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Abstract

Random binning features, introduced in the
seminal paper of Rahimi and Recht ’07, are
an efficient method for approximating a ker-
nel matrix using locality sensitive hashing.
Random binning features provide a very sim-
ple and efficient way to approximate the
Laplace kernel but unfortunately do not ap-
ply to many important classes of kernels, no-
tably ones that generate smooth Gaussian
processes, such as the Gaussian kernel and
Matérn kernel. In this paper we introduce
a simple weighted version of random binning
features, and show that the corresponding
kernel function generates Gaussian processes
of any desired smoothness. We show that our
weighted random binning features provide a
spectral approximation to the corresponding
kernel matrix, leading to efficient algorithms
for kernel ridge regression. Experiments on
large scale regression datasets show that our
method outperforms the accuracy of random
Fourier features method.

1 Introduction

Kernel methods are a powerful framework for apply-
ing non-parametric modeling techniques to a number
of problems in statistics and machine learning, such as
ridge regression, SVM, PCA, etc. While kernel meth-
ods have been well studied and are capable of achieving
excellent empirical results, they often pose scalability
challenges as they operate on the kernel matrix (Gram
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matrix) K of the data, whose size scales up quadrati-
cally in the number of training instances. Thus, much
work has focused on scaling up kernel methods by pro-
ducing suitable approximations to the kernel or its un-
derlying kernel matrix.

One such approach for scaling up kernel methods was
shown by Rahimi and Recht (2007), who showed how
to approximate positive definite shift-invariant kernels
using random binning features. The idea is to partition
an input space into randomly shifted grids and map
input points into bins such that the probability that
two input points x and y are mapped to the same bin
is proportional to k(x,y). This enables one to get an
estimate for k(x,y) by counting the number of times
x and y are binned together.

The above approach can also be viewed in the con-
text of locality sensitive hashing (LSH) (Indyk and
Motwani, 1998; Har-Peled et al., 2012), an algorithmic
technique that hashes elements of an input space into
“buckets” such that similar input items are hashed into
the same buckets with high probability. More specifi-
cally, the hash collision probability between two items
is desired to be proportional to the similarity index of
the items, i.e., collisions should be more likely for more
similar items. LSH has found practical uses for a num-
ber of problems such as nearest neighbor search, clus-
tering, etc. The random binning features of Rahimi
and Recht (2007) can be viewed as an LSH scheme in
which the similarity measure is the kernel.

Rahimi and Recht (2007) show that random bin-

ning features yield an unbiased estimator k̃(x,y) for
k(x,y), provided that k satisfies certain conditions.

They also establish point-wise concentration of k̃ to
k, but in many numerical linear algebra applications,
point-wise concentration is insufficient. On the other
hand, spectral guarantees for the kernel matrix K,
whose (x,y)-entry is given by k(x,y), are a popular
sufficient condition that guarantees various statistical
and algorithmic implications. One such guarantee is
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captured by the (regularized) oblivious subspace em-
bedding (OSE) property, as stated below.

Definition 1 (Oblivious subspace embedding (OSE)).
Given ǫ, δ, λ > 0, and the positive semi-definite matrix
K ∈ R

n×n, an (ǫ, δ, λ)-oblivious subspace embedding
(OSE) for this kernel matrix is a distribution D over

n × n matrices K̃ such that with probability at least
1− δ,

(1− ǫ)(K + λI) � K̃ + λI � (1 + ǫ)(K + λI). (1)

Kernel Ridge Regression (KRR). One kernel
method for which OSE has algorithmic implications is
the problem of kernel ridge regression (KRR), which
we focus on in this work. In KRR, one is given labeled
training data (x1, y1), (x2, y2), . . . , (xn, yn) ∈ R

d × R

and a regularization parameter λ > 0, and the response
of an input vector x is estimated as follows:

η(x) =

n∑

j=1

k(xj ,x)αj ,

where α = (α1 · · ·αn)
T is the solution of the equation

(K + λIn)α = y, where y = (y1 · · · yn)
T and In is

the n × n identity matrix. Solving this matrix equa-
tion generally requires Θ(n3) time and Θ(n2) mem-
ory, which is impractical for large datasets. Thus, the
design of scalable methods for KRR and other ker-
nel methods has been the focus of much recent re-
search (Bach, 2013; Caponnetto and Vito, 2007; Alaoui
and Mahoney, 2015; Zhang et al., 2015; Musco and
Musco, 2017; Avron et al., 2017a,b).

The OSE property for K̃ is useful because it allows
K̃ + λIn to be used as an effective preconditioner for
the solution of the aforementioned matrix equation,
while enabling one to bound the excess risk (Avron
et al., 2017b). Thus, the approach we take is to find a
new class of estimators that satisfies the OSE property
while enabling fast matrix-vector computation.

