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Abstract

We consider the exploration-exploitation
dilemma in finite-horizon reinforcement
learning (RL). When the state space is
large or continuous, traditional tabular
approaches are unfeasible and some form of
function approximation is mandatory. In
this paper, we introduce an optimistically-
initialized variant of the popular randomized
least-squares value iteration (RLSVI), a
model-free algorithm where exploration is
induced by perturbing the least-squares
approximation of the action-value function.
Under the assumption that the Markov
decision process has low-rank transition dy-
namics, we prove that the frequentist regret
of RLSVI is upper-bounded by rOpd2H2

?
T q

where d is the feature dimension, H is the
horizon, and T is the total number of steps.
To the best of our knowledge, this is the first
frequentist regret analysis for randomized
exploration with function approximation.

1 Introduction

A key challenge in reinforcement learning (RL) is how
to balance exploration and exploitation in order to ef-
ficiently learn to make good sequences of decisions in a
way that is both computationally tractable and statis-
tically efficient. In the tabular case, the exploration-
exploitation problem is well-understood for a number
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of settings (e.g., finite-horizon, average reward, infinite
horizon with discount), exploration objectives (e.g.,
regret minimization and probably approximately cor-
rect), and for different algorithmic approaches, where
optimism-under-uncertainty (Jaksch et al., 2010; Fruit
et al., 2018) and Thompson sampling (TS) (Osband
et al., 2016a; Russo, 2019) are the most popular prin-
ciples. For instance, in the finite-horizon setting, Azar
et al. (2017) and Zanette and Brunskill (2019) recently
derived minimax optimal and structure adaptive re-
gret bounds for optimistic exploration algorithms. TS-
based algorithms have mainly been analyzed in tabu-
lar MDPs in terms of Bayesian regret (Osband et al.,
2016a; Osband and Roy, 2017; Ouyang et al., 2017),
which assumes that the MDP is sampled from a known
prior distribution. These bounds do not hold against
a fixed MDP and algorithms with small Bayesian re-
gret may still suffer high regret in some hard-to-learn
MDPs within the chosen prior. In the tabular setting,
frequentist (or worst-case) regret analysis has been
developed for TS-based algorithms both in the aver-
age reward (Gopalan and Mannor, 2015; Agrawal and
Jia, 2017) and finite-horizon case (Russo, 2019). De-
spite the fact that TS-based approaches have slightly
worse regret bounds compared to optimism-based al-
gorithms, their empirical performance is often supe-
rior (Chapelle and Li, 2011; Osband and Roy, 2017).

Unfortunately, the performance of tabular exploration
methods rapidly degrades with the number of states
and actions, thus making them infeasible in large or
continuous MDPs. So, one of the most important chal-
lenges to improve sample efficiency in large-scale RL
is how to combine exploration mechanisms with gen-
eralization methods to obtain algorithms with prov-
able regret guarantees. The simplest approach to deal
with continuous state is discretization. It has been
used in Ortner and Ryabko (2012); Lakshmanan et al.

(2015) to derive rOpT 3{4q and rOpT 2{3q frequentistic re-
gret bounds for average reward MDPs. Recent work
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on contextual MDPs (Jiang et al., 2017; Dann et al.,
2018) yielded promising sample efficiency guarantees,
but such algorithms are computationally intractable,
and their bounds are not tight in the tabular settings.

One of the most simple and popular forms of func-
tion approximation is to use a linear representation for
the action-value functions. When the transition model
also has low-rank structure, very recent work has
shown that a variant of Q-learning can achieve poly-
nomial sample complexity as a function of the state
space dimension when given access to a generative
model (Yang and Wang, 2019b). Nonetheless, the gen-
erative model assumption removes most of the explo-
ration challenge, as the state space can be arbitrarily
sampled. Concurrently to our work, optimism-based
exploration has been successfully integrated with lin-
ear function approximation both in model-based and
model-free algorithms (Yang and Wang, 2019a; Jin
et al., 2019). In MDPs with low-rank dynamics, these
algorithms are proved to have regret bounds scaling
with the dimensionality d of the linear space (i.e., the
number of features) instead of the number of states.

On the algorithmic side, TS-based exploration can be
easily integrated with linear function approximation
as suggested in the Randomized Least-Squares Value
Iteration (RLSVI) algorithm (Osband et al., 2016b).
Despite promising empirical results, RLSVI has been
analyzed only in the tabular case (i.e., when the fea-
tures are indicators for each state) and for Bayesian
regret. While RLSVI is a model-free algorithm, recent
work (Russo, 2019) leverages an equivalence between
model-free and model-based algorithms in the tabular
case to derive frequentist regret bounds. The analysis
carefully chooses the variance of the perturbations ap-
plied to the estimated solution to ensure that the value
estimates are optimistic with constant probability.

In this paper we provide the first frequentist regret
analysis for a variant of RLSVI when linear func-
tion approximation is used in the finite-horizon set-
ting. Similar to optimistic PSRL for the tabular set-
ting (Agrawal and Jia, 2017), we modify RLSVI to
ensure that the perturbed estimates used in the value
iteration process are optimistic with constant proba-
bility. Following the results in the linear bandit lit-
erature (Abeille et al., 2017), we show that the per-
turbation applied to the the least-squares estimates
should be larger than their estimation error. However,
in contrast to bandit, perturbed estimates are propa-
gated back through iterations and we need to carefully
adjust the perturbation scheme so that the probabil-
ity of being optimistic does not decay too fast with the
horizon and, at the same time, we can control how the
perturbations accumulate over iterations. Under the
assumption that the system dynamics are low-rank,

we show that the frequentist regret of our algorithm is
rOpH2d2

?
T `H5d4 ` εdHp1` εdH2qT q where ε is the

misspecification level, H is the fixed horizon, d is the
number of features, and T is the number of samples.
Similar to linear bandits, this is worse by a factor of?
Hd (i.e., the square root of the dimension of the es-

timated parameters) than the optimistic algorithm of
Jin et al. (2019). Whether this gap can be closed is an
open question both in bandits and RL.

2 Preliminaries

We consider an undiscounted finite-horizon
MDP (Puterman, 1994) M “ pS,A,P, r,Hq with state
space S, action space A and horizon length H P N`.

For every t P rHs
def
“ t1, . . . , Hu, every state-action

pair is characterized by a reward rtps, aq P r0, 1s and a
transition kernel Ptp¨|s, aq over next state. We assume
S to be a measurable, possibly infinite, space and A
can be any (compact) time and state dependent set
(we omit this dependency for brevity). For any t P rHs
and ps, aq P S ˆ A, the state-action value function of
a non-stationary policy π “ pπ1, . . . ,πHq is defined

as Qπ
t ps, aq “ rtps, aq ` E

”

řH
l“t`1 rlpsl,πlpslqq | s, a

ı

and the value function is V π
t psq “ Qπ

t ps,πtpsqq. Since
the horizon is finite, under some regularity conditions,
(Shreve and Bertsekas, 1978), there always exists an
optimal policy π‹ whose value and action-value func-

tions are defined as V ‹
t psq

def
“ V π‹

t psq “ supπ V
π
t psq

and Q‹
t ps, aq

def
“ Qπ‹

t ps, aq “ supπ Q
π
t ps, aq. Both Qπ

and Q‹ can be conveniently written as the result of
the Bellman equations

Qπ
t ps, aq “ rtps, aq ` Es1„Ptp¨|s,aqrV π

t`1ps1qs (1)

Q‹
t ps, aq “ rtps, aq ` Es1„Ptp¨|s,aqrV ‹

t`1ps1qs (2)

where V π
H`1psq “ V ‹

H`1psq “ 0 and V ‹
t psq “

maxaPA Q‹
t ps, aq, for all s P S. Notice that by bound-

edness of the reward, for any t and ps, aq, all functions
Qπ

t , V
π
t , Q‹

t , V
‹
t are bounded in r0, H ´ t ` 1s.

The learning problem The learning agent inter-
acts with the MDP in a sequence of episodes k P rKs of
fixed length H by playing a nonstationary policy πk “
pπ1k, . . . ,πHkq where πtk : S Ñ A. In each episode,
the initial state s1k is chosen arbitrarily and revealed
to the agent. The learning agent does not know the
transition or reward functions, and it relies on the sam-
ples (i.e., states and rewards) observed over episodes
to improve its performance over time. Finally, we eval-
uate the performance of an agent by its regret after K

episodes: Regret(K)
def
“

řK
k“1 V

‹
1 ps1kq ´ V πk

1 ps1kq.

Linear function approximation and low-rank
MDPs. Whenever the state space S is too large
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or continuous, functions above cannot be represented
by enumerating their values at each state or state-
action pair. A common approach is to define a fea-
ture map φt : S ˆ A Ñ Rd, possibly different at any
t P rHs, embedding each state-action pair ps, aq into a
d-dimensional vector φtps, aq. The action-value func-
tions are then represented as a linear combination be-
tween the features φt and a vector parameter θt P Rd,
such that Qtps, aq “ φtps, aqJθt. This representation
effectively reduces the complexity of the problem from
S ˆA down to d. Nonetheless, Q‹

t may not fit into the
space spanned by φt, and approximate value iteration
may propagate and accumulate errors over iterations
(Munos, 2005; Munos and Szepesvári, 2008), and an
exploration algorithm may suffer linear regret. Thus,
similar to (Yang and Wang, 2019a,b; Jin et al., 2019),
we consider MPDs that are “coherent” with the fea-
ture map φt used to represent action-value functions.
In particular, we assume that M has (approximately)
low-rank transition dynamics and linear reward in φt.

Assumption 1 (Approximately Low-Rank MDPs).
We assume that for each t P rHs there exist a feature
map ψt : S Ñ Rd, s ÞÑ ψtpsq and a parameter θrt P Rd

such that the reward can be decomposed as a linear
response and a non-linear term:

rtps, aq “ φtps, aqJθrt ` ∆r
t ps, aq (3)

and the dynamics are approximately low-rank:

Ptps
1 | s, aq “ φtps, aqJψtps

1q ` ∆P
t ps1 | s, aq. (4)

We denote by ε an upper bound on the non-linear
terms, as follows:

|∆r
t ps, aq| ď ε, }∆P

t p¨ | s, aq}1 ď ε. (5)

We further make the following regularity assumptions:

}φtps, aq}2 ď Lφ, }θrt }2 ď Lr,

ż

s

}ψtpsq} ď Lψ. (6)

An important consequence of Asm. 1 in the absence of
misspecification (ε “ 0q is that the Q-function of any
policy is linear in the features φ.

Proposition 1. If ε “ 0, for every policy π and
timestep t P rHs there exists θπt P Rd such that

Qπ
t ps, aq “ φtps, aqJθπt , @ps, aq P S ˆ A. (7)

Proof. The definition of low-rank MDP from Asm. 1
together with the Bellman equation gives:

Qπ
t ps, aq “ rtps, aq ` Es1|s,arV π

t`1ps1qs

“ φtps, aqJθrt `
ż

s1

φtps, aqJψtps
1qV π

t`1ps1q

“ φtps, aqJ

ˆ

θrt `
ż

s1

ψtps
1qV π

t`1ps1q

˙

(8)

We define θπt to be the term inside the parentheses.

To give further intuition about the assumption, con-
sider the case of finite state and action spaces (again
with ε “ 0). Then we can write:

Ptps, aq “ φtps, aqJΨt (9)

for a certain Ψt P RdˆS . Then for any policy π there
exists a matrix Φπ such that the transition matrix of
the Markov chain Pπ can be expressed by a low-rank
factorization:

Pπ
t “ Φπ

t Ψt, Φπ
t P RSˆd,Ψt P RdˆS (10)

where in particular Φπ
t depends on the policy π:

Φπ
t rs, :s “ φtps,πpsqqJ, Ψtr:, s

1s “ ψtps
1q. (11)

Since RankpΦπ
t q ď d,RankpΨtq ď d we get

RankpPπ
t q ď d (see Golub and Van Loan (2012)).

3 Algorithm

Our primary goal in this work is to provide a
Thompson sampling (TS)-based algorithm with linear
value function approximation with frequentist regret
bounds. A key challenge in frequentist analyses of
TS algorithms is to ensure sufficient exploration us-
ing randomized (i.e., perturbed) versions of the esti-
mated model or value function. A common way to
obtain effective exploration has been to consider per-
turbations large enough so that the resulting sampled
model or value function is optimistic with a fixed prob-
ability (Agrawal and Goyal, 2013; Abeille et al., 2017;
Russo, 2019). However, such prior work has only con-
sidered the bandit or tabular MDP settings. Here we
modify RLSVI described by Osband et al. (2016b) to
use an optimistic “default” value function during an
initial phase and inject carefully-tuned perturbations
to enable frequentist regret bounds in low-rank MDPs.
We refer to the resulting algorithm as opt-rlsvi and
we illustrate it in Alg. 1.

Gaussian noise to encourage exploration. opt-
rlsvi proceeds in episodes. At the beginning of
episode k it receives an initial state s1k and runs
a value iteration procedure to compute a linear ap-
proximation of Q‹

t at each timestep t P rHs. To

encourage exploration, the learned parameter pθtk is
perturbed by adding mean-zero Gaussian noise ξtk „
N p0,σ2Σ´1

tk q, obtaining θtk “ pθtk ` ξtk. The per-
turbation (or pseudonoise) ξtk has variance propor-
tional to the inverse of the regularized design matrix
Σtk “

řk´1
i“1 φtiφ

J
ti`λI, where the φti’s are the features

encountered in prior episodes; this results in perturba-
tions with higher variance in less explored directions.
Finally, we show how to choose the magnitude σ2 of
the variance in Sec. 5.2 to ensure sufficient exploration.



Frequentist Regret Bounds for Randomized Least-Squares Value Iteration

A key contribution of our work is to prove that
this strategy can guarantee reliable exploration un-
der Asm. 1. We do this by showing that the algo-
rithm is optimistic with constant probability. Explic-
itly, we prove that the (random) value function dif-
ference pV 1k ´ V ‹

1 qps1kq can be expressed as a one-
dimensional biased random walk, which depends on a
high probability bound on the environment noise (the
bias of the walk) and on the variance of the injected
pseudonoise (the variance of the walk). By setting
the pseudonoise to have the appropriate variance we
can guarantee that the random walk is “optimistic”
enough that the algorithm explores sufficiently. Un-
fortunately, it is possible to analyze the algorithm as a
random walk only if the value function is not perturbed
by clipping; otherwise, one cannot write down the walk
and the process is difficult to analyze as further bias
is introduced by clipping. However, not clipping the
value function may give rise to abnormal values.

