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Abstract

An essential problem in automated machine
learning (AutoML) is that of model selection.
A unique challenge in the sequential setting
is the fact that the optimal model itself may
vary over time, depending on the distribution
of features and labels available up to each
point in time. In this paper, we propose a
novel Bayesian optimization (BO) algorithm
to tackle the challenge of model selection in
this setting. This is accomplished by treating
the performance at each time step as its own
black-box function. In order to solve the re-
sulting multiple black-box function optimiza-
tion problem jointly and efficiently, we exploit
potential correlations among black-box func-
tions using deep kernel learning (DKL). To
the best of our knowledge, we are the first
to formulate the problem of stepwise model
selection (SMS) for sequence prediction, and
to design and demonstrate an efficient joint-
learning algorithm for this purpose. Using
multiple real-world datasets, we verify that
our proposed method outperforms both stan-
dard BO and multi-objective BO algorithms
on a variety of sequence prediction tasks.

1 Introduction

Model selection is a central concern in automated ma-
chine learning (AutoML). Techniques using Bayesian
optimization (BO) have proven popular and effective
for this purpose Snoek et al. (2012), and have been
extended to incorporate trade-offs between multiple ob-
jectives Hernández-Lobato et al. (2016); Picheny (2015);
Shah and Ghahramani (2016), as well as accommodat-
ing transfer across multiple tasks Perrone et al. (2018);

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

Swersky et al. (2013); Zhang et al. (2017). In this
paper, we focus on Bayesian optimization for model
selection in the sequence prediction setting—that is,
where the underlying task is to emit predictions et at
every step t given a sequence of observations {ot}T

t=1

as input. Instead of studying the dynamics between
or across different tasks, we concentrate on how the
optimal model itself (for a fixed task) may vary over

time, depending on the distribution of features and
labels in the data available at each time.

Note that there are two different senses of changes “over
time”. The first concerns distribution shifts across suc-
cessive batches of (static) data: If the data-generating
process evolves across multiple datasets, existing mod-
els trained on prior data may require updating as new
batches become available—that is, in order to continue
to generalize well. This sequential process can be as-
sisted for instance by hyperparameter transfer learning
Perrone et al. (2018), and is not the focus of this work.
The second type is more subtle, and is the motiva-
tion for our work: There may be temporal distribution
shifts within the same dataset that we are attempting
to learn from. Unlike in sequential hyperparameter
transfer learning, here all the data we need is already
available, and learning can in principle be done jointly

across all time steps. Temporal distribution shifts often
arise in healthcare, and can happen on both the individ-
ual and population level. As an example of the former,
the risk factors for an adverse outcome at the beginning
of a patient’s hospital stay may generally be different
from those that govern their condition towards the end
of the episode. As an example of the latter, as a medical
study progresses over time, the distribution of regis-
tered patients and their treatments and outcomes may
undergo a shift. As noted in Oh et al. (2019); Wiens
et al. (2016), while such phenomena are common in
the medical setting, they are rarely addressed explicitly
by current single-model techniques—potentially giving
rise to suboptimal prediction performance.

In this paper, we develop an automated technique for
stepwise model selection (SMS) over time, thereby tack-
ling the challenge of optimal models evolving through-
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out a dataset. We propose a novel BO algorithm for
SMS, treating the prediction performance at each time
step as its own black-box function. To solve the result-
ing multiple black-box function optimization problem
jointly and efficiently, we exploit correlations among
black-boxes via deep kernel learning (DKL). Using real-
world datasets in healthcare, we verify that our method
outperforms both standard BO and multi-objective BO
algorithms on a variety of sequence prediction tasks.
To the best of our knowledge, we are the first to for-
mulate the problem of stepwise model selection for
sequence prediction, and to design and demonstrate
an efficient algorithm for this purpose. Our technique
contributes to AutoML in developing powerful seq-
uence models while keeping the human out of the loop.

2 Problem Formulation

To establish notation, we first introduce the underlying
sequence prediction task, and formalize the stepwise
model selection problem that we address in this paper.

