement (EI) criterion to derive sequen-
tial sampling strategies using Monte-Carlo simulation.
Later, some approximation algorithms have been pro-
posed that provide theoretical guarantees when sam-
pling spaces are finite (Marchant et al. 2014} |Ling
et al [2016). Unfortunately such algorithms scale
poorly with the number of rolling horizon consid-
ered. Later, |Gonzalez et al| (2016) provided the
GLASSES algorithm that relieves the myopia assump-
tion of BO and can efficiently tackle an uncountable
sampling space. The GLASSES utilize the long-sight
loss function in [Osborne| (2010) and then propose an
efficient optimization-marginalization scheme to solve
that loss. Despite its strength, this approach assumes
that the objective function is L-Lipschitz continuous.
Besides the aforementioned methods, there exists some
efficient multi-step look-ahead algorithms in the area
of Bayesian feasibility determination and root-finding
problems (Waeber et al.| 2013} |Cashore et al. [2016).
Nevertheless, they are only applicable to a very spe-
cific physical setting and cannot be easily generalized
to a general framework. More Recently, Lam (Lam
et al., [2016; |[Lam and Willcox], [2017)) proposed a look-
ahead DP formulation using EI as a heuristic reward
function. A direct extension to this work includes us-
ing the modified-EI (M-EI) (Groot et al.; 2010; Lam
et al., 2015) instead of EI to handle multi-information

sources. However, a crucial drawback of the M-EI is
that its selects sampling point and query sources sep-
arately. This might lead to reduced accuracy as joint
optimality is not considered. Recently, |Jian and Pe-
ter| (2019) has proposed a practical two-step lookahead
BO algorithm. This is one successful example that il-
lustrates the benefits of looking sightly ahead.

6.2 Multi-information Source

We provide a short review on misoBO for complete-
ness. Multi-information source optimization was thor-
oughly studied by |Swersky et al.| (2013). The authors
argue that auxiliary tasks can aid in solving some ex-
pensive optimization problems. [Swersky et al.| (2013)
utilize a multivariate Gaussian process GP (Seeger
et al., 2005} |Bonilla et al.,|2008)) to model uncertainties
in the objective function and predictive entropy search
to decide on the next sampling location. Very recently,
Poloczek et al{(2017)) improved the misoBO algorithm
through utilizing a more flexible GP construction, us-
ing the linear model of coregionalization, and extend-
ing the KG algorithm to the setting with variable cost
across multiple information sources. They showed that
the improved method (denoted as misoKG) can find
sampling locations with higher value at reduced cost.
Despite this seminal work, the misoKG does not con-
sider far horizon planning since it uses a one-step look-
ahead approach that only considers reducing regret at
the next step. Besides misoBO, other closely related
work belong to the problem of multi-fidelity optimiza-
tion (McLeod et al. 2017; [Kandasamy et al.l [2016;
Cutajar et al.;|2019)). These models have been mainly
based on hierarchical model structures that restrict
the information to be shared from low fidelity models.
Also, they implement a myopic approach and fail to
account for the future information such as remaining
budgets.

Conclusion

We provide a theoretical proof of the “improving” na-
ture of the rollout DP algorithm and a practical guide-
line on choosing a sequence of rolling horizons. We
argue that rollout with a well chosen rolling horizen is
beneficial in the sense that the error propagation is not
catastrophic and the profits from the rollout improv-
ing nature remain. Therefore, the rollout DP has great
promise in BO theory and applications. One possible
future work is to generalize our analysis and apply it
to other non-myopic methods. We hope our work will
help inspire continued exploration into the non-myopic
algorithms.
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