The issue of abnormal values. A common problem
that arises in estimation in RL with function approx-
imation is that as a result of statistical errors com-
bined with the bootstrapping and extrapolation of the
next-state value function (Munos, 2005; Munos and
Szepesvári, 2008; Farahmand et al., 2010) the value
function estimate can take values outside its plausi-
ble range. A common solution is to “clip” the boot-
strapped value function into the range of plausible val-
ues (in this case, between 0 andH). This avoids propa-
gating overly abnormal values to the estimated param-
eters at prior timesteps which would degrade their es-
timation accuracy. Clipping the value function is also
a solution typically employed in tabular algorithms
for exploration (Azar et al., 2017; Dann et al., 2017;
Zanette and Brunskill, 2019; Yang and Wang, 2019a;
Dann et al., 2019). After adding optimistic bonuses
for exploration they “clip” the value function above
by H, which is an upper bound on the true optimal
value function. Since H is guaranteed to be an op-
timistic estimate for V ‹, clipping effectively preserves
optimism while keeping the value function bounded for
bootstrapping. However, clipping cannot be easily in-
tegrated in our setting as it effectively introduces bias
in the pseudonoise and it may “pessimistically” affect
the value function estimates, reducing the probability
of being optimistic.

Default value function. To avoid propagating un-
reasonable values without using clipping, we define
a default value function, similar in the spirit to al-
gorithms such as Rmax (Brafman and Tennenholtz,
2002). In particular, we assign the maximum plau-
sible value Qtps, aq “ H ´ t ` 1 to an uncertain direc-
tion φtps, aq (as measured by the }φtps, aq}Σ´1

tk
norm).

Once a given direction φtps, aq has been tried a suf-

ficient number of times we can guarantee (under an
inductive argument) that the linearity of the represen-
tation is accurate enough that with high probability
φtps, aqJθtk ´ Q‹

t ps, aq P r´pH ´ t ` 1q, 2pH ´ t ` 1qs.
In other words, abnormal values are not going to be
encountered, and thus clipping becomes unnecessary.
Notice that this accuracy requirement is quite minimal
because V ‹

t has a range of at most H ´ t ` 1.

We emphasize that the purpose of the optimistic de-
fault function is not to inject further optimism but
rather to keep the propagation of the errors under con-
trol while ensuring optimism.

Defining the Q values. Finally, we also choose our
Q function to interpolate between the “default” op-
timistic value and the linear function of the features
as the uncertainty decreases. The main reason is to
ensure continuity of the function, which facilitates the
handling of some of the technical aspects connected to
the concentration inequality (in particular in App. E).

Definition 1 (Algorithm Q function). For some con-

stants αL,αU and using shorthand for the feature φ
def
“

φtps, aq, the default function Bt
def
“ H ´ t ` 1 and the

interpolation parameter ρ
def
“

}φ}
Σ

´1
tk

´αL

αU´αL
define:

Qtkps, aq
def
“

$

’

&

’

%

φJθtk, if }φ}Σ´1
tk

ď αL

Bt, if }φ}Σ´1
tk

ě αU

ρ
`

φJθtk
˘

` p1 ´ ρqBt, otherwise.

Algorithm 1 opt-rlsvi

1: Initialize Σt1 “ λI, @t P rHs; Define V tkpsq “
maxa Qtkps, aq, with Qtkps, aq defined in Def. 1

2: for k “ 1, 2, . . . do
3: Receive starting state s1k
4: Set θH`1,k “ 0
5: for t “ H,H ´ 1, . . . , 1 do

6: pθtk “ Σ´1
tk

´

řk´1
i“1 φtirrti ` V t`1,kpst`1,iqs

¯

7: Sample ξtk „ N p0,σ2Σ´1
tk q

8: θtk “ pθtk ` ξtk
9: end for

10: Execute πtkpsq “ argmaxa Qtkps, aq, see Def. 1
11: Collect trajectories of pstk, atk, rtkq for t P rHs.
12: Update Σt,k`1 “ Σtk ` φtkφ

J
tk for t P rHs

13: end for

4 Main Result

We present the first frequentist regret bound for a TS-
based algorithm in MDPs with approximate linear re-
ward response and low-rank transition dynamics:
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Theorem 1. Assume Asm. 1 and set the algorithm
parameters λ “ 1, σ “

a

Hνkpδq “
?
Hp rOpHdq `

Lφp3HLψ ` Lrq ` 4εH
?
dkq, αU “ 1{ rOpσ

?
dq, and

αL “ αU{2 (full definitions with the log terms can be
found in App. D). Then for any 0 ă δ ă Φp´1q{2,
with probability at least 1 ´ δ the regret of opt-rlsvi
is bounded jointly for all episodes k up to K by:

rO

ˆ

σdH
?
K `

H2d

α2
L

` εH2K

˙

. (12)

If we further assume that Lφ “ rOp1q and Lr, Lψ “
rOpdq, then the bound reduces to

rO
´

H2d2
?
T ` H5d4 ` εdHp1 ` εdH2qT

¯

. (13)

For the setting of low-rank MDPs a lower bound is
currently missing both in terms of statistical rate and
regarding the misspecification. Recently, Du et al.
(2019); Lattimore and Szepesvari (2019); Van Roy and
Dong (2019) discuss what’s possible to achieve regard-
ing the misspecification level.

For finite action spaces opt-rlsvi can be imple-
mented efficiently in space Opd2H ` dAHKq and
time Opd2AHK2q where A is the number of actions
(Prop. H.1 in appendix).

It is useful to compare our result with Yang and Wang
(2019a) and Jin et al. (2019) which study a similar set-
ting but with an approach based on deterministic opti-
mism, and with Russo (2019) which proves worst-case
regret bounds of Rlsvi for tabular representations.

Comparison with Yang and Wang (2019a). Re-
cently, Yang and Wang (2019a) studied exploration in
finite state-spaces and low-rank transitions. They de-
fine a model-based algorithm that tries to learn the
“core matrix”, defined as the middle factor of a three-
factor low-rank factorization. While their regularity
assumptions on the parameters do not immediately fit
in our framework, an important distinction (beyond
model-based vs model-free) is that their algorithm po-
tentially needs to compute the value function across
all states. This suffers ΩpSq computational complex-
ity and cannot directly handle continuous state spaces.

Comparison with Jin et al. (2019). A more direct
comparison can be done with Jin et al. (2019) which is
based on least-square value iteration (like opt-rlsvi)
and uses the same setting as we do when Lr “ Lψ “?
d and Lφ “ 1. In that case we get the regret in

Eqn. (13) which is
?
Hd-times worse in the leading

term than Jin et al. (2019).

In terms of feature dimension d, this matches the
?
d

gap in linear bandits between the best bounds for a
TS-based algorithm (with regret rOpd3{2

?
T q) (Abeille

et al., 2017) and the best bounds for an optimistic al-

gorithm (with regret rOpd
?
T q) (Abbasi-Yadkori et al.,

2011). This happens because the proof techniques for
Thompson sampling require the perturbations to have
sufficient variance to guarantee optimism (and thus
exploration) with some probability. For a geometric
interpretation of this, see Abeille et al. (2017). For
H-horizon MDPs, the total system dimensionality is
dH, and therefore the extra

?
dH factor is expected.

Comparison with Russo (2019). Recently, Russo
(2019) has analyzed Rlsvi in tabular finite horizon
MDPs. While the core algorithm is similar, function
approximation does introduce challenges that required
changing Rlsvi by, e.g., introducing the default func-
tion. While in Russo (2019) the value function can
be bounded in high probability thanks to the non-
expansiveness of the Bellman operator associated to
the estimated model, in our case this has to be handled
explicitly. We think that the use of a default optimistic
value function could yield better horizon dependence
for Rlsvi in tabular settings, though this would re-
quire changing the algorithm.

5 Proof Outline

In this section we outline the proof of our regret bound
for opt-rlsvi. The four main ingredients are: 1) a
one-step expansion of the action-value function differ-
enceQtk´Qπk

t in terms of the next-state value function
difference; 2) a high probability bound on the noise
and pseudonoise; 3) showing that the algorithm is op-
timistic with constant probability; 4) combining to get
the regret bound.For the sake of clarity, we will assume
no misspecification (ε “ 0), no regularization (λ “ 0),

and a nonsinigular design matrix Σtk “
řk´1

i“1 φtiφ
J
ti.

The complete proof is reported in the appendix.

5.1 One-Step Analysis of Q functions

In this section we do a “one-step” analysis to decom-
pose the difference in Q functions in the case where
}φtps, aq}Σ´1

tk
ď αL so that Qtk is linear in the fea-

tures. The decomposition has three parts: environ-
ment noise, pseudonoise, and the difference in value
functions at step t ` 1. It reads pQtk ´ Qπ

t qps, aq “

φtps, aqJpηtk ` ξtkq ` Es1|s,apV t`1,k ´ V π
t`1qps1q (14)

where ηtk is the projected environment noise defined
below in Eqn. (18). The complete version of the de-
composition is Lem. C.1 in the appendix, while here
we give an informal proof sketch of this fact.

First, since we are assuming that }φtps, aq}Σ´1
tk

ď αL
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and ε “ 0, we can apply Def. 1 and Prop. 1 to write:

pQtk ´ Qπ
t qps, aq “ φtps, aqJpθtk ´ θπt q. (15)

Decomposing θtk “ pθtk ` ξtk immediately shows how
the pseudonoise ξtk appears in Eqn. (14). Now we
need to handle the regression term:

pθtk
def
“ Σ´1

tk

k´1
ÿ

i“1

φtiprti ` V t`1,kpst`1,iqq. (16)

To handle this, we need to make an expectation over
s1 given sti, ati (the experienced state and action in
timestep t of episode i) appear in each term of the sum
so that the value function term will become linear in
φti. To do this, we define the one-step environment
noise with respect to V t`1,k as

ηtkpiq
def
“ V t`1,kpst`1,iq ´ Es1|sti,ati

rV t`1,kps1qs, (17)

Then we define the projected environment noise as:

ηtk
def
“ Σ´1

tk

k´1
ÿ

i“1

φtiηtkpiq. (18)

Putting this into the definition of pθtk from Eqn. (16),

pθtk “ Σ´1
tk

k´1
ÿ

i“1

φtiprti ` Es1|sti,ati
rV t`1,kps1qs ` ηtkpiqq

“ ηtk ` Σ´1
tk

k´1
ÿ

i“1

φtiprti ` Es1|sti,ati
rV t`1,kps1qsq.

But now we note that this reward plus expected value
function is linear in the features (thanks to Prop. 1),
so we can rewrite the second term as

Σ´1
tk

k´1
ÿ

i“1

φtiφ
J
ti

ˆ

θr `
ż

s1

ψtps
1qV t`1,kps1q

˙

(19)

“ θr `
ż

s1

ψtps
1qV t`1,kps1q. (20)

Finally, comparing with the definition of θπt (Eqn. (8))
we see that the θr terms cancel and we get

θtk ´ θπt “ ξtk ` ηtk `
ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q.

Premultiplying by φtps, aqJ gives Eqn. (14).

5.2 High probability bounds on the noise

To ensure that our estimates concentrate around the
true Q functions, we need to ensure that the ηtk and
ξtk are not too large. This is achieved with simi-
lar ideas of self-normalizing processes as is done for

linear bandits (Abbasi-Yadkori et al., 2011), with an
additional union bound over possible value functions
V t`1,k which depend on θtk and Σ´1

tk . In the end, we
prove in Lem. E.6 that indeed with high probability
for any φ:

|φJηtk| ď }φ}Σ´1
tk

}ηtk}Σtk
“

a

νkpδq}φ}Σ´1
tk

(21)

where
a

νkpδq “ rOpdHq is defined fully in App. D.
While we defer the computation of the “right” amount
of pseudonoise to the next subsection, here we mention
that for the choice we make ξtk „ N p0, HνkpδqΣ´1

tk q
we obtain w.h.p.:

|φJξtk| ď }φ}Σ´1
tk

}ξtk}Σtk
“

a

γkpδq}φ}Σ´1
tk

(22)

where
a

γkpδq “ rOppdHq3{2q is also defined fully in
App. D. Note the pseudonoise worst-case bound is?
Hd worse than the corresponding environment noise.

5.3 Stochastic Optimism and Random Walk

We now want to show that opt-rlsvi injects
enough pseudonoise that the estimated value function
V 1kps1kq at the initial state s1k is optimistic with con-
stant probability (see App. F). We call this event Ok:

Ok
def
“

!

pV 1k ´ V ‹
1 qps1kq ě 0

)

. (23)

Note that the optimal policy π‹ maximizes Q‹ and not
the Q computed by the algorithm and thus

pV 1k ´ V ‹
1 qps1kq ě pQ1k ´ Q‹

1qps1k,π
‹
1ps1kqq. (24)

Now, the goal is to leverage Eqn. (14) to inductively
expand this inequality by unrolling a trajectory under
the policy π‹. To access the result in Eqn. (14) we
need to have }φ1ps1k,π‹

1ps1kqq}Σ´1
1k

ď αL. For now, we

just assume that this is the case to motivate the idea.
In that case, applying Eqn. (14) gives us

`

V 1k ´ V ‹
1

˘

ps1kq ě φ1ps1k,π
‹
1ps1kqqJ

`

ξ1k ` η1k
˘

` Es1|s1k,π‹
1ps1kqr

`

V 2k ´ V ‹
2

˘

ps1qs. (25)

Now we can inductively apply the same reasoning to
the term inside of the expectation (assuming that we
always get features with small Σ´1-norm). Using xt to
denote the states sampled under π‹ to avoid confusion
with stk observed by the algorithm, we get

ě
H
ÿ

t“1

Ext„π‹|s1k

“

φtpxt,π
‹
t pxtqqJpξtk ` ηtkq

‰

(26)

Since these trajectories over x come from π‹ and
the environment, they do not depend on the algo-
rithm’s policy and with respect to the pseudonoise
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ξ, they are non-random. If we let φ‹
t denote

Ext„π‹|s1k φtpxt,π
‹pxtqq, and apply Eqn. (21) we get

with probability at least 1 ´ δ that:

H
ÿ

t“1

pφ‹
t qJpξtk ` ηtkq ě

H
ÿ

t“1

rpφ‹
t qJξtk ´

a

νkpδq}φ‹
t }Σ´1

tk
s

ě
H
ÿ

t“1

pφ‹
t qJξtk ´

a

Hνkpδq

˜

H
ÿ

t“1

}φ‹
t }2

Σ´1
tk

¸1{2

(27)

where the second inequality is Cauchy-Schwarz.