WLSH estimators. Our main contribution is to
formulate a new class of estimators, which we term
Weighted LSH (WLSH) estimators, that generalize the
random binning features of Rahimi and Recht (2007)
and applies to a wider range of kernels. More specif-
ically, given a probability density function p(·) with
non-negative support over R

d and a bucket-shaping
function f(·) (see discussion below), we can define a
kernel with kernel matrix K ∈ R

n×n as well as a cor-
responding WLSH estimator.

Our first main theorem shows that appropriately many
independent instances K̃1, K̃2, . . . , K̃m of the WLSH
estimator yield an OSE K̃ for K:

K̃ =
1

m

m∑

s=1

K̃s (2)

Theorem 2 (Main Theorem, informal version of The-
orem 11). Let x1,x2, . . . ,xn ∈ R

d be a collection of
points and ǫ, λ > 0. For any p(·) and any f supported

on [−1/2, 1/2] with ‖f‖2 = 1, the distribution K̃ given
by (2) is an (ǫ, 1/poly(n), λ)-OSE for K, provided that
the number of independent instances of the WLSH es-

timator is m = Ω
(

‖f⊗d‖2
∞

ǫ2 · n
λ · log n

)
.

Our WLSH estimator reduces to standard random bin-
ning features when the bucket-shaping function f is
chosen to be a rectangle function rect supported on
[−1/2, 1/2]. However, the generalization of allowing
different bucket-shaping functions f enables the esti-
mator to be applied to a wider range of kernels, which
we discuss below.

Standard random binning features work only for cer-
tain classes of shift-invariant kernels k(·) that sat-
isfy a convex decomposition property (Rahimi and
Recht, 2007). The Laplace kernel, given by k(x,y) =
k(x− y) = exp(−|x− y|), is an important example of
such a kernel. However, note that the Laplace kernel
does not satisfy smoothness, which is often a desired
property. Indeed, the limitation of random binning
features to non-smooth kernels is inherent, as any suit-
able shift-invariant kernel k(·) must have the property
that 1−k(·) satisfies the triangle inequality (Charikar,
2002). This precludes the possibility of using random
binning features to approximate any monotonically de-
creasing smooth kernel that is twice differentiable.

The non-smoothness limitation arises from the fact
that the bins in random binning are discontinuous at
the edges, as the shape of the corresponding bins is a
rectangle. Our approach circumvents this limitation
by generalizing random binning features to an esti-
mator that allows “soft” buckets with smoother edges
(specified by the bucket-shaping function f in Theo-
rem 11). This allows us to construct new families of
smooth kernels that can be estimated using our WLSH
estimators but are not amenable to standard random
binning features.

We complement Theorem 11 with a lower bound show-
ing that the number of instances of the WLSH Esti-
mator in Theorem 11 is essentially tight:

Theorem 3 (Main Theorem, informal version of The-
orem 12). Let p(w) = we−w be the PDF for the
Gamma distribution, and let f(·) = rect(·) be the
bucket-shaping function. For any λ > 0, d ≥ 1,
and n ≥ 8λ, there exists a dataset x1,x2, . . . ,xn ∈
R

d such that in order for K̃ given by (2) to be an
(ǫ, 1/n, λ)-OSE for K with ǫ ≤ 1/6, one requires
m = Ω

(
1
ǫ2 · n

λ · log n
)

independent instances of the
WLSH estimator.

Furthermore, our WLSH estimator allows K̃ to
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be stored with little memory while supporting fast
matrix-vector multiplication, which allows it to be
suitable for KRR. In this direction, we conduct a num-
ber of experiments on various datasets that show the
accuracy and speed of approximate KRR using our
WLSH kernels and estimator compared to exact KRR
and other popular approximation methods. The re-
sults show that our WLSH-based method produces
better accuracy than the popular method of random
Fourier features on large datasets while still offering fa-
vorable running times. We additionally present exper-
iments showing the performance of our WLSH-based
kernel family for learning Gaussian processes through
KRR.

1.1 Related work

Another line of work for producing low-rank approxi-
mations to kernel matrices is the Nyström method. A
number of works have sought to improve the method
using leverage score sampling, risk inflation bounds,
etc. (Bach, 2013; Alaoui and Mahoney, 2015; Rudi
et al., 2015; Musco and Musco, 2017). Although
there has been much work on kernel approximation
sketches that achieve the optimal target dimension,
e.g., Nyström sampling (Musco and Musco, 2017), all
such methods that are known are data-dependent, bar-
ring any strong assumptions on the kernel matrix.
Data-oblivious approaches, on the other hand, have
the advantage of being implementable in distributed
settings. WLSH estimators (and random binning fea-
tures), being OSEs, fall into this paradigm.

There are a number of works on devising OSEs. Most
of these are related to the technique of Random Fourier
features, which was also introduced by Rahimi and
Recht (2007) and provides a popular data-oblivious ap-
proach for kernel approximation. Avron et al. (2017b)
showed that a modification of Random Fourier fea-
tures yields provably better target dimension. Ahle
et al. (2020) improved upon this result and were able
to embed the Gaussian kernel in Euclidean space with
a target dimension that is not exponential in the di-
mension of the dataset. However, some Gaussian pro-
cesses that arise in practice are less smooth than those
arising from Gaussian kernels, and the result of Ahle
et al. (2020) does not extend to the Laplace kernel 1

or Matérn kernels.