Sequence Prediction. Let ot 2 Rd denote (observed)
input variables, and et 2 R the (emitted) output vari-
able, where t 2 {1, ..., T} in sequences of up to length
T . At every time t, the underlying task is to predict
the label et on the basis of the sequence of observations
available up until time t: (o⌧ )t

⌧=1. To this end, we are
given a finite dataset D = {(oi,t, ei,t)T

t=1}I
i=1 for train-

ing purposes, where individual sequences are indexed
by i 2 {1, ..., I} in a dataset with I sequences. Let X
denote the space of hyperparameters for such sequence
prediction models, including discrete and continuous
variables that configure architectures and training. For
example, the hyperparameter space of a recurrent neu-
ral network (RNN) may include—among others—the
size of the hidden state, dropout rate, and coefficient on
weight-decay. (If we were to consider different classes of
models entirely, e.g. GRUs vs. LSTMs, this can also be
accommodated via additional categorical dimensions).

Stepwise Model Selection. In standard Bayesian
optimization, the task is to minimize (or maximize)
some black-box function f : X ! R. Let af : X ! R
denote the acquisition function, which captures the
utility of evaluating f at x 2 X. At each BO itera-
tion, we use af to determine the next point to evaluate,
and the goal is to find the global minimizer (or maxi-
mizer) of f after the fewest iterations. Concretely, let
Dt = {(oi,⌧ , ei,⌧ )t

⌧=1}I
i=1 give the filtration of the full

dataset D with respect to time t, and let Lt denote
the validation performance metric of interest (e.g. like-
lihood of the data, area under the receiver operating
characteristic, etc.) for time step t. The (conventional)
single-model approach for sequence prediction is to find

a single maximizer x⇤ that is used for all time steps t,

x⇤ 2 arg max
x2X

TX

t=1

Lt(x, Dtrain, Dvalid

t ) (1)

where superscripts on D denote training and validation
splits. Defining f(x) =

PT
t=1 Lt(x, Dtrain, Dvalid

t ) gives
us the black-box function to be optimized using BO.

In this paper, we extend this formulation to accommo-
date the SMS problem—that is, of selecting the best
sequence prediction model for each time step. To this
end, we treat the prediction performance at each step
t 2 {1, ..., T} as its own a black-box function ft. Our
objective is to find the best x⇤

t that maximizes each ft;
in other words, we want the set of stepwise maximizers,

{x⇤
t }T

t=1 2 arg max
{xt}T

t=12XT

TX

t=1

Lt(xt, Dtrain, Dvalid

t ) (2)

where for brevity we use XT to denote
QT

t=1 X. Defining
ft(xt) = Lt(xt, Dtrain, Dvalid

t ) for t 2 {1, ..., T} then
gives T black-box functions to be optimized using BO.

Multiple Black-Boxes. Two points require emphasis.
The first concerns the problem (SMS), and the second
motivates our solution (DKL). First, the T black-box
functions are in general distinct. In the presence of
potential distribution shifts, it is highly unlikely that
the optimizer for all t will be the same exact model. For
instance, the optimal RNN for the first 24 hours of an
ICU physiological stream may require little recurrent
memory as the typical patient is very stable; yet as
more patients enter deteriorating states over time, we
may require more complex hidden states that can better
capture both short and long-range patterns. Reducing
the SMS problem in (1) to a single black-box problem
as in (2) may be overly constraining; we will observe
examples of this in our experiments later in Section 5.

Second, however, the T black-box functions are in
general not independent. For one, we expect a
given model’s performance to be correlated across
time—especially between neighboring steps. Further-
more, instead of obtaining a single point (xn, yn =
f(xn)) per acquisition step n, here we obtain a total of
T points {(xn,t, yn,t)}T

t=1 per acquisition; these are ob-
tained simultaneously, since we can observe a model’s
performance for all times t for every evaluation (i.e.
with a single pass through D). Denote by At = (Xt,yt)
the acquisition set for time t, where the n-th row of Xt

corresponds to xn,t, and the n-th entry of yt to yn,t.
The number of rows in Xt equals N , the total number
of acquisitions—the same for all functions ft. In our
proposed solution, we will leverage the correlations be-
tween time steps t to jointly optimize all f1, ..., fT , as
well as acquiring models via a soft policy prioritizing
black-boxes with the highest expected improvement.
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Figure 1: Comparison of related methods in the context of model selection for sequence prediction. Each Mx indicates a
model (hyper-)parameterized by x. (a) Multi-objective Bayesian optimization, which is constrained to learn a single model
for all time steps. (b) Multi-task Bayesian optimization, which can be applied sequentially across time steps. (c) Our
proposed technique for stepwise model selection via deep kernel learning, which jointly learns all models for all time steps.