Note that the only randomness in this quantity comes
from the pseudonoise we inject. We can think of this
sum as a one-dimensional normal random walk over H
steps with a negative bias. Moreover, if we chose each
ξtk „ N p0, HνkpδqΣ´1

tk q, we know that

H
ÿ

t“1

pφ‹
t qJξtk „ N

˜

0,
H
ÿ

t“1

Hνkpδq}φ‹
t }2

Σ´1
tk

¸

. (28)

Comparing this with Eqn. (27) we can immediately see
that the standard deviation of the sum of pseudonoise
terms is exactly the bound on the bias induced by the
high probability bound on the sum of the environment
noise ηtk. Thus we can conclude that

P
`

pV 1k ´ V ‹
1 qps1kq ě 0

˘

ě Φp´1q (29)

where Φ is the normal CDF. This is just the result
that we are looking for. However, this presentation
avoided the technicalities of handling the cases where
}φtpxt,π

‹
t pxtqq}Σ´1

tk
ą αL and Qtk takes the default

value. At a high level the default value is optimistic
and so it cannot reduce the probability of optimism.
This is handled carefully in Lem. F.1 and F.2 of the ap-
pendix, where we obtain a recursion structurally sim-
ilar to Eqn. (27) albeit with a less interpretable defi-
nition of φ‹

t . One important detail is that our choice
of when to default does not depend on the ξtk and is
thus non-random with respect to the pseudonoise.

5.4 High Probability Regret Bound

In this section we provide a high level sketch of the
main argument that allows us to obtain a high prob-
ability regret bound for opt-rlsvi under Asm. 1. In
particular, we assume that the “good event” holds,
which lets us use the bounds in Eqn. (21) and (22).

First, we recall the definition of regret up to episode
K from the preliminaries and further add and sub-
tract the randomized value functions V 1k to get that
Regret(K) decomposes as

K
ÿ

k“1

´

V ‹
1 ´ V 1k

loooomoooon

Pessimism

`V 1k ´ V πk
1

looooomooooon

Estimation

¯

ps1kq (30)

5.4.1 Bound on estimation

We need to distinguish between cases where
}φtk}Σ´1

tk
ď αL, which we will denote by Stk for small

feature, or not, which we will denote by Sc
tk for its

complement. Under Stk linearity of the representation
can be used via Eqn. (14) and under Sc

tk we can use the
trivial upper bound of H on the difference in values:
`

V 1k ´ V πk
1

˘

ps1kq ď H tSc
1ku ` (31)

´

φJ
1k

`

ξ1k ` η1k
˘

` Es1|s1k,a1k
r
`

V 2k ´ V πk
2

˘

ps1qs
looooooooooooooooomooooooooooooooooon

“ 9ζ1k`pV 2k´V
πk
2 qps2kq

¯

tS1ku

where 9ζtk
def
“ tS1ku

`

Es1|stk,atk

`

V t`1,k ´ V πk
t`1

˘

ps1q ´
pV t`1,k ´ V πk

t`1qpst`1,kq
˘

is a bounded martingale dif-
ference sequence on the good event. Induction and
summing over k eventually yields:

ď
K
ÿ

k“1

H
ÿ

t“1

H tSc
tku

looomooon

Warmup

`φJ
tk

`

ξtk ` ηtk
˘

tStku
looooooooooooomooooooooooooon

Linear Regime

` 9ζtk tStku
loooomoooon

Martingale

.

The martingale term can be bounded with high prob-
ability by ÕpH

?
T q using Azuma-Hoeffding.

The first term measures regret during “warmup”,
when the algorithm cannot guarantee that the value
function estimates are bounded and needs to use the
default function. In Lem. G.5 we bound it and obtain:

rO

ˆ

H2d

α2
L

˙

“ rO
`

H5d4
˘

(32)

which is
?
T -free and is thus a lower order term.

For the dominant linear regime term we can use the
high probability bounds from Eqn. (21) and (22) along
with two applications of Cauchy-Schwarz:

ď
K
ÿ

k“1

H
ÿ

t“1

}φtk}Σ´1
tk

´

a

γkpδq `
a

νkpδq
¯

(33)

ď
?
K ˆ

H
ÿ

t“1

g

f

f

e

K
ÿ

k“1

}φtk}2
Σ´1

tk

loooooooomoooooooon

rOp
?
dq

ˆ
´

a

γKpδq

looomooon

rOpH3{2d3{2q

`
a

νKpδq

looomooon

rOpHdq

¯

This final bound on the sum of the squared norm of
the features is a standard quantity that arises in lin-
ear bandit computations (Abbasi-Yadkori et al., 2011).
We can see that the estimation term gives the same re-
gret bound reported in the Thm. 1. Now we show that
the pessimism term is of the same order.

5.4.2 Bound on Pessimism

For optimistic algorithms the pessimism term of the
regret

řK
k“1pV ‹

1 ´ V
πk

1k qps1kq is negative by construc-
tion; here we need to work a little more. As seen
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above, the algorithm has at least a constant probabil-
ity of being optimistic. When it is, it makes progress
similar to a deterministic optimistic algorithm, and
when it is not, it is still choosing a reasonable policy
(using shrinking confidence intervals) so that the mis-
takes it makes become less and less severe. Ultimately,
we would like to transform the pessimism term into
an estimation argument that we can handle as before.
So, we first upper bound V ‹

1 and then lower bound V 1k

by randomized value functions with specific choices for
the pseudonoise. As more samples are collected, the
pseudonoise shrinks and the estimates converge.

Upper Bound on V ‹
1 . Consider drawing rξtk’s de-

fined as independent and identically distributed copies
of the ξtk’s. Let rOk be the event that in episode k the

algorithm obtains an optimistic value function rV1k us-
ing these rξtk in place of ξtk. Explicitly,

rOk “ tprV1k ´ V ‹
1kqps1kq ě 0u. (34)

Note that since the rξtk are iid copies of the ξtk we have

that Pp rOkq is equal to PpOkq “ Φp´1q from Sec. 5.3.

Taking conditional expectation E
rξ| rOk

over the rξtk for

t P rHs gives us an upper bound:

V ‹
1kps1kq ď E

rξ| rOk

rV1kps1kq (35)

by definition of the event rOk.

Lower Bound on V 1k. Under the high probability
bound on the pseudonoise of Eqn. (22) we consider
the below optimization program over the optimization
variables ξtk’s, which are constrained to satisfy the
same bound on the pseudonoise of Eqn. (22):

min
tξtkut“1,...,H

V ξ
1kps1kq (36)

}ξtk}Σtk
ď

a

γkpδq, @t P rHs

where V ξ
1k is analogous to V 1k derived from our algo-

rithm, but with the optimization variables ξtk in place
of ξtk. Solving the program above would give a value
function V 1k such that:

V 1kps1kq ď V 1kps1kq (37)

whenever the ξtk’s obey the high probability bound.

Putting it together. Now we chain the upper
bound of Eqn. (35) with the lower bound of Eqn. (37):

`

V ‹
1k ´ V 1k

˘

ps1kq ď E
rξ| rOk

rprV1k ´ V 1kqps1kqs. (38)

We can connect this conditional expectation with the
probability of optimism to get to a concentration

bound by applying the law of total expectation:

Eξ̃rprV1k´V 1kqps1kqs “ E
rξ| rOk

rprV1k ´ V 1kqps1kqsPp rOkq

` E
rξ| rOc

k
rprV1k ´ V 1kqps1kqsPp rOc

kq
looooooooooooooooooomooooooooooooooooooon

ě0

. (39)

This inequality holds by the same reasoning as
Eqn. (37) with high probability since the rξtk are also
in the set over which V 1k is minimized. Dividing by

Pp rOkq and chaining with Eqn. (38) gives us:
`

V ‹
1k ´ V 1k

˘

ps1kq ď E
rξrprV1k ´ V 1kqps1kqs{Pp rOkq.

Now, since the rξtk are iid copies of the ξtk that

the algorithm computes we have that E
rξr rV1kps1kqs “

EξrV 1kps1kqs and PpOkq “ Pp rOkq. So we can define

a martingale difference sequence :ζk
def
“ E

rξr rV1kps1kqs ´

V 1kps1kq and get our final bound on the pessimism as:

`

V ‹
1k ´ V 1k

˘

ps1kq ď
pV 1k ´ V 1kqps1kq ` :ζk

PpOkq
. (40)

When summing over the episodes k P rKs, the martin-
gale can be bounded with high probability by Azuma-
Hoeffding as

řK
k“1

:ζk “ rOpH
?
Kq. To bound the re-

maining term we add and subtract V πk
1 to get:

˜

K
ÿ

k“1

rpV 1k ´ V πk
1 qps1kq ` pV πk

1 ´ V 1kqps1kqs

¸

{PpOkq.

Each of these is bounded by arguments similar to those
in Sec. 5.4.1. We discuss this in detail in Lem. G.4.

It is instructive to re-examine Eqn. (40), ignoring the
martingale term. While the left hand side is negative
for optimistic algorithms, for opt-rlsvi it is upper
bounded by a difference in estimated value functions
(which shrinks with more data) times the inverse prob-
ability of being optimistic 1{PpOkq. In other words,
roughly once every 1{PpOkq episodes the algorithm is
optimistic and exploration progress is made.

6 Concluding Remarks

This work proposes the first high probability regret
bounds for (a modified version of) Rlsvi with func-
tion approximation, confirming its sound exploration
principles. Perhaps unsurprisingly, we inherit an extra?
dH regret factor compared to an optimistic approach

which can be explained by analogy to the bandit liter-
ature. Whether Thompson sampling-based algorithms
need to suffer this extra factor compared to their op-
timistic counterparts remains a fundamental research
question in exploration. Our work enriches the litera-
ture on provably efficient exploration algorithms with
function approximation with a new algorithmic design
as well as a new set of analytical techniques.
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A Notation

We provide this table for easy reference. Notation will also be defined as it is introduced.

We denote with H the episode length, with K the total number of episodes, and with T “ HK the time elapsed.
We denote with k P rKs the current episode, with t P rHs the current timestep. We use the subscript tk to
indicate the quantity at timestep t of episode k and t ` 1, k for the subsequent step.

Table 1: Symbols

stk
def
“ state encountered in timestep t of episode k

atk
def
“ action taken by the algorithm in timestep t of episode k

φtk
def
“ φtpstk, atkq

rtk
def
“ rtpstk, atkq

λ
def
“ regularization parameter

Σtk
def
“

řk´1
i“1 φtiφ

J
ti ` λI

pθtk
def
“ Σ´1

tk

´

řk´1
i“1 φtirrti ` V t`1,kpst`1,iqs

¯

a

βkpδq
def
“ c1Hd

c

log
´

Hdkmaxp1,Lφq maxp1,Lψq maxp1,Lrqλ
δ

¯

a

νkpδq
def
“

a

βkpδq `
?
λLφp3HLψ ` Lrq ` 4εH

?
dk

a

γkpδq
def
“ c2

a

dHνkpδq logpd{δq

ξtk
def
“ Pseudonoise distributed as N p0, HνkpδqΣ´1

tk q

θtk
def
“ pθtk ` ξtk

αU
def
“ 1

4p
?

γkpδqq

αL
def
“ αU

2

Qtkps, aq
def
“

$

’

’

&

’

’

%

φJθtk, if }φtps, aq}Σ´1
tk

ď αL

H ´ t ` 1, if }φtps, aq}Σ´1
tk

ě αU

αU´}φtps,aq}
Σ

´1
tk

αU´αL

`

φJθtk
˘

`
}φtps,aq}

Σ
´1
tk

´αL

αU´αL
pH ´ t ` 1q, otherwise

V tkpsq
def
“ maxa Qtkps, aq

πkpsq
def
“ policy executed by the algorithm in episode k, i.e. argmaxa Qtkps, aq

Stk
def
“ Event

!

}φtk}Σ´1
tk

ď αL

)

Sc
tk

def
“ Event

!

}φtk}Σ´1
tk

ą αL

)

(complement of Stk)

Lφ
def
“ upper bound on }φ}

Lψ
def
“ upper bound on

ş

s
}ψtps1q} for all t P rHs

Lr
def
“ upper bound on }θr}

Lθ
def
“ upper bound on }θπt } (equal to Lr ` pH ´ 1qLψ)

∆P
t p¨|s, aq

def
“ Ptp¨|s, aq ´ φps, aqJ

t ψtp¨q

∆r
t ps, aq

def
“ rtps, aq ´ φps, aqJ

t θ
r
t

ε
def
“ bound on |∆r

t ps, aq| and }∆P
t p¨|s, aq}1

ηtk
def
“ Σ´1

tk

řk´1
i“1 φti

ˆ

V t`1,kpst`1,iq ´ Es1|sit,ait
rV t`1,kps1qs

˙
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λ
π

tk
def
“ ´λΣ´1

tk

ˆ

ş

s1 ψtps1qpV t`1,k ´ V π
t`1qps1q ` θπt

˙

∆π
t ps, aq

def
“ Qπ

t ps, aq ´ φtps, aqJθπt

mπ
tk

def
“ φtps, aqJΣ´1

tk

řk´1
i“1 φti

„

∆r
t psti, atiq `

ş

s1 ∆
P
t ps1|sti, atiqV t`1,kps1q

ȷ

` ∆π
t ps, aq

´
ş

s1 ∆
P
t ps1|s, aqpV t`1,k ´ V π

t`1qps1q

Htk
def
“ tsij , aij , rij : j ď k, i ď t if j “ k else i ď Hu

Htk
def
“ HHk

Ť

tξik : i ě tu

Gξ
tk

def
“

"

|φtps, aqJξtk| ď
a

γkpδq}φtps, aq}Σ´1
tk

*

Gη
tk

def
“

"

|φtps, aqJηtk| ď
a

βkpδq}φtps, aq}Σ´1
tk

*

Gλ
tk

def
“

"

@ π, |φtps, aqJλ
π

tk| ď
?
λLφp3HLψ ` Lrq}φtps, aq}Σ´1

tk

*

Gm
tk

def
“

"

@ π, |mπ
tkps, aq| ď 4εHp

?
dk}φtps, aq}Σ´1

tk
` 1q

*

GQ
tk

def
“

"

@ s, a, |pQtk ´ Q‹
t qps, aq| ď H ´ t ` 1

*

Gtk
def
“ tGξ

tk X Gη
tk X Gλ

tk X Gm
tk X GQ

tku

Gk
def
“

Ş

tPrHs Gtk

rξtk
def
“ i.i.d. copy of the pseudonoise rξtk, useful for the regret proof. All overline quantities can

be translated to tilde by exchanging pseudonoise variables in the value iteration.

rOk
def
“

! ´

rV1k ´ V ‹
1

¯

ps1kq ě ´4H2ε
)
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B Assumptions

In this section we formally present the main assumption that the MDP is approximately low-rank and show that
the definition immediately implies the existence of approximately linear Q functions for any policy. Moreover,
the corresponding parameters to these Q functions have bounded norm.