1One can trivially use the result of Ahle et al. (2020) for
Laplace kernels by using a trivial embedding of l1 norms
into l2, but this results in a blowup in dimension that is
impractical

2 Preliminaries

In this section we introduce notations and present ba-
sic definitions and claims.

The Fourier transform of a continuous function g :
R

d → C in L1(R
n) is defined to be the function

Fg : Rd → C given by (Fg)(ξ) =
∫
Rd g(t)e

−2πit⊤ξ dt.
We also sometimes use the notation ĝ for the Fourier
transform of g. We often informally refer to g as rep-
resenting the function in time domain and ĝ as rep-
resenting the function in frequency domain. The orig-
inal function g can also be obtained from ĝ by the

inverse Fourier transform: g(t) =
∫
Rd ĝ(ξ)e

2πiξ⊤t dξ.

The convolution of two functions g : R
d → C and

h : R
d → C is defined to be the function (h ∗ g) :

R
d → C given by (h ∗ g)(η) =

∫
Rd h(t)g(η − t) dt for

η ∈ R
d. We use δd to denote the d-dimensional Dirac

delta function.

We now define the rectangle function (boxcar).

Definition 4 (Rectangle Function). For any a > 0
we define the 1-dimensional rectangle function recta :
R → C as

recta(x) =

{
0 if |x| > a/2

1 if |x| ≤ a/2
.

If a = 1, we omit the subscript and just write rect.

For any vector w = (w1, w2, . . . , wd)
⊤ we use the no-

tation [0,w] to denote the set [0, w1] × [0, w2] × · · · ×
[0, wd]. Moreover, if j = (j1, j2, . . . , jd)

⊤, then we
use the notation jw = (j1w1, j2w2, . . . , jdwd)

⊤ and
j/w = (j1/w1, j2/w2, . . . , jd/wd)

⊤. Also, for any func-
tion f : R → R the notation f⊗d denotes the function
f⊗d : Rd → R, defined as f⊗d(x) =

∏d
l=1 f(xl) for

every x ∈ R
d.

3 Weighted Locality Sensitive
Hashing (WLSH) estimator

In this section we first provide background on random
binning features and Locality Sensitive Hashing and
then define our WLSH estimator in Section 3.1 and
prove its smoothness properties in Section 3.2. Ran-
dom binning features were introduced by Rahimi and
Recht (2007) as an estimator for a certain class of ker-
nel functions such as the Laplace kernel. The main
building block of this estimator is a Locality Sensitive
Hashing (LSH) family, defined as follows:

Definition 5 (Locality Sensitive Hash Family). For
any positive integer d, we define the Locality Sensitive
Hash (LSH) family H as the collection of hash func-
tions, H :=

{
hw,z(·) : w ∈ R

d
+, z ∈ [0,w]

}
, where the
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LSH function hw,z : Rd → Z
d is given by,

[hw,z(x)]l = round

(
xl − zl
wl

)
, (3)

for every l ∈ [d] and x ∈ R
d. The parameters of the

LSH functions in this family are distributed as fol-
lows: w = (w1, w2, . . . , wd)

⊤ is a random vector with
iid entries w1, w2, . . . , wd ∼ p(w) for some probability
distribution p(·) with non-negative support and z is a
uniform random vector in [0,w].

Random binning features are given by the following
estimator:

k̃(x,y) =

{
1 if hw,z(x) = hw,z(y)

0 otherwise
, (4)

where hw,z(x) ∼ H is an LSH function. Note that
the expectation of this estimator is equal to the
collision probability of the LSH function hw,z, i.e.,

E

[
k̃(x,y)

]
= Prhw,z∼H[hw,z(x) = hw,z(y)]. It is

shown in Rahimi and Recht (2007) that if H is the
LSH family given in Definition 5 with p(w) = we−w

(Gamma distribution), then the collision probability

of two points x,y is Ehw,z∼H
[
k̃(x,y)

]
= e−‖x−y‖1 ,

which is the Laplace kernel. The Laplace kernel is
non-smooth due to the discontinuity of its derivative
at the origin. There is a great deal of interest in using
smooth kernels in many machine learning applications
(Srinivas et al., 2009). By changing the distribution
over the LSH family H via varying the PDF p(w), one
can obtain the random binning feature estimator for
some class of kernels. One might hope to find a dis-
tribution over H such that Ehw,z(·)∼H[k̃(x,y)] gives a
smooth kernel such as the Squared exponential kernel
or Matérn kernel. But it follows from Charikar (2002)
that the random binning feature is only able to ap-
proximate kernel functions k(·) such that 1− k(x−y)
satisfies the triangle inequality. This requirement is
very restrictive and leaves the random binning features
inapplicable to the most popular classes of smooth
kernels including the Squared exponential kernel and
Matérn family. In fact, any smooth kernel which is
monotonically decreasing and is at least twice differen-
tiable cannot be approximated using random binning
features.