3 Related Work

We take on the problem of selecting sequence predict-
ion models for each time step, casting this as a multiple
black-box optimization problem. As such, our work
bears some resemblance to multi-objective Bayesian
optimization, and to multi-task Bayesian optimization.

Multi-Objective Bayesian optimization (MOBO) Em-
merich and Klinkenberg (2008); Hernández-Lobato et al.
(2016); Knowles (2006); Picheny (2015); Ponweiser
et al. (2008); Shah and Ghahramani (2016); Zitzler and
Thiele (1999) deals with optimizing multiple objectives
in a trade-off relationship. Consider two objectives

Figure 2: Example of Pareto frontier estimates with two
objectives. In the MOBO setting we would often find v6 the
most attractive single solution, while in the SMS setting
we would be simultaneously interested in both v5 and v7.

f1, f2 as in Figure 2. Suppose that, after a certain
number of BO iterations, our current best estimate of
the Pareto frontier is given by points v1 through v4

(the feasible region is shaded in dark). Further sup-
pose that, as more points are sampled, the frontier is
pushed outward by additional points v5 through v7. In
the MOBO setting, v6 would often provide the most
attractive trade-off between the two objectives—for
instance, based on hyper-volume gain. In contrast, our
goal in the SMS setting is to find an optimal model
x⇤

t at each time t; importantly, there is no trade-off
relationship—each such x⇤

t does not need to be optimal
for any other time step. In this example, our primary
interests are therefore in v5 (for f1) and v7 (for f2), but
not v6. If (for whatever reason) we were constrained
to select a single prediction model for all time steps,
then the SMS problem would be reduced to MOBO.

Multi-Task Bayesian Optimization (MTBO) Perrone
et al. (2018); Swersky et al. (2013); Zhang et al. (2017,
2019) deals with transferring knowledge gained from
previous optimizations to new tasks, such that subse-
quent optimizations are more efficient. This setting
applies, for example, to the problem where succes-
sive batches of (static) data are available or accumu-
lated over time, such that prior trained models may
require retraining. Of course, the SMS problem can be
(naively) reduced to an MTBO problem—that is, we
can optimize all models ft sequentially, for instance by
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Table 1: Comparison of related methods in the context of model selection for sequence prediction. 1Note that correlations
within black-box functions are exploited in all BO methods; SMS-DKL additionally exploits correlations across functions.
2Some MOBO methods achieve this, but they are not scalable to problems with large numbers of objectives (see Section 5).

Optimization Problem
Number of

Optimizers

Optimize All

Functions Jointly

Exploit Correlations

among All Functions
1,2

Prioritize which

Functions to Optimize

MOBO x⇤ 2 argmax
x2X

TX

t=1

ft(x) 1 3 7 7

MTBO
for t 2 {1, ..., T}:

x⇤
t 2 argmax

xt2X
ft(xt) T 7 3 7

SMS-DKL {x⇤
t }Tt=1 2 argmax

{xt}T
t=12XT

TX

t=1

ft(xt) T 3 3 3

using optimizations of black-box functions f1, ..., ft�1

to warm-start the optimization for ft. However, this
approach is of little practical interest. Evaluating deep
learning models on large datasets is expensive, and in
practice we have a limited computational budget—we
are interested in finding a good model after a set num-
ber of BO evaluations (depending on the dimension of
the hyperparameter space). Conducting SMS by reduc-
tion to MTBO requires T separate BO procedures in a
sequence, and it is unclear how to allocate evaluations
among these subproblems while keeping the human
out of the loop. In addition, in contrast to the joint

approach of our proposed solution (which involves a sin-
gle BO procedure for all ft), MTBO does not take full
advantage of information from all acquisition functions.

In this paper, we take on the SMS problem for sequence
prediction models by optimizing all functions f1, ..., fT

at the same time. In contrast to MOBO, we are not
constrained by trade-offs between competing objectives.
And in contrast to MTBO, our goal is to take full
advantage of the potential correlations among black-box
functons ft, as well as information from the acquisition
functions, by learning the models for all steps jointly.
See Figure 1 and Table 1 for a comparison of MBTO,
MOBO, as well as our proposed approach—SMS-DKL1.