Assumption B.1 (ε-approximate low-rank MDP). (Jin et al., 2019; Yang and Wang, 2019a) For any ε ď 1,
an MDP pS,A, H,P, rq is ε-approximate low-rank with feature maps φt : S ˆ A Ñ Rd if for every t P rHs there
exists an unknown function ψt : S Ñ Rd and an unknown vector θrt P Rd such that

}Ptp¨|s, aq ´ φps, aqJ
t ψtp¨q}1 ď ε, |rtps, aq ´ φps, aqJ

t θ
r
t | ď ε. (41)

Moreover assume the bounds

1. }φtps, aq} ď Lφ for all ps, aq P S ˆ A and t P rHs.

2.
ş

S }ψtpsq} ď Lψ for all t P rHs.

3. }θrt } ď Lr for all t P rHs.

Definition B.2 (Misspecification). We can define the following misspecification quantities

∆P
t p¨|s, aq

def
“ Ptp¨|s, aq ´ φps, aqJ

t ψtp¨q, }∆P
t p¨|s, aq}1 “

ż

s1

ˇ

ˇ∆P
t ps1|s, aq

ˇ

ˇ ď ε (42)

∆r
t ps, aq

def
“ rtps, aq ´ φps, aqJ

t θ
r
t , |∆r

t ps, aq| ď ε (43)

where the inequalities follow from the Assumption B.1.

Corollary B.3 (Linear Q functions). For any policy π, there exist some θπt P Rd for all t P rHs such that for
all s, a

|Qπ
t ps, aq ´ φps, aqJ

t θ
π
t | ď pH ´ t ` 1qε. (44)

Moreover, }θπt } ď Lr ` pH ´ tqLψ
def
“ Lθ.

Proof. Since Qπ
t ps, aq “ φps, aqJ

`

θrt `
ş

ψps1qV π
t`1ps1qds1

˘

, we set

θπt “ θrt `
ż

s1

ψtps
1qV π

t`1ps1q (45)

Note that by the assumption that the rewards are in r0, 1s the true value functions V π
t are always in r0, H´t`1s.

By the triangle inequality and Bellman equation followed by an application of Definition B.2

|Qπ
t ps, aq ´ φtps, aqJθπt | ď |rtps, aq ´ φps, aqJ

t θ
r
t | `

ˇ

ˇ

ˇ

ˇ

Es1|s,arV π
t`1ps1qs ´ φtps, aqJ

ż

s1

ψtps
1qV π

t`1ps1q

ˇ

ˇ

ˇ

ˇ

(46)

ď ε `

ˇ

ˇ

ˇ

ˇ

ż

s1

pPtps
1|s, aq ´ φtps, aqJψtps

1qqV π
t`1ps1q

ˇ

ˇ

ˇ

ˇ

(47)

ď ε ` }V π
t`1}8}∆P

t p¨|s, aq}1 ď ε ` pH ´ tqε “ pH ´ t ` 1qε (48)

To prove the second part of the statement, note that by the triangle inequality and Assumption B.1

}θπt } ď }θrt } ` }
ż

s1

ψtps
1qV π

t`1ps1q} ď Lr ` }V π
t`1}8Lψ ď Lr ` pH ´ tqLψ. (49)

Definition B.4 (Optimal parameters). We can denote the parameters associated with the optimal policy π‹ as

θ‹
t “ θ‹,P

t ` θrt .
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C Decomposition of Unclipped Q-values

In this section we prove the main decomposition lemma that will be useful throughout. The lemma decomposes
the difference between the function defined by the estimated θtk and the true Qπ for any policy π into several
parts: the expected difference of corresponding value functions at the next state, the projected environment
noise, the pseudonoise, a term due to the regularizer λ and a term due to the misspecification (i.e. the ε error)
of the low-rank MDP.

These terms are defined in the following notation:

ηtk
def
“ Σ´1

tk

k´1
ÿ

i“1

φti

ˆ

V t`1,kpst`1,iq ´ Es1|sti,ait
rV t`1,kps1qs

˙

(50)

λ
π

tk
def
“ ´λΣ´1

tk

ˆ
ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q ` θπt

˙

(51)

∆π
t ps, aq

def
“ Qπ

t ps, aq ´ φtps, aqJθπt (52)

mπ
tkps, aq

def
“ φtps, aqJΣ´1

tk

k´1
ÿ

i“1

φti

„

∆r
t psti, atiq `

ż

s1

∆P
t ps1|sti, atiqV t`1,kps1q

ȷ

` ∆π
t ps, aq (53)

´
ż

s1

∆P
t ps1|s, aqpV t`1,k ´ V π

t`1qps1q (54)

Lemma C.1 (Decomposition of unclipped Q-values). For t P rHs and any policy π:

φtps, aqJθtk ´ Qπ
t ps, aq “ Es1|s,ar

`

V t`1,k ´ V π
t`1

˘

ps1qs ` φtps, aqJpηtk ` ξtk ` λ
π

tkq ` mπ
tkps, aq (55)

where Es1|s,ar¨s “ Es1„Ptp¨|s,aqr¨s and the index t will be clear from context.

Proof. By Corollary B.3 we have:

φtps, aqJθtk ´ Qπ
t ps, aq “ φtps, aqJpθtk ´ θπt q ` ∆π

t ps, aq (56)

By substituting the definition of θtk and the linear regression, we get:

“ φtps, aqJ

˜

ξtk ` Σ´1
tk

k´1
ÿ

i“1

φtiprti ` V t`1,kpst`1,iqq
loooooooooooooooooooomoooooooooooooooooooon

“pθtk

´θπt

¸

` ∆π
t ps, aq (57)

Moving θπt inside the sum by multiplying by Σ´1
tk Σtk “ I we get

“ φps, aqJ

˜

ξtk ` Σ´1
tk

˜

´λθπt `
k´1
ÿ

i“1

φti

´

rti ` V t`1,kpst`1,iq ´ φJ
tiθ

π
t

¯

¸¸

` ∆π
t ps, aq. (58)

Now we expand φJ
tiθ

π
t “ φJ

tipθ
r
t `

ş

s1 ψps1qV π
t`1ps1qq (see Eq. 45)

“ φtps, aqJ

˜

ξtk ` Σ´1
tk

˜

´λθπt `
k´1
ÿ

i“1

φti

«

rti ` V t`1,kpst`1,iq ´ φJ
ti

`

θrt `
ż

s1

ψtps
1qV π

t`1ps1q
¯

ff¸¸

` ∆π
t ps, aq.

(59)
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Next we add and subtract Es1|sti,ati
rV t`1,kps1qs ´ φJ

ti

ş

s1 ψps1qV t`1,kps1q and rearrange terms to get

“ φtps, aqJ

ˆ

ξtk ´ λΣ´1
tk θπt ` Σ´1

tk

k´1
ÿ

i“1

φti

„

rti ´ φJ
tiθ

r
t ` Es1|sti,ati

”

V t`1,kps1q
ı

´ φJ
ti

ż

s1

ψtps
1qV t`1,kps1q

ȷ

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

“∆r
t psti,atiq`

ş

s1 ∆
P
t ps1|sti,atiqV t`1,kps1q

(60)

` Σ´1
tk

k´1
ÿ

i“1

φti

„

V t`1,kpst`1,iq ´ Es1|sti,ati

”

V t`1,kps1q
ı

ȷ

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

ηtk

(61)

` Σ´1
tk

k´1
ÿ

i“1

φti

„

φJ
ti

ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q

ȷ˙

` ∆π
t ps, aq. (62)

We can add and subtract a regularizer term and cancel Σ´1
tk Σtk to get

“ φtps, aqJ

ˆ

ξtk ` ηtk `
ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q (63)

´ λΣ´1
tk

„

θπt `
ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q

ȷ

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

λ
π
tk

(64)

` Σ´1
tk

k´1
ÿ

i“1

φti

„

∆r
t psti, atiq `

ż

s1

∆P
t ps1|sti, atiqV t`1,kps1q

ȷ˙

` ∆π
t ps, aq (65)

Finally we replace the integral by the true expectation plus a misspecification term

“ φtps, aqJpξtk ` ηtk ` λ
π

tkq ` Es1|s,arpV t`1,k ´ V π
t`1qps1qs (66)

´
ż

s1

∆P
t ps1|s, aqpV t`1,k ´ V π

t`1qps1q ` φtps, aqJΣ´1
tk

k´1
ÿ

i“1

φti

„

∆r
t psti, atiq `

ż

s1

∆P
t ps1|sti, atiqV t`1,kps1q

ȷ

` ∆π
t ps, aq

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

mπ
tkps,aq

(67)
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D Defining the Good Event

In this section we formally define the filtrations that compose the history of the algorithm at any point during its
runtime. Then we define the values βkpδq, νkpδq, and γkpδq that are used to define our high confidence bounds.
We use these to choose settings of the cutoff parameters αL,αU . Finally, we define the good events whereby the
terms from the decomposition presented in the preceding section are bounded in terms of the design matrix and
βkpδq, νkpδq, and γkpδq.

Definition D.1 (Filtrations). For any t P rHs and any k define the filtrations

Htk
def
“ tsij , aij , rij : j ď k, i ď t if j “ k else i ď Hu (68)

Hk
def
“ HH,k (69)

Htk
def
“ Hk

ď

tξik : i ě tu (70)

Hk
def
“ H1k (71)

Definition D.2 (Noise bounds). For any δ ą 0 and some constants c1, c2 let

a

βkpδq
def
“ c1Hd

d

log

ˆ

Hdkmaxp1, Lφqmaxp1, Lψqmaxp1, Lrqλ
δ

˙

(72)

a

νkpδq
def
“

a

βkpδq `
?
λLφp3HLψ ` Lrq ` 4εH

?
dk (73)

a

γkpδq
def
“ c2

a

dHνkpδq logpd{δq (74)

Note that this functions are monotonically increasing in k, e.g.,
a

βkpδq ď
a

βk`1pδq.

Definition D.3 (Default cutoff). Set

αU
def
“

1

4p
a

γkpδqq
ď

1

2p
a

νkpδq `
a

γkpδqq
(75)

αL
def
“ αU{2 (76)

Definition D.4 (Good event). Define

Gξ
tk

def
“

"

|φtps, aqJξtk| ď
a

γkpδq}φtps, aq}Σ´1
tk

*

(77)

Gη
tk

def
“

"

|φtps, aqJηtk| ď
a

βkpδq}φtps, aq}Σ´1
tk

*

(78)

Gλ
tk

def
“

"

@ π, |φtps, aqJλ
π

tk| ď
?
λLφp3HLψ ` Lrq}φtps, aq}Σ´1

tk

*

(79)

Gm
tk

def
“

"

@ π, |mπ
tkps, aq| ď 4εHp

?
dk}φtps, aq}Σ´1

tk
` 1q

*

(80)

GQ
tk

def
“

"

@ s, a, |pQtk ´ Q‹
t qps, aq| ď H ´ t ` 1

*

(81)

And then the good events are the intersections

Gtk
def
“ tGξ

tk X Gη
tk X Gλ

tk X Gm
tk X GQ

tku (82)

Gk
def
“

č

tPrHs

Gtk (83)
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E Concentration

This section will prove that the good events happen with high probability. The tricky part is showing that the
estimates Qtk remain nicely bounded. To do this we bound each of the four separate terms (misspecification,
regularization, pseudonoise, and environment noise) with high probability when conditioned on bounded Q values
at time t ` 1. Then we use an inductive argument to show that this means that all terms and the Q values are
bounded across all timesteps with high probability.

E.1 Bounding the Misspecification Error

Lemma E.1 (Misspecification). For any t, k, s, a and any policy π, if

ˇ

ˇ

ˇ

ˇ

pQt`1,k ´ Q‹
t`1qps, aq

ˇ

ˇ

ˇ

ˇ

ď H ´ t (84)

then

|mπ
tkps, aq| ď 4εH

´?
dk}φtps, aq}Σ´1

tk
` 1

¯

(85)

Proof. Recall the definition of mπ
tk in Eq. 53

|mπ
tkps, aq| “

ˇ

ˇ

ˇ

ˇ

φtps, aqJΣ´1
tk

k´1
ÿ

i“1

φti

„

∆r
t psti, atiq `

ż

s1

∆P
t ps1|sti, atiqV t`1,kps1q

ȷ

` ∆π
t ps, aq (86)

´
ż

s1

∆P
t ps1|s, aqpV t`1,k ´ V π

t`1qps1q

ˇ

ˇ

ˇ

ˇ

. (87)

Under event GQ
t`1.k, we have that |pV t`1,k ´ V π

t`1qps1q| ď |pV t`1,k ´ V ‹
t`1qps1q| ` |pV ‹

t`1 ´ V π
t`1qps1q| ď 2H. Then,

applying the triangle inequality, Holder, and bounds from Definition B.2 and Corollary B.3 as well as previous
bound on the estimated value functions, we can erite

|mπ
tkps, aq| ď pε ` εHq

ˇ

ˇ

ˇ

ˇ

φtps, aqJΣ´1
tk

k´1
ÿ

i“1

φti

ˇ

ˇ

ˇ

ˇ

` εH ` 3εH. (88)

Finally, grouping terms and applying Cauchy-Schwarz twice we get

ď 4εH

ˆ

}φtps, aq}Σ´1
tk

›

›

›

›

k´1
ÿ

i“1

φti

›

›

›

›

Σ´1
tk

` 1

˙

(89)

ď 4εH

ˆ?
k}φtps, aq}Σ´1

tk

ˆ k´1
ÿ

i“1

}φti}
2
Σ´1

tk

˙1{2

` 1

˙

. (90)

The result follows by applying Lemma I.3.