The random binning features estimator is an estimator
whose output is either zero or one. We generalize this
in Section 3.1 by allowing the estimator to assume a
range of values and show that this estimator, unlike
the random binning features estimator, is able to ap-
proximate a rich family of smooth kernels.

3.1 WLSH kernel family

We now define the Weighted LSH (WLSH) Estimator.

Definition 6 (WLSH Estimator). Let f : R → R

be some even function with support [−1/2, 1/2] and
‖f‖2 = 1 and let p(·) be some PDF with non-negative
support. Also let H be the LSH family as in Defini-
tion 5. For any x,y ∈ R

d, the Weighted LSH (WLSH)

estimator k̃f,p is defined as:

k̃f,p(x,y) =

{
A if hw,z(x) = hw,z(y)

0 otherwise
, (5)

where A = f⊗d(hw,z(x) +
z−x
w

) · f⊗d(hw,z(y) +
z−y

w
),

and hw,z ∼ H.

For ease of notation, we often drop the subscripts and
just write k̃(·) to denote the WLSH. We show that the
expectation of the WLSH estimator is a valid shift-
invariant kernel. The expectation of the estimator is
given by the following claim,

Claim 7. For any PDF p(·) with non-negative sup-
port, any even function f : R → R with support
[−1/2, 1/2] and ‖f‖2 = 1, and any x,y ∈ R

d, the ex-

pectation of the WLSH kernel k̃(x,y) over the random
choice of LSH function hw,z ∼ H is given by

Ehw,z∼H
[
k̃(x,y)

]

=

∫

Rd

e2πi(x−y)⊤ξ

d∏

l=1

Ewl∼p(w)

[
wl ·

∣∣∣f̂(wlξl)
∣∣∣
2
]
dξ.

Equivalently, it can be expressed as

Ehw,z∼H
[
k̃(x,y)

]

=

d∏

l=1

Ewl∼p(w)

[
(f ∗ f)

(
xl − yl
wl

)]
.

By Claim 7, E

[
k̃(x,y)

]
is clearly shift-invariant.

Moreover, by the convolution theorem (see Claim 13),
the Fourier transform of the expectation is

F
[
E

[
k̃(·+ y,y)

]]
(ξ)

=
d∏

l=1

Ewl∼p(w)

[
wl ·

∣∣∣f̂(wlξl)
∣∣∣
2
]
,

which is a positive function for every ξ. Hence, the
expectation of the WLSH kernel is a valid kernel. We
now formally define WLSH kernels families.

Definition 8 (WLSH Kernel Family). Let p(·) be
some probability density function with support R+
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and let f : R → R be some even function with support
[−1/2, 1/2] and ‖f‖2 = 1. The WLSH kernel function
kf,p : Rd → R is defined as

kf,p(x) =

d∏

l=1

(∫ ∞

0

p(wl) · (f ∗ f)

(
xl

wl

)
dwl

)
,

for any x ∈ R
d. We often drop the subscripts f, p and

just write k(·) to denote the WLSH kernel.

It follows from Claim 7 that for any WLSH kernel k(·),
there exists an unbiased WLSH estimator

Ehw,z∼H
[
k̃(x,y)

]
= k(x− y).

3.2 Smoothness of WLSH Gaussian process

In the context of Bayesian estimation, some regularity
assumptions are often made about the function being
learned. Smoothness is the most common assumption.
Suppose that η : R

d → R is a sample path from a
Gaussian process (GP) GP(0, k(x−y)), i.e., its mean is
E[η(x)] = 0 for every x ∈ R

d and its covariance is given
by the kernel function E[η(x)η(y)] = k(x−y) for every
x,y ∈ R

d, where k(·) is a shift-invariant positive defi-
nite kernel. The Bayesian estimation algorithms com-
monly assume that the sample paths of the GP, η(x),
satisfy certain smoothness properties with high prob-
ability. For instance, in the context of Gaussian pro-
cess optimization in bandit setting, to get a provable
guarantee, the known algorithms require the deriva-

tives of the GP’s sample path, ∂η(x)
∂x , to be bounded

everywhere with sub-Gaussian tail probability Srinivas
et al. (2009). We prove that our WLSH construction
(Definition 8) provides a class of smooth kernels.

In the following lemma we prove that the sample paths
of GP(0, kf,p(x − y)) when the covariance kf,p(·) is
WLSH kernel (Definition 8) inherit their smoothness
from the bucket-shaping function f . The lemma shows
that our construction of WLSH family of kernels from
Definition 8 is able to generate a GP such that the
partial derivatives of a sample path from this GP is
bounded everywhere with a sub-Gaussian distribution
as long as the function f(·) is smooth. As shown in Fig-
ure 1, we use a bucket shape f(·) which has a smooth
transition around the edges as opposed to random bin-
ning features whose bucket shape is rect(·) with a dis-
continuity at the edges. Here we denote the partial
derivative with respect to jth coordinate ∂/∂j by Dj .
The partial derivative of the GP with respect to the jth

coordinate is denoted by Djη(x). The sample paths of
this process are Djη(x), where η(x) is a sample path
from the original GP.