4 SMS via Deep Kernel Learning

We now develop our proposed technique for the SMS
problem: a novel BO algorithm that uses deep kernel
learning (DKL) to solve the multiple black-box opti-
mization problem jointly and efficiently. Recall that
each black-box function ft corresponds to the valida-
tion performance Lt. This depends on the filtration
Dt and the selected model xt; accordingly, we expect
the similarity among black-box functions f1, ..., fT to
be explained by interactions between filtrations and
models. Kernels are often deployed as measures of sim-

1An implementation of SMS-DKL is available at
https://bitbucket.org/mvdschaar/mlforhealthlabpub.

ilarity: They are used in support vector machines and
gaussian processes to measure the similarity K(v,v0)
between two vectors (using an inner product in a trans-
formed space); they can also be used to measure the
similarity K(p, p0) between two distributions (using
the sample average of an inner kernel, for instance)
Muandet et al. (2012). Here, we propose a deep kernel
learning method designed to measure the similarity
between two filtration-and-model tuples. Let (Dt,xt)
and (Dt0 ,x0

t0) be two such pairs; we will allow their
similarity to be captured by a learned kernel parame-
terized by a neural network.

Section 4.1 describes how to capture similarities be-
tween black-boxes, Section 4.2 covers learning and infer-
ence, and Section 4.3 provides the acquisition method.

4.1 Deep Kernels

Vector Embedding. We start by transforming tu-
ples (Dt,xt) into fixed-length vector representations
gt; these are the feature maps that will subsequently
be used by the kernel to measure similarities between
such tuples. This is accomplished through a neural
network that consists of three components. First, an
RNN learns a per-instance representation of Dt—that
is, of (oi,⌧ , ei,⌧ )t

⌧=1 for all i 2 {1, ..., I}. Denote by hi,t

the embedding for instance i; the result of this step
is therefore given by the matrix Ht. Second, we pass
Ht through a DeepSets network Zaheer et al. (2017)
in order to obtain a permutation-invariant embedding,
which we denote by zt. This is important: we want
an embedding that is independent of how the individ-
ual rows are ordered in Ht. Third, the vectors zt,xt

are concatenated and fed into a multilayer perceptron
(MLP) that generates the final feature map gt. See
Figure 3 for a block-diagram.

In DKL, zt can be interpreted by analogy to a set of
informative statistics on Dt; then the MLP component
simply operates as a standard deep kernel machine Al-
Shedivat et al. (2016); Wilson et al. (2016) that takes
vectors zt �xt as input. Importantly, instead of relying
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Figure 3: Architecture of DKL network.

on predefined measures of the data or handcrafted
statistical meta-features to explain model performance
Bardenet et al. (2013); Feurer et al. (2015); Pfahringer
et al. (2000), here we allow informative measures to be
flexibly learned by way of neural networks.

Kernel Construction. We now show how to use the
feature map gt to construct a deep kernel. Recall that
the acquisition set for time t is given by At = (Xt,yt);
here Xt contains N rows (and yt contains N entries),
where N is the number of acquisitions made so far. Let
Gt denote the N⇥D matrix where the n-th row is given
by (D-dimensional) gn,t, the feature map corresponding
to xn,t. The deep linear kernel machine is constructed
by performing a Bayesian linear regression on gt—that
is, by marginalizing out the output layer wt on the top
of the feature map gt, with respect to the posterior
distribution of wt. The likelihood function is as follows,

P (yt|Xt,wt,⇥t) =
NY

n=1

N (yn,t;Gtwt, �
�1
t ) (3)

where �t is the precision parameter. The prior distri-
bution is P (wt|�t) = N (0, ��1

t ID⇥D) with precision
parameter �t, which leads to the posterior distribution,

P (wt|At,⇥t) = N (mwt ,K
�1
wt

) (4)

where the set ⇥t collects all neural network parameters
in the DKL architecture as well as �t and �t, and the
mean function mwt and kernel Kwt are as follows,

mwt =
�t

�t
K�1

wt
G>

t yt, Kwt =
�t

�t
G>

t Gt + ID⇥D

4.2 Learning and Inference

We learn the parameters in ⇥t by marginal likelihood
optimization. We switch between the primal and dual
forms of the log marginal likelihood for computational
efficiency and numerical stability. In its primal form,
the log marginal likelihood is given by the following,