E.2 Bounding the Regularization

Lemma E.2 (Regularization). For any t, k,π and any features φtps, aq, if

ˇ

ˇ

ˇ

ˇ

pQt`1,k ´ Q‹
t`1qps, aq

ˇ

ˇ

ˇ

ˇ

ď H ´ t (91)

then

|φtps, aqJλ
π

tk| ď
?
λLφp3HLψ ` Lrq}φtps, aq}Σ´1

tk
(92)
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Proof. By Cauchy-Schwarz and the fact that the maximal eigenvalue of Σ´1
tk is at most 1{λ

|φtps, aqJλ
π

tk| “

ˇ

ˇ

ˇ

ˇ

φtps, aqJλΣ´1
tk

ˆ
ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q ` θπt

˙ˇ

ˇ

ˇ

ˇ

(93)

ď
?
λ}φtps, aq}Σ´1

tk

ˆ›

›

›

›

ż

s1

ψtps
1qpV t`1,k ´ V π

t`1qps1q

›

›

›

›

` }θπt }

˙

(94)

ď
?
λ}φtps, aq}Σ´1

tk

ˆ
ż

s1

›

›

›

›

ψtps
1qpV t`1,k ´ V π

t`1qps1q

›

›

›

›

` }θπt }

˙

(95)

ď
?
λ}φtps, aq}Σ´1

tk

ˆ
ż

s1

}ψtps
1q}|pV t`1,k ´ V π

t`1qps1q| ` }θπt }

˙

(96)

ď
?
λ}φtps, aq}Σ´1

tk

ˆ

}V t`1,k ´ V π
t`1}8

ż

s1

}ψtps
1q} ` }θπt }

˙

(97)

Applying the hypothesis of the lemma and the bounds from Assumption B.1 and Corollary B.3

ď
?
λLφr2HLψ ` pLr ` pH ´ tqLψqqs}φtps, aq}Σ´1

tk
ď

?
λLφp3HLψ ` Lrq}φtps, aq}Σ´1

tk
. (98)

E.3 Bounding the Environment Noise

Lemma E.3 (Concentration inductive step). Fix t and k. For any δ ą 0 and conditioned for all s, a and all
z ą t on

ˇ

ˇ

ˇ

ˇ

pQz,k ´ Q‹
zqps, aq

ˇ

ˇ

ˇ

ˇ

ď H ´ t (99)

and on

}ξt`1,k}Σt`1,k
ď

a

γkpδq (100)

then with probability at least 1 ´ δ

|φtps, aqJηtk| ď
a

βkpδq}φtps, aq}Σ´1
tk

(101)

Proof. Recall the definition of ηtk given in Eq. 50. By Cauchy-Schwarz:

|φtps, aqJηtk| ď }φtps, aq}Σ´1
tk

}ηtk}Σ´1
tk

(102)

where

}ηtk}Σ´1
tk

“

›

›

›

›

k´1
ÿ

i“1

φti

ˆ

V t`1,kpst`1,iq ´ Es1|sti,ati
rV t`1,kps1qs

˙›

›

›

›

Σ´1
tk

(103)

First, we will show that given the hypothesis of the lemma, we can bound

}θt`1,k} ď 2H
a

kd{λ `
a

γkpδq{λ (104)

To see this, note that }V t`2,k}8 ď 2pH ´ t ´ 1q from Eq. 99 and so applying Cauchy-Schwarz gives us

}pθt`1,k} “ }Σ´1
t`1,k

k´1
ÿ

i“1

φtiprt`1,i ` V t`2,kpst`2,iqq} ď }Σ´1{2
t`1,k}}

k´1
ÿ

i“1

φt`1,iprt`1,i ` V t`2,kpst`2,iqq}Σ´1
t`1,k

(105)

ď
1

?
λ

?
k

ˆ k´1
ÿ

i“1

}φt`1,iprt`1,i ` V t`2,kpst`2,iqq}2
Σ´1

t`1,k

˙1{2

(106)

ď
1

?
λ

p2pH ´ t ´ 1q ` 1q
?
k

ˆ k´1
ÿ

i“1

}φti}
2
Σ´1

tk

˙1{2

(107)

ď 2H
a

kd{λ (108)
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where the last inequality comes from Lemma I.3. With this bound in hand, we can now proceed with a covering
argument over the functions V t`1,k to bound ηtk.

For any θ P Rd with }θ} ď 2H
a

kd{λ `
a

γkpδq{λ and Σ P Rdˆd symmetric and positive definite with }Σ} ď 1
λ ,

we define

Qθ,Σ
t ps, aq

def
“

$

’

’

&

’

’

%

φtps, aqJθ, if }φtps, aq}Σ ď αL

H ´ t ` 1 if }φtps, aq}Σ ě αU
´

αU´}φtps,aq}Σ
αU´αL

¯

φtps, aqJθ `
´

}φtps,aq}Σ´αL

αU´αL

¯

pH ´ t ` 1q otherwise

(109)

Let V θ,Σ be the corresponding value function. Note that V t`1,k “ V θt`1,k,Σ
´1
t`1,k .

Define

Ot`1
def
“

"

θ,Σ : }θ} ď 2H
a

kd{λ `
a

γkpδq{λ, }Σ} ď
1

λ
, |pQθ,Σ

t`1 ´ Q‹
t`1qps, aq| ď H ´ t @ s, a

*

(110)

So that by the hypothesis of the lemma, θt`1,k,Σ
´1
t`1,k P Ot`1.

For any pθ,Σq P Ot`1 and i P rk ´ 1s define

xθ,Σ
i

def
“ V θ,Σpst`1,iq ´ Es1|sti,ati

rV θ,Σps1qs (111)

Then xi defines a martingale difference sequence with filtration Hti. Moreover, by the definition of Ot`1, each xi

is bounded in absolute value by 2H (from last condition in (110)) so that each xi is a 2H-subgaussian random
variable.

So, by Lemma I.1 the xθ,Σ
i induce a self normalizing process so that

›

›

›

›

k´1
ÿ

i“1

φix
θ,Σ
i

›

›

›

›

Σ´1
tk

ď 4H

ˆ

d log

˜

kL2
φ ` λ

λ

¸

` logp1{δq

˙1{2

(112)

Note that the ε-covering number of Ot`1 as a Euclidean ball in Rd`d2

of radius 2H
a

kd{λ `
a

γkpδq{λ ` 1{λ,

denoted NεpOt`1q, is bounded by Lemma I.5 as p3p2H
a

kd{λ`
a

γkpδq{λ` 1{λq{εqd
2`d. So, by a union bound,

with probability at least 1 ´ δ we have for all pθ,Σq P Ot`1 that

›

›

›

›

k´1
ÿ

i“1

φix
θ,Σ
i

›

›

›

›

Σ´1
tk

ď 4H

ˆ

d log

˜

kL2
φ ` λ

λ

¸

` logpNεpOt`1q{δq

˙1{2

(113)

ď 4H

ˆ

d log

˜

kL2
φ ` λ

λ

¸

` pd2 ` dq log

ˆ

3p2H
a

kd{λ `
a

γkpδq{λ ` 1{λq{ε

˙

` logp1{δq

˙1{2

(114)

ď 8Hd

ˆ

log

˜

kL2
φ ` λ

λ

¸

` log

ˆ

3p2H
a

kd{λ `
a

γkpδq{λ ` 1{λq{ε

˙

` logp1{δq

˙1{2

(115)

To conclude the proof, we choose a specific pθ,Σq P Ot`1 such that }θ´θt`1,k} ď ε and }Σ´Σ´1
t`1,k}F ď ε. Then

}ηtk}Σ´1
tk

“

›

›

›

›

k´1
ÿ

i“1

φix
θt`1,k,Σ

´1
t`1,k

i

›

›

›

›

Σ´1
tk

(116)

ď

›

›

›

›

k´1
ÿ

i“1

φix
θ,Σ
i

›

›

›

›

Σ´1
tk

`

›

›

›

›

k´1
ÿ

i“1

φipx
θ,Σ
i ´ x

θt`1,k,Σ
´1
t`1,k

i q

›

›

›

›

Σ´1
tk

(117)

Then we can bound
›

›

›

›

k´1
ÿ

i“1

φipx
θ,Σ
i ´ x

θt`1,k,Σ
´1
t`1,k

i q

›

›

›

›

Σ´1
tk

ď kLφ sup
i

ˇ

ˇ

ˇ

ˇ

xθ,Σ
i ´ x

θt`1,k,Σ
´1
t`1,k

i

ˇ

ˇ

ˇ

ˇ

(118)
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Plugging in the definition of the xi and applying Lemma E.4 we bound

sup
i

ˇ

ˇ

ˇ

ˇ

xθ,Σ
i ´ x

θt`1,k,Σ
´1
t`1,k

i

ˇ

ˇ

ˇ

ˇ

“ sup
i

ˇ

ˇ

ˇ

ˇ

pV θ,Σ ´ V t`1,iqpst`1,iq ´ Es1|sti,ati
rpV θ,Σ ´ V t`1,iqps1qs

ˇ

ˇ

ˇ

ˇ

(119)

ď 2 sup
s,a

|pQθ,Σ ´ Qt`1,kqps, aq| (120)

ď 2
?
ε
Lφp4H2q
αU ´ αL

(121)

So we can bound the covering error by 1 if we choose ε small enough such that

ε ď

˜

αU ´ αL

8kL2
φH

2

¸2

(122)

Then with probability at least 1 ´ δ, combining (115) with (117), I.6, and the choice of ε we get

}ηtk}Σ´1
tk

ď

›

›

›

›

k´1
ÿ

i“1

φix
θ,Σ
i

›

›

›

›

Σ´1
tk

` 1 ď
a

βkpδq (123)

as desired.

Lemma E.4 (Covering Lemma). This lemma uses the notation defined within the previous lemma, suppressing
indices. Take pθ,Σq and pθ1,Σ1q in O (see Eq. 110 for generic t) such that }θ ´ θ1} ď ε and }Σ ´ Σ1} ď ε with
ε ď mint1, H

3Lφ
, αU´αL

L2
φ

u, then

sup
s,a

|pQθ,Σ ´ Qθ1,Σ1

qps, aq| ď
?
ε
Lφp4H2q
αU ´ αL

(124)

Proof. Note that by the assumption, for any φ with }φ} ď Lφ

|}φ}Σ ´ }φ}Σ1 | “

ˇ

ˇ

ˇ

ˇ

a

φJΣφ ´
a

φJΣ1φ

ˇ

ˇ

ˇ

ˇ

ď
b

|φJpΣ ´ Σ1qφ| ď
a

}φ}}pΣ ´ Σ1q}}φ} ď
?
εLφ (125)

Now we need to split into cases. Since θ,Σ and θ1,Σ1 are interchangable, the following 5 cases cover all possibilities.

Case 1 (linear-linear): }φps, aq}Σ ď αL and }φps, aq}Σ1 ď αL.

We can apply Cauchy-Schwarz and the definition of the case to get

|pQθ,Σ ´ Qθ1,Σ1

qps, aq| “ |φps, aqJpθ ´ θ1q| ď Lφε (126)

Case 2 (linear-interpolating): }φps, aq}Σ ď αL and αL ď }φps, aq}Σ1 ď αL `
?
εLφ ď αU

Applying (125) and the definition of the case,

}φps, aq}Σ1 ď }φps, aq}Σ ` |}φps, aq}Σ1 ´ }φps, aq}Σ| ď αL `
?
εLφ. (127)

Moreover, by our choice of θ,Σ P O which induces bounded Q functions we can bound

|φps, aqJθ ´ pH ´ tq| ď |φps, aqJθ| ` H ď 3H (128)

So if we set

q1 def
“

}φps, aq}Σ1 ´ αL

αU ´ αL
ď

αL `
?
εLφ ´ αL

αU ´ αL
“

?
εLφ

αU ´ αL
(129)
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then we have by the triangle inequality, equation (126), and the above reasoning,

|pQθ,Σ ´ Qθ1,Σ1

qps, aq| “ |φps, aqJθ ´ p1 ´ q1qφps, aqJθ1 ´ q1pH ´ tq| (130)

ď p1 ´ q1q|φps, aqJpθ ´ θ1q| ` q1|φps, aqJθ ´ pH ´ tq| (131)

ď p1 ´ q1qLφε ` q1|φps, aqJθ ´ pH ´ tq| (132)

ď Lφε `

?
εLφp3Hq
αU ´ αL

(133)

Case 3 (default-default): αU ď }φps, aq}Σ and αU ď }φps, aq}Σ1 .