Lemma 9. For any positive integer q, any integers
q1, q2, · · · qd ≥ 0 such that

∑
j qj = q let the derivative

operator D be defined as D = Dq1
1 Dq2

2 · · ·Dqd
d . For

any even function f with support [−1/2, 1/2] which
has bounded derivatives of up to q + 1 order and any
PDF p(·) with non-negative support, if η : [0, 1]d → R

is a sample path from GP(0, k(x − y)), where k(·) is
the WLSH kernel (Definition 8), then the mixed par-
tial derivative of the sample path, Dη(x), satisfies the
following high probability bound:

Pr

[
sup

x∈[0,1]d
|Dη(x)| > M

]
≤

(
LM

σ2

)d

e−
M2

σ2 ,

where σ2 =
∏d

l=1

∥∥f (ql)
∥∥2
2

∫
R+

p(wl)

w
2ql
l

dwl and L =

O

(
supj∈[d]

∣∣∣∣
∏

l∈[d]

∥∥f (ql+δl,j)
∥∥2
2

∫
R+

p(wl)

w
2(ql+δl,j)

l

dwl

∣∣∣∣
)

where δl,j = 0 for every l 6= j and δj,j = 1.

4 Spectral approximation and Kernel
Ridge Regression (KRR)

In this section we prove our main results which show
that our weighted LSH estimator provides an OSE
for kernel matrices. Suppose that you are given a
collection of points in the d dimensional Euclidean
space x1,x2, . . .xn ∈ R

d together with (noisy) mea-
surements of some unknown function η∗ : Rd → R,

γi = η∗(xi) + ǫi,

where the ǫi are iid Gaussians with variance σ2
ǫ and

the aim is to estimate the underlying function η∗(x)
from the data. One simple yet powerful method for
solving this problem is the Kernel Ridge Regression
(KRR). To find the KRR estimator, one needs to solve

the least squares problem minβ ‖Kβ − γ‖
2
2 + λβ⊤Kβ,

where K ∈ R
n×n is the kernel matrix defined as

Kij = k(xi,xj). The least squares solution is β∗ =

(K + λI)
−1

γ. If the function η∗ is a sample path
from a GP(0, k(x,y)) then the KRR estimator (i.e.,
η(·) =

∑
i∈[n] β

∗
i k(·,x

i)) is optimal in the Bayesian
sense.

In order to accelerate the computational complexity
KRR, we approximate the kernel function k(·) us-
ing the WLSH estimator (Definition 6). For any
x1,x2, . . . ,xn ∈ R

d, the approximated kernel ma-
trix K̃ ∈ R

n×n is defined as, [K̃]ij = k̃f,p(x
i,xj),

where k̃f,p(·) is the WLSH estimator as in Definition 6.

One can see that the matrix K̃f,p is very structured
and typically sparse (it’s ijth entry is nonzero only
if xi and xj get hashed into the same bucket, i.e.,
hw,z(x

i) = hw,z(x
j)). Hence, K̃f,p supports fast ma-

trix vector multiplication and can be stored in small
memory.
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Approximate kernel matrix K̃ can be stored in
small memory and supports fast matrix vec-
tor multiplication: Suppose that we want to build
a data structure which can be stored in space O(n)
such that using this data structure we can compute
the product K̃β for arbitrary vectors β ∈ R

n in linear
time O(n). It follows from Definition 6 that for any
s ∈ [n],

(K̃β)s = Bhw,z(xs)(β) · f
⊗d

(
hw,z(x

s) +
z− xs

w

)
,

where Bj(β) =
∑

i:hw,z(xi)=j βi ·f
⊗d

(
j+ z−xi

w

)
for ev-

ery bucket j and we call it the load of bucket j. This is
illustrated in Figure 1 for the one dimensional case. In
dimension one, to compute the load of jth bucket, we
first shift the function f to z + jw and then for every
xi which is hashed into jth bucket, we scale βi by the

function value at point xi, f(x
i−jw−z

w ), and sum them
all up.

Therefore we construct the data structure as follows:
We first hash all the data points xi using the LSH func-
tion hw,z(·) and keeps the lists Lj1 , Lj1 , . . . , where each
list corresponds to one of the non-empty buckets of this
hashing. Each list Ljr contains the points x

i which are
hashed to bucket jr, i.e., Ljr = {i : hw,z(x

i) = jr} for
every r. All the lists can be formed in time O(dn)
which is the time to hash all data points. And the
total size of all lists is the number of data points n,
because each data point gets hashed into exactly one
bucket, hence the data structure can be stored using
O(n) memory words. Then to compute the product

K̃β first we compute the bucket load Bjr(β) for every
non-empty bucket jr,

Bjr(β) =
∑

i∈Ljr

βi · fd

(
jr +

z− xi

w

)
.