L(⇥t) = � N

2
log(2⇡��1

t ) � �t

2
kytk2

+
�2

t

�t
y>

t GtK
�1
wt

G>
t yt � 1

2
log |Kwt |

In its dual form, the log marginal likelihood is given as
the logarithm of N (yt; �

�1
t GtG>

t + ��1
t IN⇥N ). When

N > D, we optimize the log marginal likelihood in pri-
mal form, otherwise in dual form. Now, our operating
assumption is that the black-box functions f1, ..., fT are
correlated in some way; accordingly, we let the neural
network parameters be shared over all the time steps t,
giving the multi-task marginal likelihood Perrone et al.
(2018),

L(⇥) =
TX

t=1

L(⇥t) (5)

where we have used ⇥ to indicate [T
t=1⇥t. The over-

all computational complexity of optimizing L(⇥) is
O(T max{N, D}(min{N, D})2). If T is very large, then
we can first randomly sample a subset of time steps
S ⇢ {1, ..., T}, and then maximize

P
t2S L(⇥t) instead

at each iteration of marginal likelihood optimization.

Acquisition Function. To construct the acquisition
function af,t(x

†
t |At) in BO (for test data point x†

t ), we
first obtain the feature map gt by passing x†

t through
the neural network. Then the predictive distribution
is obtained by integrating out wt in the delta measure
�(ft(x

†
t ) = w>

t gt) with respect to its posterior in (4):

ft(x
†
t ) ⇠ N

�
µ(x†

t |At,⇥t), �
2(x†

t |At,⇥t)
�

(6)

where
µ(x†

t |At,⇥t) = m>
wt

gt

�2(x†
t |At,⇥t) =

1

�t
g>

t K�1
wt

gt

(7)

4.3 Acquisition Method

In standard BO, the next model to be acquired is chosen
by maximizing the acquisition function af (x|A)—e.g.
the probability of improvement (PI) Kushner (1964),
expected improvement Jones et al. (1998); Mockus et al.
(1978), Gaussian process upper confidence bound (GP-
UCB) Srinivas et al. (2009), and entropy search (ES)
Hennig and Schuler (2012):

x⇤ 2 arg max
x2X

af (x|A) (8)

In DKL, the first two components produce the embed-
ding vector zt. The third component is what takes xt

as input (along with zt), and its output is what the
posterior in (6) and corresponding acquisition function
are constructed with; we can optimize af,t(xt, At) by
optimizing the input xt only in the third network.

In our problem, we actually need to optimize T black-
box functions f1, ..., fT at the same time. In addition,
recall that we can observe a given model’s performance
for all time steps t after every single model evaluation
(i.e. we obtain T data points {(xn,t, yn,t)}T

t=1 per acqui-
sition). One straightforward solution is to simply define
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the sum fsum =
PT

t=1 ft and make acquisitions on the
basis of this sum. However, this is not desirable since
the optimizer of fsum is in general not identical to the
optimizer of each individual ft. Optimizing fsum is only
suitable if we were constrained to select a single model
for all time steps t (which we are not). In our case,
at each BO iteration we first compute the individual

optimizers x⇤
t for each acquisition function af,t(xt|At),

t 2 {1, ..., T}. Then, our choice c of which specific x⇤
t

to acquire is made via the following a stochastic policy,

p(c = x⇤
t |a) =

af,t(x⇤
t |At)PT

⌧=1 af,⌧ (x⇤
⌧ |A⌧ )

(9)

where a = [af,1(x⇤
1|A1), ..., af,T (x⇤

T |AT )]>. This ac-
quisition method is inspired by the Hedge algorithm
Freund and Schapire (1999). We treat each acquisition
function as an expert giving advice as to which model
to acquire. Assuming that we believe equally in all
experts throughout the BO experiment, the probability
of following the advice of the t-th expert is given by
(9). Algorithm 1 in Appendix E provides pseudo- code
summarizing our proposed method (SMS-DKL).

5 Experiments and Discussion

Sequence prediction admits a variety of models, among
the most popular being RNNs in machine learning,
although the difficulties of training them are widely
recognized Pascanu et al. (2013). In this paper, we
are motivated by the problem of temporal distribution
shift within a dataset, a phenomenon especially rele-
vant in the medical setting Oh et al. (2019), and in the
presence of which the optimal model itself may vary
over time. So far, we have formalized this challenge as
one of stepwise model selection (SMS), and proposed a
solution via deep kernel learning (DKL). Three ques-
tions remain, and our goal in this section is to answer
them:

• First, why do we expect to benefit from stepwise selec-
tion at all? While the abstract notion of potential dis-
tribution shifts gives some intuition, here we empir-
ically illustrate the validity of SMS as the problem:
We observe improvements simply by applying post-
hoc stepwise selection over standard BO and MOBO.