Then we have that

|pQθ,Σ ´ Qθ1,Σ1

qps, aq| “ |pH ´ tq ´ pH ´ tq| “ 0. (134)

Case 4 (default-interpolating): αU ď }φps, aq}Σ and αL ď αU ´
?
εLφ ď }φps, aq}Σ1 ď αU

By the definition of the case

´
?
εLφ ď }φps, aq}Σ1 ´ αU , (135)

so that defining q1 as before

1 ´ q1 “ 1 ´
}φps, aq}Σ1 ´ αL

αU ´ αL
“

αU ´ }φps, aq}Σ1

αU ´ αL
ď

?
εLφ

αU ´ αL
. (136)

And thus, applying (136) and (128) again we get

|pQθ,Σ ´ Qθ1,Σ1

qps, aq| “ |pH ´ tq ´ p1 ´ q1qφps, aqJθ1 ´ q1pH ´ tq| (137)

ď p1 ´ q1q|φps, aqJθ1 ´ pH ´ tq| (138)

ď

?
εLφp3Hq
αU ´ αL

(139)

Case 5 (interpolating-interpolating): αL ď }φps, aq}Σ1 ď αU and αL ď }φps, aq}Σ1 ď αU

Letting q be analogous to q1 but for Σ and applying (125) we have

|q ´ q1| “
|}φps, aq}Σ ´ αL ´ p}φps, aq}Σ1 ´ αLq|

αU ´ αL
ď

?
εLφ

αU ´ αL
(140)

Thus we have that

|pQθ,Σ ´ Qθ1,Σ1

qps, aq| “ |p1 ´ qqφps, aqJθ ` qpH ´ tq (141)

´ p1 ´ q1qφps, aqJθ1 ´ q1pH ´ tq| (142)

ď

?
εLφp3Hq
αU ´ αL

`

|φps, aqJpθ ´ θ1q| ` H
˘

(143)

ď

?
εLφp3Hq
αU ´ αL

pLφε ` Hq ď

?
εLφp4H2q
αU ´ αL

(144)

Taking the max over all of the cases (which is case 5) yields the result.

E.4 Bounding the Q values

Lemma E.5 (Boundedness inductive step). Assume that ε ă 1
10H and that for all s, a

ˇ

ˇ

ˇ

ˇ

pQt`1,k ´ Q‹
t`1qps, aq

ˇ

ˇ

ˇ

ˇ

ď H ´ t (145)

ˇ

ˇ

ˇ

ˇ

φtps, aqJpηtk ` ξtk ` λ
‹
tkq ` m‹

tkps, aq

ˇ

ˇ

ˇ

ˇ

ď p
?
νk `

?
γkq}φtps, aq}Σ´1

tk
` 4εH (146)
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where λ
‹
tk and m‹

tk are as in (51) and (53) with π “ π‹, then for all s, a
ˇ

ˇ

ˇ

ˇ

pQtk ´ Q‹
t qps, aq

ˇ

ˇ

ˇ

ˇ

ď H ´ t ` 1 (147)

Proof. There are two cases, depending on whether the features are large.

Case 1 (large features): }φtps, aq}Σ´1
tk

ě αU .

Then by the definition of Qtk from the algorithm (see (109) or Definition 1), we have 0 ď Qtkps, aq ď H ´ t ` 1.
Since Q‹

t must be in the same range, we immediately get
ˇ

ˇ

ˇ

ˇ

pQtk ´ Q‹
t qps, aq

ˇ

ˇ

ˇ

ˇ

ď H ´ t ` 1 (148)

Case 2 (small features): }φtps, aq}Σ´1
tk

ď αL.

In this case we get Qtkps, aq “ φtps, aqJθtk. So we apply Lemma C.1 to get
ˇ

ˇ

ˇ

ˇ

pQtk ´ Q‹
t qps, aq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Es1|s,ar
`

V t`1,k ´ V ‹
t`1

˘

ps1qs ` φtps, aqJpηtk ` ξtk ` λ
‹
tkq ` m‹

tkps, aq

ˇ

ˇ

ˇ

ˇ

. (149)

We can split the terms by the triangle inequality. Using the inductive hypothesis (146) gives us

ď H ´ t ` p
?
νk `

?
γkq }φtps, aq}Σ´1

tk
loooooomoooooon

ďαL since Case 2 holds

`4εH. (150)

Finally, by our choice of αL (see Definition D.3) and using ε ă 1
10H we get the final bound

ď H ´ t ` 1. (151)

Case 3 (medium features): αL ď }φtps, aq}Σ´1
tk

ď αU .

This case immediately follows from applying the first two cases and our choice of αU (see Definition D.3) along
with noting that for any Q1, Q2

|qQ1ps, aq ` p1 ´ qqQ2ps, aq ´ Q‹
t ps, aq| ď q|pQ1 ´ Q‹

t qps, aq| ` p1 ´ qq|pQ2 ´ Q‹
t qps, aq| (152)

So that when both Q1, Q2 satisfy the desired relationship to Q‹, so does their interpolation.

E.5 Putting it all together: good event with high probability

Lemma E.6 (Good event probability). With ε ă 1
10H , for any K and any δ ą 0, with probability 1 ´ δ we have

Ş

kďK Gk.

Proof. For each k we will induct backwards over t using the preceding lemmas to prove that Gtk occurs for all
t P rHs with probability at least 1 ´ δ1. In the following, let δ1 “ δ{K and δ2 “ δ1{2H.

As the base case, consider step H. Since we define QH`1,k “ 0 “ Q‹
H`1, we can invoke Lemmas E.1 and E.2

to get Gλ
Hk and Gm

Hk. Then we can apply Lemma I.4 so that and Gξ
Hk occurs with probability 1 ´ δ2. Then we

can invoke Lemma E.3 to get that conditioned on all these other events we get Gη
Hk with probability at least

1´δ2. Thus, we get the intersection of these events tGξ
Hk XGη

Hk XGλ
Hk XGm

Hku with probability at least p1´δ2q2.

Finally, conditioned on tGQ
H`1,k X Gξ

Hk X Gη
Hk X Gλ

Hk X Gm
Hku we can invoke Lemma E.5 (using the condition on

ε) to get GQ
Hk. Combining, we see that P pGHkq ě p1 ´ δ2q2. The inductive step follows the same outline so that

conditioning on Gtk we have P pGt´1,k|Gtkq ě p1 ´ δ2q2. Thus, we can bound

P
`

Gk

˘

ě p1 ´ δ2q2H ě 1 ´ δ1 (153)

A union bound over k P rKs gives the result.



Frequentist Regret Bounds for Randomized Least-Squares Value Iteration

F Optimism

In this section we discuss how Algorithm 1 can ensure optimism, and we use rξ instead of ξ to indicate the
pseudonoise. This facilitates the proof of Lemma G.4 later, but the reader should think of the rξ’s as independent
and identically distributed copies of the ξ’s (therefore with the same ‘properties’).

To discuss optimism, in Lemma F.1 we lower bound the value function difference by a one-dimensional random
walk. The idea is to look at the probability that the algorithm is optimistic along the optimal policy π‹. If
condition }φtpxt,π

‹
t pxtqq}Σ´1

tk
ď αL was true at every xt encountered upon following the optimal policy π‹, the

random variable in the random walk that we obtain would be the projection of the pseudonoise ξ along the
average feature φ encountered upon following π‹. In fact, since }φtpxt,π

‹
t pxtqq}Σ´1

tk
ď αL does not always hold,

we end up not projecting on the average φt but on a different φ‹
t ; importantly, this φ‹

t is a non-random quantity
when conditioned on the history Hk and starting state s1k. This allows us to show optimism by looking at
properties of a normal random walk in lemma F.2.

Lemma F.1 (Optimistic Recursion). Condition on the starting state s1k, the history rHk (which is Hk with rξtk
in place of ξtk), and the good event rGk (again with rξtk in place of ξtk). Then for every timestep t P rHs there

exists vector φ‹
t P Rd that does not depend on any rξtk such that:

´

rV1 ´ V ‹
1

¯

ps1kq ě
H
ÿ

t“1

rpφ‹
t qJ

rξtk ´
a

νkpδq}φ‹
t }Σ´1

tk
s ´ 4H2ε. (154)

Proof. The proof proceed by induction, and is split into sections.

We will use x rather than s to emphasize the difference between states sampled with π‹ (denoted by x) from

those sampled with our policy πk (denoted by s). Before to proceed, recall the definition of rQ (same as Q)
from (109) or (12).

Definitions. Recursively define the following functions wt : S Ñ R and ẘt : S Ñ R, which will be used to
define φ‹

t :

wt`1pxt`1q “
ż

S
ẘtpxtqPtpxt`1|xt,π

‹
t pxtqqdxt (155)

ẘtpxtq “

$

’

’

&

’

’

%

wtpxtq, if }φtpst,π‹
t pstqq}Σ´1

tk
ď αL

αU´}φtpxt,π
‹
t pxtqq}

Σ
´1
tk

αU´αL
wtpxtq, if αL ă }φtpxt,π

‹
t pxtqq}Σ´1

tk
ă αU

0, if }φtpxt,π
‹
t pxtqq}Σ´1

tk
ě αU

(156)

w1px1q “ 1 (157)

x1 “ s1k (158)

Then we can define

φ‹
t

def
“

ż

S
wtpxtqφtpxt,π

‹
t pxtqqdxt. (159)

Importantly, this choice of φ‹
t has no dependence on any rξtk with t P rHs.

First we prove by induction that the wt’s are positive and integrate to less than 1 for all t P rHs:

wtpxtq ě 0, @xt P S
ż

S

wtpxtqdxt ď 1 (160)

Positivity is immediate from the definition of equation (158) since all quantities are positive. For the integral,
assume by induction that at step t it holds that

ş

S
wtpxtqdxt ď 1. For t ` 1 we have:
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ż

S
wt`1pxt`1qdxt`1 “

ż

S

ˆ
ż

S
ẘtpxtqPtpxt`1|xt,π

‹
t pxtqqdxt

˙

dxt`1 (161)

F“
ż

S

ˆ
ż

S
ẘtpxtqPtpxt`1|xt,π

‹
t pxtqqdxt`1

˙

dxt (162)

“
ż

S
ẘtpxtq

ˆ
ż

S
Ptpxt`1|xt,π

‹
t pxtqqdxt`1

˙

looooooooooooooooooomooooooooooooooooooon

“1

dxt (163)

ď
ż

S
wtpxtqdxt ď 1. (164)

In the last equality we used that ẘt ď wt pointwise (this follows directly by the definition), while step F is due
to Fubini’s theorem for changing the order of integration.

Starting the main recursion. Let Lt, Mt St be the event that the norm of the feature evaluated at xt and
the optimal policy is large and small, respectively (xt is the random variable):

St
def
“

!

xt : }φtpxt,π
‹
t pxtq}Σ´1

tk
ď αL

)

(165)

Mt
def
“

!

xt : αL ă }φtpxt,π
‹
t pxtq}Σ´1

tk
ă αU

)

(166)

Lt
def
“

!

xt : }φtpxt,π
‹
t pxtq}Σ´1

tk
ě αU

)

(167)

First consider integrating over the state space with respect to wtp¨q the value function difference over the tra-
jectories at step t (the lower bound below holds for every term inside the expectation because π‹ is the optimal

policy on Q‹ but not necessarily on rQ):
ż

S
wtpxtq

´

rVt ´ V ‹
t

¯

pxtqdxt ě
ż

S
wtpxtq

´

rQtpxt,π
‹
t pxtqq ´ Q‹

t pxt,π
‹
t pxtqq

¯

dxt (168)

and then partition the statespace S:

“
ż

St

wtpxtq
´

rQt ´ Q‹
t

¯

pxt,π
‹
t pxtqqdxt

looooooooooooooooooooooomooooooooooooooooooooooon

S

`
ż

Mt

wtpxtq
´

rQt ´ Q‹
t

¯

pxt,π
‹
t pxtqqdxt

loooooooooooooooooooooooomoooooooooooooooooooooooon

M

(169)

`
ż

Lt

wtpxtq
´

rQt ´ Q‹
t

¯

pxt,π
‹
t pxtqqdxt

looooooooooooooooooooooomooooooooooooooooooooooon

L

. (170)

We analyze each term individually.

Bound on the L term. Whenever xt P Lt, Corollary B.3 bounds the misspecification error so that:

L “
ż

Lt

wtpxtq pH ´ t ` 1 ´ Q‹
t pxt,π

‹
t pxtqqq dxt (171)

ě
ż

Lt

wtpxtqr´pH ´ t ` 1qεsdxt ě ´4Hε

ż

Lt

wtpxtqdxt (172)

Bound on the S term. In states where the Q function is linear, the decomposition from Lemma C.1 gives
us:

S “
ż

St

wtpxtq

#

Ex1|xt,π‹
t pxtqrprVt`1,k ´ V ‹

t`1qpx1qs ` φtpxt,π
‹
t pxtqqJ

´

rηtk ` rξtk ` rλ‹
tk

¯

` rm‹
tkpxt,π

‹
t pxtqq

+

dxt.

(173)
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Since we condition on the good event, applying Definitions D.2 and D.4 we have

S ě
ż

St

wtpxtq

#

Ex1|xt,π‹
t pxtqrprVt`1,k ´ V ‹

t`1qpx1qs ` φtpxt,π
‹
t pxtqqJ

rξtk ´
a

νkpδq}φtpxt,π
‹
t pxtqq}Σ´1

tk
´ 4εHq

+

dxt.