We can do this for all buckets using time O(n). Then

every coordinate s of the product (K̃β)s is computed
as follows:

(K̃β)s = Bhw,z(xs)(β) · f
⊗d

(
hw,z(x

s) +
z− xs

w

)
,

where Bhw,z(xs)(β) denotes the load of the bucket xs

is hashed into. Hence, the product can be computed
in total time O(n).

4.1 Oblivious subspace embedding via
WLSH estimator

Recall that our aim is to solve the least squares prob-
lem minβ ‖Kβ − γ‖

2
2 + λβ⊤Kβ quickly by using an

approximate kernel matrix K̃. In order to get a prov-
able (1± ǫ)-approximate solution to the least squares

z z + w z + 2w z + 3w z + 4w

−2

0

2
β1

β2

β3

β4

β5

β6

β7

β8

β9

f

Figure 1: The load of jth bucket corresponds to shifting
the bucket-shaping function f⊗d to jw + z and then
integrating it against α(x) =

∑n
j=1 βjδ(x− xj).

problem, K̃ must be spectrally close to original K in
some way. In this paper we focus on oblivious subspace
embeddings (see Definition 1) and show that this prop-
erty is enough to get a provably good approximation
to the least squares problem. We need the following
claim before proving the main result,

Claim 10. For any dataset x1,x2, . . . ,xn ∈ R
d, if

k(·) is the WLSH estimator as in Definition 6 then its

corresponding kernel matrix K̃ ∈ R
n×n, is symmetric

and satisfies, 0 � K̃ � n‖f⊗d‖2∞ · I.

Now we are ready to prove the main theorem and show
that WLSH estimator provides an oblivious subspace
embedding for WLSH kernel matrix K.

Theorem 11. For any positive integers d, n, any col-
lection of points x1,x2, . . . ,xn ∈ R

d, any PDF p(·)
with non-negative support, any even function f(·) with
support [−1/2, 1/2] and ‖f‖2 = 1, let k(·) be the
WLSH kernel as in Definition 8 and let K ∈ R

n×n

be its kernel matrix. If k̃1(·), k̃2, . . . , k̃m(·) are inde-
pendent instances of WLSH estimator as per Defini-
tion 6 and K̃1, K̃2, . . . , K̃m are their kernel matrices,
then for any λ, ǫ > 0, the matrix K̃ := 1

m

∑m
s=1 K̃

s

is an
(
ǫ, 1

poly(n) , λ
)
-oblivious subspace embedding (see

Definition 1) for the kernel matrix K as long as m =

Ω
(

‖f⊗d‖2
∞

ǫ2 · (n/λ) · log n
)
.

Proof. Let U ∈ R
n×n be the unitary matrix of eigen-

vectors of K, i.e., ith column of matrix U corresponds
to ith eigenvector of matrix K (The eigenvalues are or-
dered in the decreasing order λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0).
Since U is unitary (U⊤U = In×n), it is enough to
prove that with probability 1− 1

poly(n) , (1− ǫ)U⊤(K+

λI)U � U⊤(K̃ + λI)U � (1 + ǫ)U⊤(K + λI)U .
Let Z = (U⊤(K + λI)U)−1/2. Since Z is a diago-
nal matrix with entries Zi,i = 1√

λi+λ
and is, there-

fore, positive definite, we can multiply the above iden-
tity from left and right by Z and equivalently prove
that, (1 − ǫ)I � Z⊤U⊤(K̃ + λI)UZ � (1 + ǫ)I.
In order to satisfy the above it is sufficient to have
||Z⊤U⊤(K̃ + λI)UZ − I||op ≤ ǫ where ‖ · ‖op de-
notes the operator norm of matrices. Therefore, it suf-
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fices to prove Pr

[∥∥∥Z⊤U⊤(K̃ + λI)UZ − I
∥∥∥
op

≤ ǫ

]
≥

1 − 1
poly(n) , which follows from Lemma 28 (see Ap-

pendix D).

By Claim 10 the estimators K̃s are PSD, there-

fore, 0 � Z⊤U⊤
(
K̃s + λI

)
UZ, for every s ∈

[m]. Also because of the unbiasedness of estimators,

E

[
Z⊤U⊤

(
K̃s + λI

)
UZ

]
= I. Therefore we can in-

voke Lemma 28. In order to do so, we need to upper

bound the operator norm of Z⊤U⊤
(
K̃s

f,p + λI
)
UZ.

By Claim 10, we have
∥∥∥K̃s + λI

∥∥∥
op

=
∥∥∥K̃s

∥∥∥
op

+ λ ≤

n · ‖f⊗d‖2∞ + λ; thus,
∥∥∥Z⊤U⊤

(
K̃s + λI

)
UZ

∥∥∥
op

≤
∥∥∥K̃s + λI

∥∥∥
op

· ‖Z⊤U⊤UZ‖op

≤
(
n‖f⊗d‖2∞ + λ

)
· ||Z⊤Z||op ≤

n

λ
· ‖f⊗d‖2∞ + 1.