• Second, what is the practical benefit our technique
for model selection? Here, we demonstrate the consis-
tent, significant advantage of DKL as the solution:
We observe a clear improvement by addressing step-
wise selection directly in the optimization procedure.

• Third, how do the correlations ultimately influence
the optimal models selected? Here, we visualize
the correlations in model performance over time, as
well as the learned embeddings zt and optimizers xt,
shedding further light on the workings of SMS-DKL.

Datasets. We use three datasets in our experiments.
The first consists of patients enrolled in the UK Cystic
Fibrosis registry (UKCF), which records annual follow-
up trajectories for over 10,000 patients in 2008–2015.
At each time step, we issue predictions on the basis of
90 temporal variables (e.g. treatments, comorbidities,
infections), focusing on three important clinical out-
comes (see e.g. Alaa and van der Schaar (2019)): the
1-year mortality (1YM), allergic broncho-pulmonary as-
pergillosis (ABPA), and the lung infection E. coli. The
second consists of patients in intensive care units from
the MIMIC-III database (MIMIC), containing physi-
ological data streams for over 22,000 patients. During
the first 48 hours of each episode, we issue predictions
using 40 temporal variables (including the most fre-
quently measured vital signs and lab tests) focusing on
three important clinical outcomes (see e.g. Oh et al.
(2019)): acute respiratory failure (ARF), shock, and
in-hospital mortality (IHM). The third (WARDS),
assembled by Alaa et al. (2017), consists of over 6,000
patients hospitalized in the general medicine floor of
a major medical center in 2013–2015. On the basis
of 21 physiological data streams (including vital signs
and lab tests), we predict whether each patient will
be admitted to critical care within 24 hours from the
current time as a result of clinical deterioration (ICU).

Experimental Setup. We have a total of 7 sequence
prediction tasks from the three datasets. Sequences
are of length 6 (at 1-year resolution) for UKCF, length
24 (at 2-hour resolution) for MIMIC, and length 24
(at 1-hour resolution) for WARDS. Benchmarks are im-
plemented using the GPyOpt library or original source
code. In SMS-DKL, the RNN component is imple-
mented using LSTMs, the DeepSets component as a
ReLU network (with an output embedding zt or zt,m of
size 1), and the MLP component as a feedforward tanh
network. See Appendix A for additional details on im-
plementation. The underlying search space is the space
of RNN models for sequence prediction, and hyperpa-
rameters considered include the learning rate, batch
size, training epochs, hidden state size, input dropout
rate, recurrent dropout rate, and the `2-regularization
coefficient. See Appendix B for additional details on
hyperparameter space. In the presence of label im-
balance in the data (common to the medical setting;
see Table 4 in Appendix E) , we focus on optimizing
the area under the precision-recall curve (AUPRC) as
performance metric. BO is carried out to a maximum
of 500 iterations. Each experiment is repeated for a
total of 10 times, each with a different random training
and validation split. Each run of the experiment uses a
different random seed to initialize the BO algorithms,
and the same random seed is used for all algorithms at
each run.

Benchmarks. We compare the proposed SMS-

https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
https://mimic.physionet.org
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DKL with a standard BO algorithm and two MOBO
algorithms ParEGO Knowles (2006) and PESMO
Hernández-Lobato et al. (2016) on the SMS problem.
While other MOBO algorithms are available (such as
EHI Emmerich and Klinkenberg (2008), SMSEGO
Ponweiser et al. (2008), and SUR Picheny (2015)), they
are not scalable to problems with a large number of
objectives. In particular, SMSEGO and EHI make ac-
quisitions by computing the hyper-volume gain, which
is expensive in high dimensions (i.e. large numbers of
objectives). Similarly, SUR is an extremely expensive
criterion only feasible for 2 or 3 objectives at most,
because it computes the expected decrease in the area
under the probability of improving the hyper-volume.

