Yao Zhang, Daniel Jarrett, Mihaela van der Schaar

Table 3: Performance of SMS-DKL (optimized over the baseline LSTM model) and Single-model benchmarks (with various
modifications to the baseline LSTM model). Results are computed on (held-out) test data; in line with the original
paper Oh et al. (2019), we include the area under the receiver operating characteristic (AUROC) and the area under
the precision-recall curve (AUPRC), each shown with 95% confidence intervals. Results for SMS-DKL are computed at
after 500 BO iterations; note that these numbers (computed on test data) are not exactly identical to those in Table 2
(computed on validation data).

Target \ IHM Shock \ ARF

Metric | AUROC AUPRC AUROC AUPRC | AUROC AUPRC
LSTM 0.80 [0.78, 0.83] 0.39 [0.33, 0.43] | 0.59 [0.49, 0.69] 0.09 [0.05, 0.16] | 0.47 [0.35, 0.58] 0.04 [0.02, 0.07]
LSTM+t | 0.81]0.79, 0.83] 0.41 [0.36, 0.47] | 0.62 [0.53, 0.70] 0.08 [0.05, 0.15] | 0.42 [0.30, 0.54] 0.04 [0.02, 0.07]
LSTM+TE | 0.82 [0.80, 0.85] 0.43 [0.38, 0.48] | 0.60 [0.50, 0.69] 0.10 [0.06, 0.20] | 0.48 [0.35, 0.61] 0.05 [0.03, 0.10]
HyperLSTM | 0.82 [0.80, 0.84] 0.42 [0.37, 0.47] | 0.63 [0.54, 0.72] 0.08 [0.05, 0.12] | 0.57 [0.44, 0.68] 0.06 [0.03, 0.10]
shiftLSTM | 0.81 [0.79, 0.84] 0.43 [0.37, 0.48] | 0.61 [0.52, 0.70] 0.09 [0.05, 0.16] | 0.61 [0.49, 0.70] 0.10 [0.03, 0.21]
mixLSTM | 0.83 [0.81, 0.85] 0.45 [0.40, 0.50] | 0.67 [0.58, 0.76] 0.10 [0.06, 0.16] | 0.72 [0.62, 0.80] 0.15 [0.06, 0.27]
SMS-DKL | 0.84 [0.82, 0.87] 0.46 [0.40, 0.53] | 0.65 [0.59, 0.72] 0.12 [0.07, 0.17] | 0.66 [0.61, 0.72] 0.11 [0.07, 0.15]

A Implementation Detalils

Implementation. The benchmarks GP and ParEGO
(and their stepwise variants) are implemented using
the GPyOpt library Gonzélez (2016). All models use a
Matérn-5/2 covariance kernel and automatic relevance
determination hyperparameters, optimized by empiri-
cal Bayes Williams and Rasmussen (2006). For these
algorithms as well as SMS-DKL, we use the expected
improvement (EI) Jones et al. (1998); Mockus et al.
(1978) as the acquisition function. The DKL network
consists of three components as shown in Figure 3. The
RNN component is implemented as an LSTM network
with 50 hidden units per cell, using tanh as hidden
recurrent activation and sigmoid as output activation.
The DeepSets component is implemented as a four-layer
feedforward network with 32 hidden units per layer and
ReLU as activation; we average all the samples in the
dataset after the transformation of the second hidden
layer. See Zaheer et al. (2017) for additional details on
DeepSets and permutation invariance. In our experi-
ments, we set the learned embedding of the filtration
at each time step to be of size 1. As for the MLP
component in the DKL network, we use a three-layer
feedforward network with 32 hidden units per layer and
tanh as activation. In training, we set the maximum
number of training iterations M = 500. The optimizer
we use is Adam Kingma and Ba (2014). The bench-
mark PESMO is implemented using the source code
provided by Hernandez-Lobato et al. (2016).? The size
of the Pareto set sample in PESMO is 50, which is
used and claimed to be suitable for several hundreds of
acquisitions in the original PESMO paper. For all BO
algorithms, we set the maximum number of function
evaluations N = 500 and use the same initial sample
for all the algorithms.

2https://github.com/HIPS /Spearmint /tree/ PESM

B Hyperparameter Space

In Section 5, we evaluate the proposed SMS-DKL al-
gorithm and all benchmark algorithms in optimizing
the hyperparameters of RNN models on 7 sequence
prediction tasks. The RNN architecture used in the
experiment is a standard LSTM network with tanh as
hidden recurrent activation and a hidden ReLU output
layer for making predictions. The full eight-dimensional
hyperparameter space X of RNN models is as follows,

e Number of output units: int, [10, 200]

e RNN state size: int, [10, 300]

e Training epochs: int, [32, 200]

e Batch size: int, [32, 100]

e Dropout rate: float, [0.1, 0.9]

e Recurrent dropout rate: float, [0.1, 0.9]
e Logarithm of learning rate: int, [-8, -3]

e Logarithm of weight decay: int, [-20, 1]

C Generalization Performance

In the main manuscript, we primarily focused on com-
paring SMS-DKL to other algorithms in the context
of BO—that is, with respect to the performance of
selected hyperparameters on validation data. Now in
practice, a reasonable question is whether these step-
wise hyperparameters—selected by SMS-DKL on the
validation set—can generalize well to (held-out) test
data. In particular, a variety of sophisticated single-
model techniques have been proposed to address the
problem of temporal distribution shift by modifying
the baseline LSTM model. These explicitly include