The result now follows by Lemma 28 (see Ap-
pendix D).

Now we show that our analysis in Theorem 11 is
not loose and in order to get an OSE for worst case
datasets one needs m = Ω

(
1
ǫ2 (n/λ) log n

)
.

Theorem 12 (Lower Bound in order to achieve OSE).
Let f(·) = rect(·) and p(w) = we−w (Gamma distribu-
tion) and let k(·) be the WLSH kernel as in Definition
8. For any integer d ≥ 1 any λ > 0 and any in-
teger n ≥ 8λ, there exists a dataset x1, · · ·xn ∈ R

d

such that if K ∈ R
n×n is the kernel matrix defined as

Kij = kf,p(x
i−xj) and k̃1(·), k̃2, · · · k̃m(·) are indepen-

dent instances of WLSH estimator as per Definition 6
and K̃1, K̃2, · · · K̃m are their kernel matrices then for
any 0 < ǫ ≤ 1/6 in order for K̃ := 1

m

∑m
s=1 K̃

s to
be an (ǫ, 1

n , λ)-oblivious subspace embedding for K one
needs to have m = Ω

(
1
ǫ2 · n

λ · log n
)
.

Proof sketch: let the points {xi}ni=1 ⊆ R
d be posi-

tioned as x1 = · · · = xn/2 = (−λ/n, 0, 0, . . . 0)⊤ and
xn/2+1 = · · · = xn = (λ/n, 0, 0, · · · 0)⊤. Let the vector
β ∈ C

n be defined as, β1 = β2 = · · · = βn/2 = −1
and βn/2+1 = · · · = βn = 1. The proof proceeds
by showing that in order to preserve the quadratic
form corresponding to this β, one needs to set m =
Ω
(

1
ǫ2 · n

λ · log n
)
. By some calculations, we see that

β⊤K̃sβ has the following distribution:

β⊤K̃sβ =

{
n2

2 with probability p ≤ 2λ
n

0 with probability 1− p
.

Thus, to obtain a non-zero estimator with constant
probability, one needs m = Ω(nλ ). In order to obtain

the (1 ± ǫ)-approximation guarantee with probability
1− 1/n, see Appendix D.

4.2 Approximate KRR via WLSH

In this section we give the algorithm for approximate
KRR problem using the WLSH estimator. Let k̃sf,p(·)
be independent instances of the WLSH estimator for
all s ∈ [m]. We define the approximate kernel function

k̃(·) := 1
m

∑m
s=1 k̃

s
f,p(·) and let K̃ be the corresponding

kernel matrix. Suppose η∗ : R → R is the underlying
function to be learned via KRR and the measurements
are γi = η∗(xi) + ǫi, where ǫi’s are iid normal noise
with variance σ2

ǫ . We solve the approximate regressor

by solving the linear system, (K̃ + λI)β = γ, where
γ = (γ1, . . . , γn)

⊤. Then the approximate regressor
estimates the function values at a point x as follows:

η̃(x) =
∑

i∈[n]

βik̃(x,x
i)

=
1

m

m∑

s=1

Bhs
w,z(x)

(β) · f⊗d

(
hs
w,z(x) +

z− x

w

)

where Bhs
w,z(x)

(β) =
∑

i:hs
w,z(x

i)=hs
w,z(x)

βi ·

f⊗d
(
hs
w,z(x

i) + z−xi

w

)
is the load of the bucket

that x gets hashed into via sth LSH function, hs
w,z.

We give an empirical risk bound for the WLSH esti-
mator in Appendix E.

5 Experiments

Estimating a GP using the WLSH kernel: In
the first set of experiments we show that our WLSH
kernel family from Section 3 performs as accurately as
the most popular kernel functions for learning Gaus-
sian processes through KRR. Specifically, we gener-
ate a random function η : [0, 1]d → R which is
a sample path from a Gaussian process with zero
mean whose covariance σ(x, y) = E[η(x)η(y)] is one
of (1) Laplace e−‖x−y‖1 or (2) Squared Exponential

e−‖x−y‖2
2 or (3) Matérn with ν = 5/2: C5/2(x − y) =(

1 + ‖x− y‖2 + ‖x− y‖22/3
)
e−‖x−y‖2 .

Table 1: Test set RMSE for estimating GPs.