• GP. We first consider a standard BO algorithm (GP)
for comparison; this operates by simply optimizing the
sum of the model performance metric over all steps t.

• ParEGO first transforms the multi-objective prob-
lem into a single-objective problem: At each BO itera-
tion, the multiple objectives ft are scalarized into f✓ us-
ing a randomly sampled weight vector ✓ = (✓1, ..., ✓T ),

f✓(x) = max
t2T

(✓tft(x)) + 0.05
TX

t=1

✓tft(x) (10)

Then at each BO iteration, a standard acquisition
function can be used on f✓(x) to select the next point.

• PESMO is a recent, state-of-the-art MOBO algo-
rithm based on predictive entropy search. The acquisi-
tion function in PESMO is expressed by the following,

a(x) = H(X ⇤|D) � Ey[H(X ⇤|D [ {(x, y)})] (11)

where H(·) denotes the entropy and X ⇤ is the Pareto set.

PESMO operates by selecting the point that maximizes
the information gain with respect to the Pareto set.

• Post-hoc Stepwise Variants. Since the goal in
SMS is to attain good performance for each individual
time step, we additionally consider a straightforward
modification to all aforementioned benchmarks that ap-
plies an extra post-hoc selection step, choosing (among
all models) the best-performing model on a per-step ba-
sis. For each of the algorithms considered (GP, ParEO,
and PESMO), we denote by subscript “WISE” the re-
sults for this “stepwise” modification to the benchmark.

5.1 Experiment Results

Overall Results. For all BO algorithms considered,
Table 2 reports the AUPRC score (averaged over all
time steps t) at the 100-th and 500-th BO iteration. We
now answer the first question posed at the beginning of
this section: Is it reasonable to expect to benefit from
SMS (at all)? Comparing each benchmark with its
post-hoc stepwise modification, we answer in the affir-
mative: Across all benchmarks, observe that prediction
performance is invariably improved simply by going
back and selecting the best model on a per-step basis.
The second—and perhaps more interesting—question
is whether solving the SMS problem directly within
the optimization procedure can offer additional gains.
Comparing our proposed DKL solution with any com-
parator, the answer is also in the affirmative: Observe
that SMS-DKL consistently and significantly outper-
forms both standard BO and MOBO algorithms across
all datasets and prediction targets, at both the 100-th
and 500-th BO iteration mark. This is true regard-
less of whether we allow comparators the additional

Dataset UKCF MIMIC WARDS

Target 1YM ABPA E. coli IHM Shock ARF ICU

100 BO Iterations

GP .586 ± .001 .627 ± .001 .872 ± .001 .460 ± .003 .107 ± .001 .114 ± .001 .161 ± .004
GPWISE .593 ± .002 .636 ± .001 .877 ± .001 .463 ± .002 .113 ± .001 .126 ± .001 .168 ± .005
ParEGO .588 ± .002 .623 ± .002 .872 ± .002 .461 ± .001 .107 ± .000 .118 ± .001 .176 ± .003
ParEGOWISE .594 ± .001 .633 ± .003 .876 ± .001 .464 ± .001 .112 ± .001 .124 ± .001 .184 ± .004
PESMO .592 ± .002 .629 ± .001 .874 ± .001 .467 ± .001 .111 ± .002 .111 ± .002 .176 ± .006
PESMOWISE .598 ± .002 .639 ± .001 .878 ± .001 .469 ± .001 .115 ± .001 .123 ± .001 .182 ± .005
SMS-DKL .601 ± .001 .641 ± .001 .880 ± .001 .474 ± .002 .118 ± .001 .128 ± .001 .197 ± .004

500 BO Iterations

GP .592 ± .001 .633 ± .002 .876 ± .000 .471 ± .001 .113 ± .001 .120 ± .001 .176 ± .003
GPWISE .601 ± .001 .644 ± .001 .882 ± .000 .475 ± .001 .122 ± .001 .135 ± .001 .189 ± .002
ParEGO .593 ± .002 .632 ± .001 .875 ± .001 .469 ± .001 .114 ± .001 .122 ± .002 .187 ± .004
ParEGOWISE .601 ± .001 .644 ± .001 .881 ± .001 .473 ± .001 .121 ± .001 .136 ± .001 .199 ± .002
PESMO .592 ± .001 .632 ± .002 .876 ± .000 .469 ± .001 .113 ± .002 .117 ± .002 .186 ± .004
PESMOWISE .601 ± .001 .642 ± .001 .881 ± .000 .474 ± .001 .119 ± .001 .132 ± .001 .194 ± .002
SMS-DKL .603 ± .001 .645 ± .001 .884 ± .000 .476 ± .001 .123 ± .001 .138 ± .001 .207 ± .002