Running heading title breaks the line

time as a parameter (LSTM-+t), incorporate tempo-
ral encodings (LSTM+TE), model abrupt transitions
(shift LSTM), mix weights over time (mixLSTM), as
well as learning hypernetworks to modify the weights
of the LSTM model (HyperLSTM); we refer to Oh
et al. (2019) for a more detailed treatment. Here, we
include a head-to-head comparison of such single-model
techniques with SMS-DKL—applied over the baseline
LSTM alone. Table 3 shows results for all aforemen-
tioned single-model techniques designed to accommo-
date time-varying relationships, as well as the result of
SMS-DKL (applied to the baseline LSTM model). Re-
sults for the single-model techniques are reprinted from
Oh et al. (2019), and include all of the same prediction
tasks on the MIMIC dataset. Results for SMS-DKL
are obtained via the same training and testing splits;
we execute the same data processing procedure using
the source code accompanying the original paper.®> On

Shttps://gitlab.eecs.umich.edu/mld3

0.605

the one hand, the various modifications to the LSTM
model clearly improve performance over the baseline
LSTM model. On the other hand, we observe that
extremely competitive performance is also achieved by
the simple application of SMS-DKL in optimizing the
baseline LSTM model: SMS-DKL exhibits either the
best or second-best test-set performance—purely by op-
timizing the (unmodified) LSTM baseline. SMS-DKL
lays the foundation for AutoML to offer a general and
convenient framework of developing powerful sequence
prediction models while keeping the human out of the
loop.

D Convergence Plots

In this section, we provide the convergence plots of all
BO algorithms over all 500 evaluations, for each of the
prediction tasks corresponding to Table 2 in Section 5.

0.645
0.8825
0.600
0.640 0.8800
0.595 0.635 0.8775
I3 « £ 0.8750
& 0.
S 0.590 3 0.630 - GP S
E] . GP-WISE S 08725
055 0.625 = ParEGO
-585 ParEGO-WISE ParEGO-WISE 0.8700 ParEGO-WISE
. PESMO 0.620 = PESMO 0.8675 N PESMO
0.580 PESMO-WISE PESMO-WISE 0.8650 PESMO-WISE
0575 N SMS-MKL 0.615 BN SMS-DKL ’ B SMS-MKL
' 100 200 300 400 500 0 100 300 400 500 0 100 200 300 400 500
Number of Evaluations Number of Evaluations Number of Evaluations
(a) UKCF - 1YM (b) UKCF - ABPA (C) UKCEF - E.coli
0.475 0.120 0.135
0.130
0.470 0.115 0.125
& - GP & ol eGP g - GP
S - GP- O & 0120
2 0465 GP-WISE S o110 . GP-WISE S . GP-WISE
. ParEGO W ParEGO < o011 = ParEGO
ParEGO-WISE 0105 ParEGO-WISE 0.110 ParEGO-WISE
0.460 = PESMO = PESMO = PESMO
PESMO-WISE PESMO-WISE 0.105 PESMO-WISE
o5 . SMS-DKL 0.100 W= SMS-DKL 0.100 = SMS-DKL
0 100 200 300 200 500 0 100 300 400 500 0 100 200 300 400 500

Number of Evaluations

(d) MIMIC - THM

Number of Evaluations

(e) MIMIC - Shock

Number of Evaluations

(f) MIMIC - ARF

AUC-PR

. GP
N GP-WISE
s ParEGO
ParEGO-WISE
s PESMO
PESMO-WISE
Bm SMS-DKL

0 100

300 400 500

Number of Evaluations

(g) WARDS - ICU

Figure 5: Convergence plots of all BO algorithms over all 500 evaluations, for each of the seven prediction tasks in Table 2.

Yao Zhang, Daniel Jarrett, Mihaela van der Schaar

E Table and Pseudo code

Dataset | Target | Autocorr. | % Postive (start) (end)

1IYM | 0.592 12.2 23.4
UKCF | ABPA | 0.564 27.6 12.7
E.coli | 0.564 52.4 28.5
IHM | 0.849 13.2 13.2
MIMIC | Shock | 0.867 8.9 8.9
ARF | 0.875 7.2 7.2
WARDS | ICU | 0.976 1.7 3.2

Table 4: Feature autocorrelations and % positive labels. The slight inter-task variation in feature autocorrelations within a
dataset are due to label missingness and censoring.

Algorithm 1 SMS-DKL

Hyperparameters: Max BO iterations N, max
training iterations M, and acquisition function ay
Input: Sequence dataset D
Initialize A;, ¢t € {1,...,T} with random samples
for n=1to N do
for m=1to M do
Update Oy, t € {1,...,T} jointly
by optimizing (5)
end for
Update ay(x¢|As), t € {1,...,T} using (7)
Solve xj = argmaxay;(x¢|A), t € {1,...,T}
x:€X
Sample x* from {x} : ¢t € {1,...,T}}
via policy in (9)
Ay — AU (X*,y:), te {1, ,T}
end for
Output: For each ¢t € {1,...,T}, the tuple (x¢,y;)
with the best value of y; in A;

	Introduction
	Problem Formulation
	Related Work
	SMS via Deep Kernel Learning
	Deep Kernels
	Learning and Inference
	Acquisition Method

	Experiments and Discussion
	Experiment Results
	Discussion

	Implementation Details
	Hyperparameter Space
	Generalization Performance
	Convergence Plots
	Table and Pseudo code