Covariance
of GP σ(·)

Dim. Laplace Squared ex-
ponential

Matérn
ν = 5/2

WLSH
kf,p(·)

30 0.128 0.086 0.093 0.088

e−‖·‖2
2 5 0.043 0.031 0.032 0.029

30 0.385 0.479 0.481 0.438
e−‖·‖1 5 0.103 0.230 0.226 0.166

30 0.335 0.291 0.299 0.294
C5/2(·) 5 0.013 0.016 0.013 0.012

We run this experiment for two settings: Low-
dimensional data (d = 5) and high-dimensional data
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(d = 30). In each case, we sample η(x) uniformly
over [0, 1]d at 4000 points. We use 3000 samples for
training the estimator and 1000 samples for testing.
Then we estimate the function value on test data us-
ing KRR on the training data. We run KRR with var-
ious kernel function choices and show that our WLSH
kernel (Definition 8) performs as well as the most
popular kernel functions such as Matérn ν = 5/2,
Squared Exponential, and Laplace. The WLSH kernel
we used for this experiment has the bucket-shaping
function f(x) =

(
rect ∗ rect1/4 ∗ rect1/4

)
(2x). This

function has a continuous derivative and a bounded
second derivative. Moreover, we chose the PDF to

be p(w) = w6

5! e
−w. Thus, the resulting kernel has

bounded mixed partial derivatives of up to the fourth
order. This is the same type of smoothness as the
Matérn kernel with ν = 5/2, but in our experiments
(see Table 1), we outperform Matérn kernel on all
datasets. Moreover, in the low-dimensional setting
d = 5, we outperform the Squared Exponential ker-
nel.

Large scale KRR on real data: Our second set
of experiments shows that the WLSH estimator speeds
up KRR on standard real data sets by orders of magni-
tude compared to exact KRR and has better accuracy
than the popular Random Fourier Features (RFF)
Rahimi and Recht (2007). We evaluate the following
methods:

Exact KRR using exact kernel computation for var-
ious shift-invariant kernel functions.

Random Fourier Features (RFF) for approximat-
ing the squared exponential kernel. The kernel value
is approximated by k̃(xi, xj) = φ(xi)⊤φ(xj), where
φ : Rd → R

D is a random mapping and D denotes the
number of random features.

WLSH using the procedure explained in Section 4.2
with bucket-shaping function f(·) = rect(·) and PDF
p(w) = we−w.

Results: The Root Mean Square Error (RMSE) of
different methods on the test data set as well as the
time to train the regressors are presented in Table 2.2,3

One can see the LSH method is as accurate as the exact
KRR on the first two datasets while its running time

2All methods require solving a linear system which we
do using the Conjugate Gradient method. The most expen-
sive computation in each iteration is multiplying a vector
by the (approximate) kernel matrix. This takes time ≈ n

2

for exact methods and time ≈ nD for RFF, where D is
the number features, and time ≈ nm for WLSH method,
where m is the number of LSH functions.

3Since RFF and LSH method are randomized, we ran
the experiments with 5 different random seeds and reported
the avg. RMSE and running time in Table 2.

is at least 3x faster. On the last two datasets, the
exact method did not converge to a solution within 12
hours but the approximate methods could run pretty
fast. The LSH method outperforms the accuracy of
RFF on the large scale datasets. RFF requires a large
number of features D in order to be accurate which
leads to a huge memory usage therefore on the large
scale datasets where we have a memory constraint and
cannot use large D, RFF’s performance deteriorate.
The running time of RFF is better than LSH method
because its implementation can be optimized but when
data is large and there is a memory constraint, RFF
performs worse than LSH.

Table 2: Test set RMSE of different regression meth-
ods together with the running times.

Dataset Exact
Laplace

Exact
Squared
Exp.

Exact
Matérn
ν = 5

2

Random
Fourier
Features

WLSH

Wine Quality 0.684 0.728 0.709 0.737 0.701
d = 11 28 sec 30 sec 1 min 2 sec 5 sec
size: 6497 D=7000 m=450
Insurance Company 0.231 0.231 0.231 0.231 0.232
d = 85 3 min 3 min 5.5 min 3 sec 2 sec
size: 9822 D=5000 m=250
CT Slices Location N/A N/A N/A 4.10 3.45
d = 384 >12 hrs >12 hrs >12 hrs 0.5 min 1 min
size: 53500 D=3500 m=50
Forest Cover N/A N/A N/A 0.968 0.720
d = 54 >12 hrs >12 hrs >12 hrs 6 min 7.5 min
size: 581012 D=1500 m=50

We use the following standard real datasets for Gaus-
sian process regression: The first dataset we used for
regression is the Wine Quality dataset. The dimen-
sionality of this dataset is d = 11. We used 4000 sam-
ples for training the regressors and 2497 samples for
testing the accuracy. The second dataset is Insur-
ance Company dataset. The dimensionality of this
dataset is d = 85. We used 5822 samples for train-
ing the regressors and 4000 samples for testing the
performance of estimators. The third dataset is the
Location of CT Slices. The dimensionality of this
dataset is rather high d = 384. We used 35000 samples
for training the regressors and 18500 samples for test-
ing their performance. The last dataset is the Forest
Cover dataset. The dimensionality of this dataset is
d = 54. We used 500000 samples for training the re-
gressors and 81012 samples for testing the regressors.
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