(174)

Bound on the M term. This term interpolates between the values we would get out of the linearity of the
representation and the default values. Define q1 and q2 to be the coefficient of the linear interpolation (see (109)),
then:

M “
ż

Mt

wtpxtq
´

q1 rQtpxt,π
‹
t pxtqq ` q2pH ´ t ` 1q ´ Q‹pxt,π

‹
t pxtqq

¯

dxt (175)

“
ż

Mt

wtpxtq

¨

˝q1 p rQt ´ Q‹qpxt,π
‹
t pxtqq

looooooooooooomooooooooooooon

as in S

`q2 ppH ´ t ` 1q ´ Q‹pxt,π
‹
t pxtqqq

looooooooooooooooooomooooooooooooooooooon

as in L

` pq1 ` q2 ´ 1q
loooooomoooooon

“0

Q‹pxt,π
‹
t pxtqq

˛

‚dxt

(176)

ě
ż

Mt

wtpxtq
}φtpxt,π

‹pxtqq}Σ´1
tk

´ αL

αU ´ αL

#

Ex1|xt,π‹
t pxtqrprVt`1,k ´ V ‹

t`1qpx1qs ` φtpxt,π
‹
t pxtqqJ

rξtk (177)

´
a

νkpδq}φtpxt,π
‹
t pxtqq}Σ´1

tk
´ 4εHq

+

dxt ´ 4Hε

ż

Mt

wtpxtq
αU ´ }φtpxt,π

‹pxtqq}Σ´1
tk

αU ´ αL
dxt (178)

“
ż

Mt

wtpxtq
}φtpxt,π

‹pxtqq}Σ´1
tk

´ αL

αU ´ αL

#

Ex1|xt,π‹
t pxtqrprVt`1,k ´ V ‹

t`1qpx1qs ` φtpxt,π
‹
t pxtqqJ

rξtk (179)

´
a

νkpδq}φtpxt,π
‹
t pxtqq}Σ´1

tk
q

+

dxt ´ 4Hε

ż

Mt

wtpxtqdxt (180)

(181)

Conclusion. Together, the bounds on S,M,L we have obtained can be combined (also with the definition of
ẘ) to obtain:

S ` M ` L ě
ż

S
ẘtpxtq

#

Ex1|xt,π‹
t pxtqrprVt`1,k ´ V ‹

t`1qpx1qs ` φtpxt,π
‹
t pxtqqJ

rξtk ´
a

νkpδq}φtpxt,π
‹
t pxtqq}Σ´1

tk

+

dxt

(182)

´ 4Hε

ż

S
wtpxtqdxt (183)

Using the statement made in (160) we must have:

´4Hε

ż

S
wtpxtqdxt ě ´4Hε. (184)

In the end, using the definition in (155), we have obtained:
ż

S
wtpxtq

´

rVt ´ V ‹
t

¯

pxtqdxt ě S ` M ` L (185)

ě
ż

S
wt`1pxt`1q

´

rVt`1,k ´ V ‹
t`1

¯

pxt`1qdxt (186)

`
ż

S
wtpxtq

´

φtpxt,π
‹
t pxtqqJ

rξtk ´
a

νkpδq}φtpxt,π
‹
t pxtqq}Σ´1

tk

¯

dxt (187)

´ 4Hε (188)

Induction and plugging in the definition of φ‹
t concludes the proof.
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Lemma F.2 (Optimism). For any episode k if Φp´1q{2δ ą 1 and ε ă 1
10H :

P
´

rV1ps1kq ´ V ‹
1 ps1kq ` 4H2ε ě 0 | s1k,Hk

¯

ě Φp´1q{2 (189)

Proof. All events in this lemma are conditioned on s1k,Hk so that the only random variables are rξtk for t P rHs.
Consider the probability of being optimistic at the beginning of episode k, and call this event rOk:

rOk “
! ´

rV1k ´ V ‹
1

¯

ps1kq ě ´4H2ε
)

. (190)

For Φp´1q{2δ ą 1 and with ε ă 1
10H , by elementary probability and using Lemma E.6 to bound the probability

of the good event:

Pp rOkq “ 1 ´ Pp rOc
kq “ 1 ´ Pp rOc

k X rGkq ´ Pp rOc
k X rGc

kq ě 1 ´ Pp rOc
k X rGkq ´ Pp rGc

kq (191)

ě 1 ´ Pp rOc
k X rGkq ´ δ. (192)

Notice that under Gk, Lemma F.1 allows us to deduce that

´

rV1 ´ V ‹
1

¯

ps1kq ě
H
ÿ

t“1

rpφ‹
t qJ

rξtk ´
a

νkpδq}φ‹
t }Σ´1

tk
s ´ 4H2ε. (193)

So, defining

Wk
def
“

! ´

rV1 ´ V ‹
1

¯

ps1kq ě
H
ÿ

t“1

rpφ‹
t qJ

rξtk ´
a

νkpδq}φ‹
t }Σ´1

tk
s ´ 4H2ε

)

, (194)

we have that

P
´

rOc
k X rGk

¯

ď P
´

rOc
k X Wk

¯

. (195)

Along with equation (191) we get:

Pp rOkq ě 1 ´ P
´

rOc
k X Wk

¯

´ δ. (196)

Now, define the event that the random walk is positive in episode k:

Pk “
!

H
ÿ

t“1

rpφ‹
t qJ

rξtk ´
a

νkpδq}φ‹
t }Σ´1

tk
s ě 0

)

(197)

Now note that chaining the inequalities from the definitions of Ok and Wk we can see that

rOk X Wk Ď Pc
k. (198)

Thus we have

Pp rOkq ě 1 ´ P pPc
kq ´ δ ě P pPkq ´ δ. (199)

Recall that by the definition in the algorithm:

rξtk „ N p0, HνkpδqΣ´1
tk q. (200)

Now, since we have conditioned on Hk and s1k, by Lemma F.1 we have that φ‹
t is non-random and thus by

properties of the normal distribution:

pφ‹
t qJ

rξtk „ N
´

0, Hνkpδq}φ‹
t }2

Σ´1
tk

¯

(201)
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and

H
ÿ

t“1

pφ‹
t qJ

rξtk „ N
˜

0, Hνkpδq
H
ÿ

t“1

}φ‹
t }2

Σ´1
tk

¸

. (202)

Applying Cauchy-Schwarz we get that

H
ÿ

t“1

a

νkpδq}φ‹
t }Σ´1

tk
ď

a

Hνkpδq

˜

H
ÿ

t“1

}φ‹
t }2

Σ´1
tk

¸1{2

, (203)

which is the standard deviation of the above random variable. Thus, we can conclude that

PpPkq ě P

¨

˝

H
ÿ

t“1

pφ‹
t qJ

rξtk ě
a

Hνkpδq

˜

H
ÿ

t“1

}φ‹
t }2

Σ´1
tk

¸1{2
˛

‚ě Φ p´1q . (204)

Plugging this in to (199) and ensuring that we choose δ ă Φp´1q{2 we get the result.
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G Regret Bound

In this section we prove the main regret bound. This is split into two parts: one for the estimation error of each
V tk compared to V πk

t and one for the pessimism of V tk compared to V ‹
t .

G.1 Main theorem statement

Theorem G.1 (Main Result: High Probability Regret Bound for RLSVI with Approximately Linear Rewards
and Low-Rank Transitions). Under Assumption B.1 with Φp´1q{2 ą δ ą 0 and λ “ 1 and choosing αL,αU ,σ

2 “
Hνkpδq as defined in Section D and letting T “ HK, with probability at least 1 ´ δ for opt-rlsvi jointly for all
episodes K:

RegretpKq
def
“

K
ÿ

k“1

pV ‹
1 ´ V πk

1 q ps1kq “ rO

ˆ

a

γKpδq
?
dHT `

H2d

α2
L

` εHT

˙

. (205)

Proof. We have the following decomposition:

RegretpKq
def
“

K
ÿ

k“1

pV ‹
1 ´ V πk

1 q ps1kq “
K
ÿ

k“1

`

V ‹
1 ´ V 1k

˘

ps1kq `
K
ÿ

k“1

`

V 1k ´ V πk
1

˘

ps1kq. (206)

Taking a union bound over the results of Lemma G.3 and Lemma G.4 yields the result.

Corollary G.2 (High Probability Regret Bound for RLSVI with Approximately Linear Rewards and Low-Rank

Transitions). Under Assumption B.1 and if additionally Lφ “ rOp1q, and Lψ, Lr “ rOpdq, then with probability at
least 1 ´ δ for opt-rlsvi it holds that:

RegretpKq
def
“

K
ÿ

k“1

pV ‹
1 ´ V πk

1 q ps1kq “ rO
´

H2d2
?
T ` H5d4 ` εdHp1 ` εdH2qT

¯

. (207)

Proof. Recall from Definition D.2 we have that

a

γKpδq “ rOppHdq3{2 `
?
HdλLφp3HLψ ` Lrq ` ε

?
dHT q “ rOppHdq3{2 ` ε

?
dHT q (208)

And combining with Definition D.3 we have

1

α2
L

“ rOppHdq3 ` ε2dHT q (209)

Plugging these values into Theorem G.1 we get with probability at least 1 ´ δ that

RegretpKq “ rO
´

ppHdq3{2 ` ε
?
dHT q

?
dHT ` pH2dqppHdq3 ` ε2dHT q ` εHT

¯

(210)

“ rO
´

H2d2
?
T ` εdHT ` H5d4 ` ε2d2H3T ` εHT

¯

(211)

“ rO
´

H2d2
?
T ` H5d4 ` εdHp1 ` εdH2qT

¯

. (212)

G.2 Bounding the estimation error

Lemma G.3 (Bound on Estimation). For any δ ą 0, it holds with probability at least 1 ´ δ{2 that:

K
ÿ

k“1

`

V 1k ´ V πk
1

˘

ps1kq “ rO

ˆ

p
a

νKpδq `
a

γKpδqqH
?
d

?
K ` H2Kε `

H2d

α2
L

˙

(213)
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Proof. The proof proceeds by induction over t P rHs followed by some algebra to get the bound. Denote by Gk

the event that Gℓ (see Def. D.4) holds for all ℓ ď k, so that Gk is measurable with respect to Hk.

Consider a generic timestep t: we split into two cases. Either 1) we have }φtk}Σ´1
tk

ď αL which we will call Stk or

2) we have }φtk}Σ´1
tk

ą αL which we will call Sc
tk. Under Stk the Q function is linear (see Eq. 109 or Def. 1), and

under Sc
tk we can upper bound the value function difference by H in the worst case under Gk. Thus we have

`

V tk ´ V πk
t

˘

pstkq tGku “ tGku
``

V tk ´ V πk
t

˘

pstkq tStku `
`

V tk ´ V πk
t

˘

pstkq tSc
tku

˘

(214)

“ tGku
``

V tkpstkq ´ Qπk
t pstk, atkq

˘

tStku `
`

V tk ´ V πk
t

˘

pstkq tSc
tku

˘

(215)

ď tGku

¨

˚

˝

`

φJ
tkθtk ´ Qπk

t pstk, atkq
˘

tStku
looooooooooooooooooomooooooooooooooooooon

S

`H tSc
tku

looomooon

Sc

˛

‹

‚

. (216)

We focus on the first term, term S. Applying Lemma C.1 we have

φJ
tkθtk ´ Qπk

t pstk, atkq “ Es1|s,ar
`

V t`1,k ´ V πk
t`1

˘

ps1qs ` φJ
tkpηtk ` ξtk ` λ

πk

tk q ` mπk

tk ps, aq. (217)

And under Gk we can bound this by

φJ
tkθtk ´ Qπk

t pstk, atkq ď Es1|stk,atk
r
`

V t`1,k ´ V πk
t`1

˘

ps1qs ` p
a

νkpδq `
a

γkpδqq}φtk}Σ´1
tk

` 4Hε. (218)

Then we can define

9ζtk
def
“ tGku tStku

`

Es1|stk,atk
r
`

V t`1,k ´ V πk
t`1

˘

ps1qs ´
`

V t`1,k ´ V πk
t`1

˘

pst`1,kq
˘

. (219)

Note that due to the indicator of Gk we have that each | 9ζtk| ď 2H a.s. and Er 9ζtk|Hk Y Htks “ 0. Then

p 9ζtk,Hk Y Htkqt,k is an MDS. So, applying Azuma-Hoeffding we have with probability at least 1 ´ δ{4 that
řK

k“1

řH
t“1

9ζtk “ rOpH
?
T q.

With this definition,

tGkuS ď tGku tStku
´

`

V t`1,k ´ V πk
t`1

˘

pst`1,kq ` p
a

νkpδq `
a

γkpδqq}φtk}Σ´1
tk

` 4Hε
¯

` 9ζtk. (220)

Combining it all we have

tGku
`

V tk ´ V πk
t

˘

pstkq ď tGku

„

`

V t`1,k ´ V πk
t`1

˘

pst`1,kq tStku (221)

`
´´

a

νkpδq `
a

γkpδq
¯

}φtk}Σ´1
tk

` 4Hε
¯

tStku ` H tSc
tku

ȷ

` 9ζtk. (222)

And induction gives us

tGku
`

V 1k ´ V πk
1

˘

pstkq ď tGku
H
ÿ

t“1

„

´´

a

νkpδq `
a

γkpδq
¯

}φtk}Σ´1
tk

` 4Hε
¯

`

Πt
τ“1 tSτku

˘

(223)

` H
`

Πt´1
τ“1 tSτku

˘

tSc
tku

ȷ

`
H
ÿ

t“1

9ζtk (224)

Now we can sum over k to attain a bound on the estimation error term of the regret. We will split this in
three terms: when all Stk occur, when some Sc

tk occurs, and the martingale difference terms. We can bound the
dominant term by exchanging order of summation, pulling out constants, applying Cauchy-Schwarz, and finally
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applying Lemma I.2 to get

K
ÿ

k“1

tGku
H
ÿ

t“1

´

p
a

νkpδq `
a

γkpδqq}φtk}Σ´1
tk

` 4Hε
¯

`

Πt
τ“1 tSτku

˘

(225)

ď p
a

νKpδq `
a

γKpδqq
H
ÿ

t“1

K
ÿ

k“1

tGku}φtk}Σ´1
tk

`

Πt
τ“1 tSτku

˘

` 4H2Kε (226)

ď p
a

νKpδq `
a

γKpδqq
H
ÿ

t“1

?
K

˜

K
ÿ

k“1

}φtk}2
Σ´1

tk

`

Πt
τ“1 tSτku

˘

¸1{2

` 4H2Kε (227)

ď p
a

νKpδq `
a

γKpδqq
H
ÿ

t“1

?
K

˜

K
ÿ

k“1

mint1, }φtk}2
Σ´1

tk

u

¸1{2

` 4H2Kε (228)

ď p
a

νKpδq `
a

γKpδqqH
?
KÕp

?
dq ` 4H2Kε (229)

To get the conclusion we need to show that the desired bound holds with high probability. Note that if ε ą 1
10H

the bound we are trying to prove is trivially true since it is larger than T . So, assuming ε ă 1
10H and applying

Lemma E.6 we get that
Ş

kPrKs Gk “
Ş

kPrKs Gk occurs with probability at least 1 ´ δ{4. Taking a union bound

we see that with probability at least 1´ δ{2 both the Gk and the bound on the sum of the 9ζtk hold. Adding the
lower order term bound from Lemma G.5 gives the desired result.