Table 2: Performance of SMS-DKL and Benchmarks: AUPRC scores at the 100-th and 500-th BO iteration mark.
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(a) Correlation in black-boxes ft (b) Change in dataset embedding zt (c) Change in optimal prediction model xt

Figure 4: Learning correlations and changes over time. SMS-DKL leverages correlations to select stepwise-optimal models.

freedom of choosing the best stepwise models post-hoc.

Correlations and Changes. Finally, how do changes
and correlations over time ultimately play out with re-
spect to optimal models? In SMS-DKL, the source of
efficiency in optimization stems from its ability to learn
the similarities and differences between black-box func-
tions ft. Using the prediction of shock in MIMIC as an
example, Figure 4a shows a correlation matrix of model
performance across the 48-hour interval considered, at
the 500-th iteration mark. Here we see that black-box
functions within first 12 hours are weakly correlated
with subsequent times, and those within the latter half
of the interval appear strongly correlated with each
other—with values exceeding 0.95. Observe that this
pattern is automatically picked up and reflected in the
learned embeddings zt of the datasets Dt themselves:
Figure 4b shows these (one-dimensional) embeddings zt

over time. Notice a clear evolution consistent with the
previous observation: the evolving datasets are auto-
correlated, with particularly strong similarities among
the latter 24-hour interval. Importantly, this plays out
with respect to optimizers xt in parallel: Figure 4c
shows the evolution of optimal models xt over time; in
order to highlight the trend across time steps, values
are averaged over the 20 highest-performing models.
(The conventional approach of selecting a single model
would correspond to a series of flat lines). Consistent
with our intuitions, notice—for instance—that models
for earlier steps (which have access to less temporal
information) appear to require less recurrent memory.

As an additional sanity check, Table 4 in Appendix
E also shows the first-order autocorrelations of input
features in each dataset prediction task; these are first
computed per feature, then averaged over all features.
We see that the autocorrelations are stronger in MIMIC
and WARDS than in UKCF. Although this is (at best)
a rough proxy for the performance correlation between
models across time steps, we observe an intuitive pat-
tern: SMS-DKL shows more significant gains over
datasets with higher autocorrelations. In particular,
we outperform all of the benchmarks by the widest
margin in WARDS.

5.2 Discussion

The advantage of SMS-DKL for sequence prediction is
predicated on the fact that the optimal model for pre-
dicting et may change with t—within a given dataset.
While there may be a variety of reasons for this phe-
nomenon (encapsulated by the general notion of tempo-
ral distribution shift Oh et al. (2019)), the benefit here
is that optimal models are automatically selected over
time—agnostic as to the precise underlying mechanism
of change, and without requiring domain-specific engi-
neering to explicitly model time-varying relationships.

Generalization Performance. Of course, a variety
of sophisticated single-model techniques can be—and
have been—used to tackle temporal distribution shift;
these include explicitly including temporal encodings,
modeling abrupt transitions, mixing weights over time,
as well as learning hypernetworks to modify the weights
of the primary RNN model Ha et al. (2016); Oh et al.
(2019). On the one hand, such techniques have been
shown to outperform the baseline RNN model on held-
out test data; see Oh et al. (2019) for a comprehensive
analysis. On the other hand, extremely competitive
(test set) performance can also be achieved via the sim-
ple application of SMS-DKL in optimizing the (unmod-
ified) baseline RNN alone: In Appendix C, we show a
head-to-head comparison of generalization performance
for all such methods on MIMIC prediction tasks, and
observe—interestingly—that SMS-DKL gives either the
best or second-best test-set performance—purely by
optimizing the baseline RNN model.

In this paper, we formalized the SMS problem in the
context of sequence prediction, and developed the DKL
algorithm as a solution. Using real-world datasets in
healthcare, we illustrated the advantage of SMS-DKL
over standard and multi-objective BO approaches for
model selection. In contrast to alternative single-model
techniques, we further verified the effectiveness of SMS-
DKL with respect to generalization—with the added
advantage that the method is simple and automatic.
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