G.3 Bounding the pessimism

Lemma G.4 (Bound on Pessimism). For any Φp´1q{2 ą δ ą 0 it holds with probability at least 1 ´ δ{2 that:

K
ÿ

k“1

`

V ‹
1k ´ V 1k

˘

ps1kq “ rO

ˆ

p
a

νKpδq `
a

γKpδqqH
?
d

?
K ` H2Kε `

H2d

α2
L

˙

. (230)

Proof. In this section we bound the pessimism term by connecting it to the probability of the algorithm being
optimistic and the concentration terms. Essentially, we construct an upper bound on V ‹ and a lower bound on
V 1k and show that they cannot be too different from each other.

As in the previous proof, we will use indicator functions of a good event. But, in this proof we will not just
have the ξ pseudonoise variables but also rξ and ξ (defined later in the proof). These variables have good events
rGk,Gk defined per episode analogous to Gk (see Def. D.4). Accordingly we will now denote by Gk the event that

Gℓ X rGℓ X Gℓ holds for all ℓ ď k, so that Gk is measurable with respect to Hk. Note that by Lemma E.6 and a

union bound over the three pseudonoises we have that
Ş

kPrKs Gk “
Ş

kPrKs Gk occurs with probability at least

1 ´ δ1 for any δ1 ą 0.

First we construct the lower bound. Let the ξtk’s be vectors in Rd for t “ 1, . . . , H, and let V ξ
tk be the value

function obtained by running the Least Square Value Iteration procedure in Algorithm 1 backward with the
non-random ξtk (see definition below) in place of ξtk. Consider the following minimization program:

min
tξtkut“1,...,H

V ξ
1kps1kq

}ξtk}Σtk
ď

a

γkpδq, @t P rHs
(231)

Notice that the constraint condition on the ξ variables is equivalent to the one on the ξ in the definition of

Gξ
tk in Definition D.4, but with ξtk replacing the ξtk. We denote with tξ

tk
ut“1,...,H a minimizer of the above

expression and with V 1kps1kq the minimum of the optimization program (the minimum exists because V ξ
1kps1kq

is a continuous function of the ξ which are defined on a compact set). Importantly, under Gk we get that

V 1kps1kq ď V 1kps1kq (232)

because tξtkut“1,...,H is a feasible solution of the optimization and V ξ
tkps1kq “ V tkps1kq.
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Next, we want to get an upper bound. Consider drawing an independent and identically distributed copy rξtk
of the ξtk’s and run the least square procedure backward to get a new value function rVtk (for t P rHs) and

action-value function rQtk. Define as rOk the event that rV1kps1kq is optimistic in the k-th episode. Applying
Lemma F.2 with Φp´1q{2 ą δ ą 0 and ε ď 1

10H ,

P
´

rOk

¯

“ P
´

t rV1kps1kq ě V ‹
1kps1kq ´ 4H2εu

¯

ě Φp´1q{2. (233)

Next using this definition of optimism we can write:

`

V ‹
1k ´ V 1k

˘

ps1kq tGku ď E
rξ| rOk

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

tGku ` 4H2ε (234)

ď E
rξ| rOk

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

tGku ` 4H2ε. (235)

where the expectations are over the rξ’s, conditioned on the event rOk. The second bound follows from Equation
(232).

At this point we can use the law of total expectation under rGk:

E
rξ

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

“ E
rξ| rOk

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

Pp rOkq ` E
rξ| rOc

k

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

looooooooooooooooomooooooooooooooooon

ě0

Pp rOc
kq (236)

ě E
rξ| rOk

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

Pp rOkq. (237)

The lower bound again follows because trξtkut“1,...,H is a feasible solution of (231), so the neglected term is
positive. Chaining the above with (233) and (234) and using the definition of Gk (i.e., Gk ùñ Gk):

tGku
`

V ‹
1k ´ V 1k

˘

ps1kq ď tGku
2

Φp´1q
E

rξ

„

´

rV1k ´ V 1k

¯

ps1kq

ȷ

` 4H2ε (238)

“ tGku
2

Φp´1q

`

V 1k ´ V 1k

˘

ps1kq ` :ζk ` 4H2ε (239)

“ tGku
2

Φp´1q

`

V 1k ´ V πk
1 ` V πk

1 ´ V 1k

˘

ps1kq ` :ζk ` 4H2ε (240)

where we define

:ζk
def
“ tGku

2

Φp´1q

ˆ

E
rξ

„

rV1kps1kq

ȷ

´ V 1kps1kq

˙

(241)

and note that since the ξtk and rξtk are iid, so are rV1k and V 1k. Then p:ζk,Hk´1qk is an MDS and due to the
indicator function each term is bounded in absolute value by 2H. So, applying Azuma-Hoeffding we have with
probability at least 1 ´ δ1 that

řK
k“1

:ζtk “ rOpH
?
Kq.

Now we decompose

tGku
`

V 1k ´ V πk
1 ` V πk

1 ´ V 1k

˘

ps1kq “ tGku
`

V 1k ´ V πk
1

˘

ps1kq ` tGku pV πk
1 ´ V 1kq ps1kq (242)

The first term is the estimation error that we bounded in Lemma G.3.

For the second term, we can derive the same bound, but require a slightly modified proof. As before, we set up
the recursion by considering a generic timestep t and splitting into cases, bounding the difference by H on Sc

tk

(see definition in Lem. G.3):

tGku pV πk
t ´ V tkq pstkq ď tGku ppV πk

t ´ V tkq pstkq tStku ` H tSc
tkuq (243)

Now consider the term where }φtk}Σ´1
tk

ď αL holds. First note that since atk is the action that maximizes Qtk,

pV πk
t ´ V tkq pstkq “ Qπk

t pstk, atkq ´ V tkpstkq ď
´

Qπk
t ´ Q

tk

¯

pstk, atkq “ Qπk
t pstk, atkq ´ φJ

tkθtk. (244)
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Applying Lemma C.1 we see that this is

Qπk
t pstk, atkq ´ φJ

tkθtk “ ´Es1|stk,atk
r
`

V t`1,k ´ V πk
t`1

˘

ps1qs ´ φJ
tkpη

tk
` ξ

tk
` λπk

tk q ´ mπk

tk pstk, atkq. (245)

And we can define

;ζtk
def
“ tGku

`

´Es1|stk,atk
r
`

V t`1,k ´ V πk
t`1

˘

ps1qs `
`

V t`1,k ´ V πk
t`1

˘

pst`1,kq
˘

(246)

Then p;ζtk,Hk Y Htkqt,k is an MDS and due to the indicator function each term is bounded in absolute value by

2H. So, applying Azuma-Hoeffding we have with probability at least 1 ´ δ1 that
řK

k“1

řH
t“1

:ζtk “ rOpH
?
T q

So that, as in Lemma G.3, induction gives us

tGku pV πk
1 ´ V 1kq ps1kq ď tGku

H
ÿ

t“1

„

´

p
a

νkpδq `
a

γkpδqq}φtk}Σ´1
tk

` 4Hε
¯

`

Πt
τ“1 tSτku

˘

(247)

` H
`

Πt´1
τ“1 tSτku

˘

tSc
tku

ȷ

`
H
ÿ

t“1

;ζtk (248)

Summing over k, this can be bounded as in Lemma G.3. To conclude, summing the bound from (240) over k
and applying the same arguments as Lemma G.3 to both value function differences gives us that

K
ÿ

k“1

tGku
`

V ‹
1k ´ V 1k

˘

ps1kq ď
4

Φp´1q
rO

ˆ

p
a

νKpδq `
a

γKpδqqH
?
d

?
K ` H2Kε `

H2d

α2
L

˙

` ÕpH
?
Kq ` 4HT ε

(249)

so that consolidating terms gives us the desired bound. Notice that if ε ě 1
10H the result trivially holds.

To conclude we just need to set δ1 “ δ{6 and take a union bound over the two applications of Azuma-Hoeffding
and the intersection of the Gk we get the result with probability 1 ´ δ{2 as desired.

G.4 Bounding the warmup

Lemma G.5 (Warmup Bound).

K
ÿ

k“1

H
ÿ

t“1

H
!

Sc
tk

)

def
“

K
ÿ

k“1

H
ÿ

t“1

H
!

}φtk}Σ´1
tk

ą αL

)

“ rO

ˆ

H2d

α2
L

˙
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Proof.
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ÿ
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H
ÿ

t“1

H
!

}φtk}Σ´1
tk

ą αL

)

“ H
K
ÿ

k“1

H
ÿ

t“1

#

}φtk}Σ´1
tk

αL
ą 1

+
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“ H
K
ÿ

k“1

H
ÿ

t“1

#

}φtk}2
Σ´1

tk

α2
L

ą 1

+
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ď H
K
ÿ

k“1

H
ÿ

t“1

min

"

1,
}φtk}2

Σ´1
tk

α2
L

*

(253)

paq
ď

H

α2
L

H
ÿ

t“1

K
ÿ

k“1

mint1, }φtk}2
Σ´1

tk

u (254)

pbq
ď

H2

α2
L

rOpdq “ rO

ˆ

H2d

α2
L

˙

(255)

Where (a) holds since 1{α2 ą 1 by the following reasoning. Let x ą 1 and consider two cases: if y ă 1{x then
mint1, xyu “ xy “ xmint1, yu and if y ě 1{x then mint1, xyu “ 1 ď x ď xmint1, yu. Finally, (b) is due to
Lemma I.2.

Note that Lemma C.1 is derived for θtk, but we can derive an equivalent expression for θtk
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H Computational Complexity

Now we take a look at the computational complexity of the algorithm.

Proposition H.1 (Computational Complexity of opt-rlsvi in finite action spaces). Let A be the number of
actions available at every timestep. Then opt-rlsvi can be implemented in space Opd2H ` dAHKq and time
Opd2AHK2q.

Proof. In terms of computational complexity, a naive implementation of opt-rlsvi requires Opd2q elementary
operations to compute }φt`1,i}Σ´1

t`1,k
to assess which decision rule to use in definition 1. This must be done for all

next-state action-value functions at the experienced successors states. If the action space is finite with cardinality
A then the maximization over action to compute the value function V t`1,kpst`1,iq at the next timestep for the k
experienced successor states st`1,1, . . . , st`1,k would take Opd2AKq total work per timestep. A further Opd3q is
needed to compute the inverse of Σtk to solve the least square system of equation, but this can be brought down
to Opd2q using the usual Sherman-Morrison rank one update formula. All this must be done at every timestep
of the least-square value iteration procedure, which must run every episode, giving a final runtime Opd2AHK2q.

As for the memory, one can store the K features φtpstk, aq for all A actions, timestep H and episode K using
OpdAHKq memory, in addition to the inverse of the Σtk matrices (Opd2Hq space) and the scalar rewards (OpKHq
space).
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I Technical Lemmas

Lemma I.1 (Self-normalized process ). (Abbasi-Yadkori et al., 2011) Let txiu8
i“1 be a real valued stochastic

process sequence over the filtration tFiu8
i“1. Let xi be conditionally B-subgaussian given Fi´1. Let tφiu8

i“1 with

φi P Fi´1 be a stochastic process in Rd with each }φi} ď Lφ. Define Σi “ λI `
ři´1

j“1 φiφ
J
i . Then for any δ ą 0

and all i ě 0, with probability at least 1 ´ δ

›

›

›

›

k´1
ÿ

i“1

φixi

›

›

›

›

2

Σ´1
k

ď 2B2 log

ˆ

detpΣiq1{2 detpλIq´1{2

δ

˙

ď 2B2

ˆ

d log

˜

λ ` kL2
φ

λ

¸

` logp1{δq

˙

(256)

Lemma I.2 (Sum of features). (Abbasi-Yadkori et al., 2011, Lemma 11) Using the notation defined above,

k
ÿ

i“1

mint1, }φi}
2
Σ´1

i

u ď 2d log

˜

λ ` kL2
φ

λ

¸

(257)

Lemma I.3 (Sum of features in final norm). (Jin et al., 2019, Lemma D.1)

k´1
ÿ

i“1

}φi}
2
Σ´1

k

ď d (258)

Lemma I.4 (Gaussian concentration). (Abeille et al., 2017, Appendix A) Let ξtk „ N p0, HνkpδqΣ´1
tk q. For any

δ ą 0, with probability 1 ´ δ

}ξtk}Σtk
ď c

a

Hdνkpδq logpd{δq
def
“

a

γkpδq (259)

for some absolute constant c

Lemma I.5 (Covering numbers). (Pollard, 1990, Section 4) A euclidean ball of radius B in Rd has ε-covering
number at most p3B{εqd.

Lemma I.6 (Simplifying the log term). With λ ě 1, we can choose c1 so that

a

βkpδq ě 8Hd

ˆ

log

˜

kL2
φ ` λ

λ

¸

` log

ˆ

3p2H
a

kd{λ `
a

γkpδq{λ ` 1{λq{

˜

αU ´ αL

8kL2
φH

2

¸2
˙

` logp1{δq

˙1{2

(260)

Proof. Recall that

a

βkpδq
def
“ c1Hd

d

log

ˆ

Hdkmaxp1, Lφqmaxp1, Lψqmaxp1, Lrqλ
δ

˙

(261)

Using λ ě and expanding the definitions of terms on the RHS of the statement we can bound it by

ď 8Hd

ˆ

log

˜

pkL2
φ ` λq3p2H

?
kd `

a

γkpδq ` 1q64k2L4
φH

4

δpαU ´ αLq2

¸

˙1{2

(262)

ď 8Hd

ˆ

log

˜

pkL2
φ ` λqpH

?
kd `

a

γkpδqq64k2L4
φH

2pγkpδqq

δλ

¸

˙1{2

(263)

ď 8Hd

ˆ

log

˜

pkL2
φ ` λqpH

?
kdqk2L4

φH
2pc22dHp

a

βkpδq `
?
λLφp3HLψ ` Lrq ` 4εH

?
dkq2 logpd{δqq3{2

δ

¸

˙1{2

(264)

Bounding the
a

βkpδq by c1HdpHdkmaxp1, Lφqmaxp1, Lψqmaxp1, Lrqλq{δ this gives us a
large polynomial in k,H, d,λ,maxp1, Lφq,maxp1, Lψq,maxp1, Lrq, 1{δ. We bound this by

cpkHdλmaxp1, Lφqmaxp1, Lψqmaxp1, Lrq{δqc
1
for some c, c1, and taking the log to move the exponent

into the constant gives the existence of some c1 to define βkpδq.


